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1. Introduction

The aim of this paper is to propose a wide class of random processes to describe
the evolution of a risk active price and to construct a mathematical theory of option
pricing. For this purpose, a general mathematical model of evolution of a risk active
price is proposed on a probability space constructed. On the probability space, an
evolution of a risk active price is described by a random process with jumps that
can have both finite and infinite number of jumps. We introduce a new notion of
non-singular martingale and prove an integral representation for a wide class of
local martingale by a path integral. This theorem is the basic result of the paper
that permits us to introduce the important notion of an effective stock market.
For an effective stock market the mathematical theory of European type options is
constructed. As a result, the new formulas for option pricing, the capital investor
and self-financing strategy corresponding to the minimal hedge are obtained.

2. Some auxiliary results
Hereafter we will use two elementary lemmas the proof of which is omitted.

Lemma 1. For any on the right continuous functions ¢(z) and ¥ (x), that have the
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bounded variation on [a,b), the following formula

DU = 00 = [ W)+ [ Gwdel). (ed Clab) (1)
(c,d] (c,d]
is valid, F_(u) = liTm F(v).
By de(y) and diy(y) we denoted the charges, generated by functions ¢(y) and ¢(y)
correspondingly, ¢_(z) = li%n o(y).
ytz

Lemma 2. The Radon-Nicodym derivative of the measure dg(y), generated by the
function g(y) = (1 — F(y))™t, with respect to the measure dF (y), where F(y) is on
the right continuous and monotonouosly non-decreasing on [a,b) function and such
that F(a) =0, F(x) <1,z € |a, b)’glgigzl; F(z) =1 is given by the formula

dg(y) 1

dF(y)  (1=F(y)(1—-F.(y)

Lemma 3. For on the right continuous and monotoneously non-decreasing function
a(x) such that a(x) < 0o, x € [a,b), ala) =0, linllyoz(x) = 00, the representation
T—

dF(y)
a@):/m (2)

[a,2]
is valid for a certain F(x), that is on the right continuous and monotonously non-
decreasing function, satisfying conditions: F(x) < 1, z € [a,b), lirrll) F(z)=1,F(a) =
T—r

0, if and only if there exists a positive, on the right continuous and monotoneously
non-decreasing solution of equation

¢(x) = [ ¢(y)daly) +1 (3)
]

la,z
such that ¢(a) =0, ¢(x) < co,x € [a,b). The function F(x) is given by the formula

P = 281 (@)

¢(x)

Proof. The necessity. By definition we put F_(y) = 11?1 F(x). If the representation
zty

(2) holds, then the following equality

/ da(y) :/ dF(y) _ 1
1= F(y) (1=F)(d-F(y) 1-F)

[a,z] [a,z]
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is valid. Therefore, the function

1

is a positive, on the right continuous and monotonously non-decreasing solution of
equation (3).

The sufficiency. If there exists a solution to (3), satisfying conditions of lemma 3,
then the function (4) satisfies equation

da(y) B 1
/ —Fy) 'TIoF@)

[a,x]

But

/ dF(y) 1= 1
(1—-Fy)(1—F(y)) 1—F(z)

[a,x]

The latter means that

da(y) _ dF(y)
1-F(y) (1-Fy)1-F(y)
o _ dF(y)
o) = T ()

From the latter equality it follows that

B dF(y)
(@) = / 0 F (@)

[a,x]

Lemma 3 is proved.
Let us give the necessary and sufficient conditions for the existence of a solution
to equation (3)

Lemma 4. Nonnegative solution to the equation (3) exists if and only if the series

¢(x):1+2/da(t1) / da(ts) . .. / da(t,) (5)

la,z] la,t1] laytn—1]
converges for all x € [a,b).

Proof. The necessity. If there exists a non-negative solution to (3), then this
solution is the solution to the equation

¢(x):1+i/da(t1) / do(ts) . .. / da(t,)
"=

a,x) la,t1] [a,tn—1]
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+ / da(t)) / dal(ts) .. / da(ty) / bt )da(te s ).
[a,z] la,t1] [a,tg—1] la,tk]

From the latter equality there follows the inequality

/ da(t) / da(ty). .. / da(t,) < ¢(a).

a,x) [a,t1] lastn—1]

k
1+
n:l[

Arbitrariness of k, positiveness of every term of the series means the convergence
of (5). The proof of sufficiency follows from the fact that if the series (5) converges
then this series is evidently a solution to the equation (3). The lemma 4 is proved.

Corollary 1. If a(z) is a continuous and monotonously non-decreasing function,
alx) < oo, x € [a,b), liI%a(x) = 00, ala) = 0, then the equation (3) has the
T—r

solution ¢(z) = e*®),

Corollary 2. If v(x) is some measurable function on [a,b), which satisfies the in-
equality

/ A(y)daly) +1 < (@), @ € [a,b).

[a,x]

then there exists a solution to equation (3).

Lemma 5. The solution to the equation (3) exists if jumps of monotonously non-
decreasing and on the right continuous function a(x) is such that Aa(s) # 1. It has

the following form
—Aaf(s)

_ ol@) _°
o= 1 —xamy
{s<a}
If 0 < Aa(s) < 1, s € [a,b), then this solution is non-negative, on the right contin-
uous and monotonously non-decreasing function, Aa(s) = a(s) — a_(s).

Proof. First of all the product
ean(s)

(1—Aa(s))

{s<a}

converges, because the estimate > Aa(s) < a(z) < oo, x < b is valid. Let
{s<}
us verify that ¢(z) is a solution to (3) in the case when all jump points of «a(z)
are isolated points. It is sufficient to prove that if ¢(z) is the solution to (3) on a
certain interval [a, z¢] and we prove that ¢(x) is the solution to (3) on the interval
(zo,z], © > xo then it will mean that ¢(x) is the solution to (3) on the interval
[a, z]. We assume that the points z;,7 = 1,2, ... are the jump points of the function
a(z). To verify that ¢(z) is the solution to the equation (3) let us assume that we
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have already proved that on the interval [a, x;), where x; is the jump point of the
function «a(z), ¢(x) is the solution to equation (3), that is,

7Aa(s)
/gf) Yda(y) =¢_(x;) — 1 =€ “”Hm—l.

{s<z;}

Let = be any point that satisfies the condition x; < x < x;,;. Since

1+/¢ Yda(y —1+/<;5 )da(y /(b Yda(y /(b Yda(y
(2] (@ase]

la,zi)
—Aaf(s)
oot = 1t e Bae) [T 5o
{s<zi}
—Aaf(s) —Aaf(s)
a(z)  a(z;) € 1= ao(x) € —
Fet =t I mamy = = L a sy =0

{s<zi} {s<z}

To complete the proof of the lemma it is necessary to note that on the interval [a, z1)
the solution to (3) is the function e*®. Let us prove lemma 5 in a general case. If
a(x) satisfies the conditions to lemma 5, then

a(zr) = aq(z) + Z Aa(s)

{s<z}
where a.(x) is a continuous function on [a, b). Let us introduce the notation

—Aam(s)

G —e“m(x) H — Aa )

{s<m}

where

am () = ae(x) + Z Aa(s).

{s<z, Aa(s)zm~1}

In the latter sum the summation comes over all jumps of a(z), where the jumps of
a(x) are greater than m™1. It is evident that on any interval [a, z] the set of such
points is finite. Therefore ¢,,(z) satisfies the equation

/ Son () (1) + 1. (6)

[a,x]

Let d < b, then
sup |¢(z) — dm(z)| < sup e®

z€a,d] z€a,d)
(1—Aafs))
y 1 1 {s<d, Aa(s)zm~—1} <
I1 (1—Aafs)) [T (1—Aafs)) h
{s<d, Aa(s)zm~—1} {s<d}
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Aa(s)

ae(z) {s<d, Aa(s)<m~—1}

< sup e — 0, m — oo.
z€la,d] H (1 - AO&(S))
{s<d}
Moreover,
— QU < A — 0, — 00,
xéfﬁfd}[a(az) ()] Z a(s) m — 0o

{s<d, Aa(s)<m—1}

where var,c[q,q g(x) means a full variation of the function g(z). From these inequal-
ities we have

[ 6ul) ~ 60dan) < s [00(x) — o) i, o) =0, m = o
[a,z] 7

| Slent) 0wl < s W@ s fony) ~ o) = 0m = 00
la,z] 7 ,

From the equality

o) = [ lons) = 6@dants) + [ o)dlants) — )]+ [ oly)daly)+1

[a7$] a m] [a,x}
and from the preceding inequalities there follows the proof of the lemma 5.

Theorem 1. Let (y) be an on the right continuous function of bounded variation
on any interval [a,x], = € [a,b), f(y) be a measurable mapping with respect to the
Borel o-algebra on |a,b) and bounded functz’on on la,x], x € [a,b). If, moreover,

d(y
[/w <oo, x € |a,b) (7)

is monotonously non-decreasing and on the right continuous function on [a,b) and
such that

1) 0<Aa(z) <1, Aa(z) = a(az) —a_(z), x € [a,b),

2) lima(zr) =00, afa)=

r—b

3) lim ¢ (z)e ™ =0,

J:—)b
f |f(@)]e” - da(z) < oo,
then for the function ¢(x) the following representation

1
U(z) = m(m/b) Fx)dF()

is valid for a certain monotonously non-decreasing and on the right continuous func-
tion F(x), such that F'(a) =0, F(z) <1, z € [a,b), lirrll)F(:c) =1
T—
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Proof. Let F(z) be the function, which is constructed in the lemma 3. Let us
consider the product [1 — F(z)]¢(x). Then for x < d < b

1 - F@)l(z) + [1 - F(d)(d) = /u— /¢ JdAF(y

(z,d] (,d]

From the lemma 3

B B dF(y)
Therefore,
~[1 = P)loe) + 1 - Fod) = - [ fw)F() ®
(z,d]
Since

[1 = F(d)]e(d) < e Dy(d) =0, d = b,

/f JAF(y /|f aF(y

(z,d] (z,d]
~ [ Uwlin-Fwldaw < [ 1)l Ddat) < o.
(z,d] (z,b)

then, taking the limit in the equality (8), we obtain

/de

The theorem is proved.

Theorem 2. Let g(u) be a measurable function with respect to B(|a,b)) and such
that

/ l9(y)|dF(y) < oo,
[a,b)

then the following formula

1
o—Fwy/<mF

18 valid.
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Proof. If we choose

p) = (1= Pla) ™ v = [ gludF@
and use lemmas 1 and 2 we obtain the proof of the theorem 2.

3. Probability space

Hereafter we construct a probability space, in which the securities market evo-
lution will be considered. Let a = {ao‘}k(a " be a sequence from la,b) C RY, a <D,
that satisfies conditions:

k(a)

a;t < a’?qtlv =1, k(a)a U [a’?v a’?qtl) = [a’a b)v ay = a, a’g(a)ﬂ =b.
i=1

Therefore, the set of intervals {[af,a, ), i = 1,k(a)} forms a decomposition of
interval [a,b) C R!. The number k(a) may be both finite and infinite. Further
on, we consider the family of probability spaces Q; = [a,b), i = 1,k(a). On every
probability space €); a o-algebra of events F? is given. By definition the o-algebra F?
is the set of subsets of Q; = [a, ), that is generated by intervals (¢,d) C [af, a?, ;).
Let us determine the flow of the o-algebras ]:io’t, t € [a,b), .Ep’t C F?, by the
formula

{0, [a,0)}, a<t<af,
fo7t — ([ ])7 aa <t < a’?Jrlv
’ V B([a’la?t]):‘/—_.zoa z+1 <t<b

tefaf,ad )

where we denoted by B([a$,t]) the o-algebra of subsets of [a,b) generated by the
subsets of (¢,d) C [a®,t] and '/  B([a,t]) denotes the o-algebra, that is the
te€lag,a 1)

union of the o-algebras B([a$, t]). Let {Q4, FO} be the direct product of measurable
- k(a)
spaces {Q, F°},i = 1,k(a), and F)* = H F"" be the flow of the o-algebras on

the measurable space {Q, F2}, that is the direct product of the o-algebras F Ot,
k(a)

where €, = H Q;, F2 = J] F?. Let us determine a certain measurable space
i=1

{Q, F°%}. Denote by X a set of sequences o = {ao‘}k(a " from [a,b) that generate

decomp051t10n of [a,b). Let 2 = >_ Q, be the direct sum of the probability spaces
aceX

= {a, Q. }. Elements of Q, are the pairs {,w,}, where w, € Q, Let us denote
by F? the g-algebra of events of the kind A, = {«, A, }, where A, € F2, {a, Ay} =
= {{a,wa}, wa € Ag}. Analogously, F»* is the flow of the o-algebras from Q, of
the sets of the kind {o, A, }, where A, € F*“. It is evident that QuNQp =0, # 8.
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Let ¥ be the o-algebra of all subsets of X. Introduce a o-algebra F° and the
flow of the o-algebras F in Q. We assume that the o-algebra F° in € is the set of
the subsets of the kind

Cy=|JBa YEX, By € Fp.
acY

This follows from the following inclusions

GCYZ.:UBQG}"O, ﬂcy_UB eF’ Cy\Cy, =|JBa€ P

o Vi\Yz
ac U Y; aeﬂ Y; A€YI\Y?

By analogy with the construction of the o-algebra F°, the flow of the o-algebra
FP C FYis the set of the subsets of the type

Cy =|J Ba Y €Y, By € F
acY

Further on we deal with the measurable space {€2, F°} and the flow of the o-
algebras F? C FY on it. Hereafter we construct the probability space {2, F°, P}.

Define a probability measure P, on the measurable space {Q,, F }. For this
purpose on every measurable space {€;, 7} we determine the famlly of distribution

functions F*(w®|{wa}i—1), that at every fixed {wy};—1 € Q7! = H s is on the

right continuous and non-decreasing function of the variable w{* € [a b)

07 a < wia < af‘, {wa}i—l S Qiila
Frwifwati-) = ¢ ¢F(wf{watio1), af <wf <afyy, {watin € X7
1, af,; <w? <b,  A{wa}ior € Q7

where {wo}io1 = {wf, ... Wi} wa = {wf, .. Wi}

The function ¢$(wf|{wa }ti—1) satisfies the conditions: 0 < ¢ (w{watiz1) < 1,
it is on the right continuous and non-decreasing function of the variable w{* on
la?,af ) at every fixed {w,};-1 € Q') moreover, it is a measurable function
from the measurable space {Q~! F? |} to the measurable space {[O 1], B([O 1)}

where B([0,1]) is the Borel g-algebra on [0, 1], F, H FO.

at every fixed wf

1)

Denote by F(dw$*|{wa}i—1) the measure constructed by the distribution functlon
F*(wf|{wa}i—1) on the o-algebra F? at every fixed {ws}i—1 € Q1. It is evident that
F{(dwf[{wa }i—1) is concentrated on the subset [af, a$,,) C ;. Let us determine a
measure on the probability space {,, F°}, having determined it on the set of the
type A1 X ... X Ag(a), A;i € F? by the formula

Pa(Al X ... X Ak(a)) =

_ / / P2 () B (dwg {wa 1) X - X Flia (A {0 Frtey—1)-

Aq Ak(a)
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The function of the sets so defined can be extended to a certain measure P, on JF°
due to Tonescu and Tulcha theorem [1]. We put by definition that on the o-algebra
F? the probability measure P, is given by the formula P,(A,) = P.(A,). Further
on we consider both the probability spaces {Q, F2, P,} and the probability spaces
{Q., F2, P,}, that are isomorphic, and the flows of the o-algebras F{"* C F? and
F* C FP on the spaces Q, and Q, correspondingly. If 12(Y") is a probability measure
on ¥, we put that on the o-algebra F° the probability measure P is given by the
formula

P(Cy) = /Pa(Ba)dﬂ(a), Cy = |JBa YeES B.eZ

Yy acY

The latter integral exists, because P,(B,) is a measurable mapping from the mea-
surable space { X, X} to the measurable space { R', B(R')}, where B(R') is the Borel
o-algebra on R!.

Further on we consider the probability space {2, F° P} and the flow of the
o-algebras F? C F° on it, the probability space {2, F, P} and the flow of the o-
algebras F; C F, where F and F; are the completion of F° and F? correspondingly
with respect to the measure P. Then we use the same notation P for the extension
of a measure P from the o-algebra F° onto the o-algebra F, where the o-algebra
F is the completion of the o-algebra F° by the sets of zero measure with respect to
the measure P given on the o-algebra F°.

4. Random processes on the probability space

Definition 1. A consistent with the flow of the o-algebras F measurable mapping
G({a, wya}) from the measurable space {2, F°} to the measurable space {R*, B(R")}
belongs to a certain class K if for (;({a,wa}) the representation

k(o)
GHa,wa}) = ZX[a% a?+1)(t) ?a({wa}i)a
G {wadi) = fFHwadi)Xiag, 9(@f) + 08 {watiot, DX, az (@),
te [azqva?—i-l) (1())

is wvalid, where ff({wa}i) is a measurable mapping from the measurable space
{Q1, FY to the measurable space {R*, B(R')} at every fivzed o € X°, i = 1,k(a),
VY ({wa}io1,t) is a measurable mapping from the measurable space {Q~1, F0 .} to
the measurable space {R*, B(R')} at every fized t € [af, af,,), @ € X, i =2, k(a).

Further we deal with the space X° that consists of sequences o = {a?}ff{)ﬂ not

having limiting points on the interval [a, 2], Vx < b, ¥ is the o-algebra of all subsets
of X°. Hereinafter yp(t) denotes the indicator function of the set D from [a, D).
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Definition 2. By K° we denote the subclass of the class K of measurable mappings,
satisfying conditions:

1) Y¢({wati-1,t) is an on the right continuous function of bounded variation of the
variable t on any interval [af, 7], T € [af,al,,) at every fized {wa}i € Q7Y, i =
=1,k(a).

2) ff({wa}i) is a measurable and bounded mapping from the measurable space
{QF, F} to the measurable space {R*, B(R!)}.

3) The function

o U ({Wabi-1,d7) i
7 {wationt) / ¢ ({wati-1, 7) = F2({watiot, 7))

[af" ¢]

1, k(a), (11)

where fE({wa}tio1,7) = ff{wa}i)|wd = 7, is monotonously non-decreasing and on
the right continuous function of the variable t on the interval [af, a3, ) at every fived
{watio1 € Q7L a € X0 satisfying conditions:
CL) Afyiﬂ({wa}i*lvt) < 17 {wa}ifl € Qi_lv te [a’?vazq—f—l)a
Ay ({watiz1, t) = v ({watio1,t) = v ({watio1,t-),
P (i 1) = lim e ()i, 5)

b) hm 7 ({wati-1, )—Ooa T ({wati-1,a8) =0, {wa}i1 € X7 a € X0

1+1

c), hm U ({walion, t) exp { =" ({wa}ic1, 1)} = 0,

1+1

d) [ ff{walion O] exp {=7"*({wa}im1, 1)} ({wati-1,dt) < 00

@

[ag, afyy)

{wa}i_l c Qiil, ac XY

We denoted by ~"*({wa}i—1,dt) the measure on B([a?, af,,)), generated
by the monotonously non-decreasing and on the right continuous function
o ({wa tiz1,t) of the variable ¢ at every fixed {wq}i—1 € 71, B([ad, afy,)) is the
Borel o-algebra on the interval [af, af\ ;).

Lemma 6. Any on the right continuous and uniformly integrable martingale on the
probability space {Q, F, P} with respect to the flow F; is given by the formula

Mi({a, wa}) = ZX 2, agy) (0mi* ({wa}a), (12)

where
m*({wati) = fF{wati)X(ae, (@) + ¥f ({watict, D)X, az, ) (@),
Fo({wad) = / / (ki {0} 40e)

Qiv1 (o)
X B (dwiy [{wati) x .. x Fk(a)(dwg(a)Hwa}k(a)*l)?
1
& aifat = > aiF‘ad‘a afi—1);
wz ({w } 1 ) 1_F;‘a<t|{wa}ifl> / fz <{w }) i ( W; ‘{w } 1)
(¢, a1+1)
i=1k(a), acX’ (13)
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9“({wa tis {wa }it1,k(a)) @5 @ measurable and integrable function on the probability
space {Q, F, P}, that is, [ M,|g({a,wa})|dp(a) < oo.
X0

Proof. Further on, for the mapping ¢®({wa}i, {Wa }[i+1,k(a)]) We use one more nota-
tion g({a,wa})=9"({wa}ti, {wa}iit1,60)), Where {wa}i={wf,... 7wff}7 {‘wa}[i,k(a)] =
{win, - Wit wa = {0l Wi} = {{wati {waliik@)y}- Taking into account
the o-algebra Y from X° consists of all subsets of X° to prove the lemma 6, it is
sufficient to calculate the conditional expectation

M{g({B, ws})|Fi}|s=a = Ma{g({a, wa}) |5},

where g({o,w,}) is a measurable and integrable function on the probability space
{Q,F, P}, My{9({a, wa})\}"oa} is the conditional expectation Wlth respect to the
flow of the o-algebras -7:15 C F? on the probability space {Q,, F°, P,}. Suppose
that t € [af', af, ;). From this it follows that

pi{wa}) = Ma{g({a, wa})| 7}
is the measurable mapping from {Qq, F*, Py} to {R',B(R")}, where F* =
H FO x F x H O,, Oy = {0,[a,b)}, s = i+ 1,k(a). Due to the structure

s=1+1
of the o-algebra F* it follows that ({wa}) depends only on variables {w,}; and

¢t({wy}) is a measurable mapping from {Q?, H FOx F'} to {R', B(R")}. Granting

this notation we have

pi({wa}) = Qi{wati)

= ¢ ({watis O)Xfas, 9(wi’) + 97 ({watiot, DX, az, ) (WF)- (14)
Really,
Qi({wa}:) = Qi{wati)Xiag, 9(wi") + Qil{wati)X, g, (wi).

Because of the fact that Qt({wa}) ay(wf*) is a measurable mapping from

{0, H FU x .FOt} to {R', B(R")} it follows that Q!({wa}i)x, a1+1)( wy) is also the

(2

measurable mapping. But this is possible, when Q%({w,};) does not depend on the
i—1

variable w® € (t,b), because the only measurable sets [[ Bs x A; belong to the
s=1

i1
o-algebra [[ F2 x F)*, when w? € (¢,b), where B, € F0, A; = [a,a) U (t,b).

s=1
Putting

Qf‘({wa}i) = (p?({wa}iat)’ {wa}i € Qi_l X [af‘,t],
Qi({wa}i) = ¥ ({wati-1, 1), {wa}i € Q7" x {[a,af) U (£,0)},
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we prove the representation (14). Taking into account the definition of the condi-
tional expectation we have

Jo | [ @tabpr @) x . x B (@ i) =

B1 B;—1 A

— ) [ [ sttawanFres) <. x B (o Henhacor-)

B1 Bi—1 A Qip1 Q)
B,eQ, s=1,i—-1, AeF (15)

Let us introduce the measurable mapping

*({wak) / b i)

Qit1 Qp(a)

XFerl(dw?Jrlea}i) XFQ (dwk ‘{Wa}k(a 1)

from the measurable space {Qi,]:"io} to the measurable space {R', B(R')}. Tt is
evident that

/ | / 2 ({wa ) FE () % . x F(dwf{wa}ir) < Malg({on wa})] < oo.
Q1 Q;

From this and (15) it follows that

o7 {watir t) = fi'({wati),

Unbion ) = Ty R e )

(t, a

'L+1)
i=1k(a), a e X’

It is evident that between f({w,};) there exists the following relations

Felen) = [ I eab) P (dutialia)), i = TH@). a € X"

Q1+1
The proof of the lemma 6 is completed.

Lemma 7. Let a measurable mapping (;({c,wa}) on the measurable space {Q, F°}
belong to the subclass K°, for every fized a € X°, i = 1,k(a),

1/1?({wa}i,1,af‘) = z‘cil<{wa}i71)7 {wa}l;l e it

and there exists a constant A < oo such that

/ $2(a)dpu(e) < A
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for a certain probability measure p on 3. If f*({wa}:) = 0, then on the measur-
able space {Q), F°} there exist a measure P on the o-algebra F° and a modification
G({a,wa}) of the measurable mapping (({a,wa}), such that (({a,ws}) is a local
martingale on the probability space {2, F, P} with respect to the flow of the o-algebra
Fi, where the o-algebras F and F; are the completion of the o-algebras F° and F?
correspondingly with respect to the measure P.

Proof. The proof of the lemma 7 follows from the theorem 1. Really, all conditions
of the theorem 1 are valid. Therefore, there exists a family of distribution functions
F(wfHwatiz1), i =1, k(a), a € X {wa}io1 € Q1 with the properties, described
at the introduction of the probability space {2, F, P}, that for ¥ ({wa}i_1,t) the
following representation

1
— F(tH{wati-1)

/ £ ({wa}) F2(dw? {wa }in),

(t, a

Vi ({wati-1,t) = ]

'L+1)

i=1k(a), a € X°

is valid.
Let us consider the measurable mapping

k(o)

G({a,wa}) = ZX[@ agy) Ctla({wa} )

G (wabi}) = 2 ({wahxir, 0(o?)
[ b B e isabioxe o (6?)

(t, aZ_H)

on the probability space {2, F, P} consistent with the flow of the o-algebras F,
where the o-algebras F and F; are the completion of the o-algebras F° and F}
correspondingly with respect to the measure P, generated by the family of distribu-
tion functions F*(wf{wa}ic1), i = 1,k(a), a € X° and the measure du(a). The
measurable mapping (;({a,w,}) differ from the measurable mapping ;,({a, wa})
on the set Q\Q° P(Q\Q%) = 0. Let us construct the set QY. Consider the set
Q0 = {wa € U, af < wf < ayy, i =1,k(a)}, where w, = {wf, ..., wi,} and
show that P,(Q2) = 1. Really, since the sequence of the sets

1
_l’_
1 — F(t{wa}i-)

O ={wa € A, af <w <ai,, i=1n, a<w! <bi=n+1k(a)}
has the probability 1, that is, P,(Q%) = 1, n = 1,2,..., and taking into account
that Q7 > QL Q0 = (N Q7. the continuity of the probability measure P,, we
=1

obtain P,(Q%) = 1. As far as there are no more than a countable set of a for which
p(a) > 0, then there exists a countable subset XY C XY such that the direct sum
of the sets 22, a € XV forms the set Qy C Q, P(£y) = 1.
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From the condition of the lemma 7 we have the recurrent relations

in1({watiz) = / [ Qwa o) B (dwi {wa tia)

[ag, afy)
zt/:ﬁ%{wa}ﬁffﬂdw?Hwah—ﬂ, i = T.ka), a € X",
Q;

As far as

$9(a) = / Fo({wa b)) R (dwft) < oo,
then we have
49 (a) = / N / £ (o k) FA(Aw) % .. x F(dwf [ {wn}imr).

For every ty € [a,b) let us introduce the measurable mapping from the measurable
space {Q, F} to the measurable space {R', B(R")}.

Gto ({Oé, wa}) = fio([to,a) <{wa}i(t0,a))7

where i(ty, ) = max{i, a < to}. From the condition of lemma 7
Mai({avwa) = [ vi(e)dn(a) < .
X0

Moreover, it is not difficult to see that

Gento({e, wa}) = M{ge, ({a, wa})| 72}

The latter equality means that (;({a,ws}) is a local martingale since this equality
is valid for any to € [a,b). Therefore, we can choose the sequence of stop moments
ty — b with probability 1 such that (iam({, wa}) = G({, wa}) with probability 1.
The lemma 7 is proved.

In a more general case, there holds

Lemma 8. Let a measurable mapping (;({a,wa}) on the measurable space {Q, F°}
belong to the subclass K°. Suppose that for any ty € [a,b),

/d%tma)du(a) < 00

X0

for a certain probability measure du(a) on 3, where d* =  sup |ff({wali)l,
H{watie'}

i(tg, @) = max{i,a® < to}. If for every fized i = 1,k(a), a € X,

Of ({watio1, af) = fF{watic1), {watici € Q7Y
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then on the measurable space {Q, F°} there exist a measure P on the o-algebra
FO and a modification {;({a,wa}) of the measurable mapping ¢ ({a,wa}), such that
C({a,wa}) is a local martingale on the probability space {Q, F, P} with respect to
the flow of the o-algebra F;, where the o-algebras F and F; are the completion of
the o-algebras F° and F? correspondingly with respect to the measure P.

The proof of the lemma 8 is the same as the proof of the lemma 7.

As before, let {Q2, F, P} be the probability space with the flow of the o-algebras
F; C F on it. Suppose that (;({a,w,}) is a random process consistent with the flow
of o-algebras JF;, where

k(o)
G({a,wa}) = ZXW, at, ) (G ({wa ki),

¢ fwati}) = 7 ({wati) Xiaz, g(wf)
! o o o @
+ 1= Fo(i{wati ) / I {wa bi) F (dwi'[{wa Fim1) X, a?;l)(%' ), (16)

(t, al+1)

satisfying the conditions:

£ ({wa}) / £ (et Fo (At e ),

Qz+1

/] / 12 (i) FS () -+ F (A [} 1)) <

X0 Qq

for every to € [a,b), i, = i(ty,) = max{i,ad < to}, then (;({a,ws}) is a local
martingale. This assertion can be proved the same way as lemma 7 was proved.

Further on we connect with the local martingale (;({a,w,}) on {Q,F, P} a
stochastic process

k(o)

gt {a wa} ZX[@ af ) gta({wa})

which is consistent with the flow of the o-algebras F;, where

o {wals) =
1
1 — F(t{wa}i-1)

= [i'({wati-1,t) = / fi({wadi) B (dwi[{wa bio1)-

(t, aHl)

We shall call the process (['({a,ws}) as the process associated with the (;({or, wq})
process.
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Definition 3. Realization of the assotiated process (M ({a,wa}) is reqular if the set

{t € [CL, b)? Cti:g<{wa}i) = 07 L= 17 ]{?(Oé)}

1s mo more than the countable set.

Definition 4. A local martingal (;({a,ws}) is non-singular on {Q, F, P} if the
set of reqular realizations of the associated random process (f({a,wa}) has got the
probability 1.

Lemma 9. On the probability space {Q, F, P} there always exists a non-singular
local martingale.

Proof. To prove the lemma 9 we construct an example of a martingale on {2, F, P}

that is non-singular. Let f®(w?®) > 0, s = 1,k(a), a € X" be the measurable
mapping with respect to the o-algebra F?, satisfying conditions:

0</f0‘ NFX(dws {wats—1) < 00,

s=1k(a), aEXO {wats1 €Y (17)
O - oy [ R )

(¢, aHl)

tea%al,), s=1ka), a€X’ {wa}s1€Qh (18)

Then the local martingale

k(o)

&' ({a,wa}) = ZX[a az ) (D& ({wati)

is not singular, where

ff’a({wa}z‘}) = g; ({wa}i) Xlao, 9(wi")

1

T E et

/ 02 ({0} F2 (s {o i) Xt (@2,

(t, aHl)

f;‘(w?)
92 ({wa }i) Hg ({wats), ({wa}) ffa ) Fo(dw{wa }s— 1)

If, for example, f&(w®) > 0, s = 1,k(a), a € X° are strictly monotonous on

[a%,a%, ), then the conditions (17), (18) are satisfied. The lemma 9 is proved.
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Theorem 3. For any local martingale (;({a,ws}) given by the formula (16) and
satisfying conditions sup |ff({wa}i)| = B < 00, i = 1,k(a), a € X°,

{wa}i€ﬂl
Fe(ds{wa}i-1)
Fe(s-{wati-1)

< o0, {wa}i—l € Qi_la OAS Xoa

[ letlwabil;

[ai I a?+1)

the following representation
Gl{anwn)) = [ FREDF@) + [ duosla)d({awa)), 1€ fab
951 (a,t]

is valid if the local martingale §({a, wa}) is non-singular, sup |g8({wati)| =
{wa }:€Q°
=62 < oo, i=1,k(a), a € X° and

0, Ff(ds|{wa}i-1) i—1 0
> - i O X
/ |0, (s|{wa }i 1)|1_ Fols {wati) < 00, {Wa}i1 € , ae XY

@

[ag, agyy)

where
k(o)

&(fa,wa}) = ZX[a az ) (D& ({wa k),

SZ@({WOJ}Z‘}) = gia({woz}i)X[a?, i (wi)

1 & @ a [0
T F {wa i) / 95 ({Wa i) 77 (dwi {wa i) X0, ag, ) (@],

(t, a

z+1)

k(o)

N o2 (sl wadin)
(s|lwa) ZX[a agy) A’a(SHwa}ifl)’

07 (s{watic) =

1

= 9; ({wati-1,8) = 5 PGt 95 ({wa }i) B (dwf [{wa Fi1),
' e e
o7 (sl{wati-1) =

= fi'({wati-1,8) = 7 F.a(sl|{w T [ {wati) F (dwi {wa tio1)-
' e )
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Proof. Let us consider on the right continuous version of the random processes

k(o)

& ({a,wa}) = ZX[a a ) (D& ({wa i),

& (fwati) =
1
= a o ti Fe(dw® o b o a
T me B I CARL AL [N
(wit, a?+1)
i Wasi i W, Wa fi— al w; ),
1—- F’ia(t|{wa}i—1) Ji v v 1 X(tv 7,+1) )
(¢, al+1)
k()

&({a,wal) = ZX[a az ) (D& ({wa i),
Si’o"z({wa}i) = Xag, (@)

1
F(wf[{wa ti-1)

(w

< |9 ({wati) = / g7 {wati) 1 (dwi{wa }i1)

&y agyy)

It is obvious that

&({a,wal) =& ({o,wa}) + & ({or,wa}).

All realizations of the random processes £!({a,w,}), @ = 1,2, have got a bounded
variation on any interval [a,t], t < b. Denote by d&/({a,w.}), ¢ = 1,2 and
d&({a, wa}) the charges generated by these realizations on the o-algebra B([a,b)).
To prove the theorem 3, consider those realizations that are continuous at the points
{a?}¥ ™ o € X0, The set of realizations satisfying this condition have got the
probablhty 1 The left and right limits at every point a%, i = 1, k(a), a € X° equal

7

lim & ({awa}) = €5 ({wa ki)

[ gt ({wad) F(dwi{wa}ioa), af <wff <afyy, {wa}ion € X7,

= [ag, afﬁrl) |
gia<{wa}i*17 a@q)a Wl'a = a?, {wa}i,l c Ql_17

(19)

lm () = i (feadin), {oakin €0 (20)

Consider the set Q0 = {wy € Qu, af < wf < ayy, @ = 1,k(a)}, where w, =
{wf', ... Wi, } and show that P,(Q0) = 1. Really, since the sequence of the sets

Qn ={wa €Qq, af <wi <aj,, i=1n, a<w<bi=n+1kla)}
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has got the probability 1, that is, P,(Q%) =1, n=1,2,..., and taking into account
that Q7 > Q1 Q0 = (N Q7 the continuity of the probability measure P,, we
obtain P,(Q°%) = 1. As far as it is no more than a countable set of o for which

p(a) > 0, then there exists a countable subset X{ C XY such that the direct sum
of the sets 22, a € XV forms the set Qy C 2, P(£) = 1. Since

6 1 ({watios) = / 6 ({wa}) F2 (dw? {wa}ir) =

lag, agyy)

— [ sl st fnhin), i = TR@), a € X
Q;
then for every {a,w,} € € the realization of a random process &;({a, w,}) is con-
tinuous at the points {aa}k(a 1 The charge generated by realizations of the random

process & ({a, w,}) on the interval [a?, a?, ) is absolutely continuous with respect
to the measure F(dt|{wq}i—1) and the Radon-Nicodym derivative equals

46 ({1, 00)) |
Fel@iloa)n et T F i oy (21

1
@ alFada ai——q ai—,t ,
: 1 — F(t{watio1) / 95 ({wa i) B (dwf [{wa fio1) — 97 ({wa ti1, 1)
(¢ afiy)
where
1 . 1

lim

1—Fr(t-Hwation) 71t 1= F(r{wa}ic1)”
The charge d&2({a, w,}) generated by realizations of the process £2({a, ws}) on the
interval [a$, a?, ;) is concentrated at the point ¢ = w*

d&f ({o, wa}) = g™ ({wa}i) = (1 — wi)eoy (Wi {watioa). (22)

Let us calculate

o5 (sl{wati-1) | ia o (s){wati-1) | ian iy
[ Gty = | Gy e

[af" 1] [af", 1]

et (olonbin) s o
" / ( H{wa iz 1) “({wati) = K™ ({wati) + K ({wa ).

Using (21) and the theorem 2 we have

[a%, t

Fe(ds{wa}i-1)
1 — F(s—[{wa}i-1)

K ({wa i) = — / Mot e (5)8 (51w} 1)

[af", 1]
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1
- 1= FA(wf{watio1)

/ £ (@) F (s {0 i) a6 (2)
(wg', agy )
1

+1—Fi°‘(t|{wa}i_1 / [ ({wa i) FE(dwf {wa e )X @, a2, ) (@5)

(t, al+1)

/ £ (o }) F2 (A | {wa }in).

(a? s a?+1 )

Further, '
Ky ({wabi) = Xiag, 9(wf)

1
F(wi{wati-1)

x| (wad) - 1 / o h ) FE (e i)

wi ’ z+1

o (s{wati-1) ey
[al] 0 (sH{wainn) & ({wak)

= [7"({wa}i)X(az, 4(wy)

R e ey S A C DL CPES N Y

(t, az_H)

/ £ (@} F2 (o {wa }in).

[al’a I a?+1)

Therefore,

Taking the limit ¢ — af,; we obtain

80?(3|{wa}i—1) gio
|y e et =

[af', afyy

= [ ({wa}i) = fiLi({waticn), =1, k(a),

where

fe({wa}o) = / £ ({wa}1) F2(dw?) / £ (o)1) FR ().
(al a2)

Granting this and the definition of 1;(,)(s|w.) we obtain

/ S F(dwt) + / Brte) (3la)dEn({or, wa}) = G ({wa}s)
0

= Ct({aawa})v te [a?’ a?—l-l)‘
The theorem 3 is proved.
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Theorem 4. Let £2({a,wa}) be a local martingale on {2, F, P},

k(o)
€l({ea)) = Do v, o (06 ()
SZ’“({wa}i}) = g; ({wa }i) X(az, 0(wy')
/ 00 ({waks) F2 (A {wa ki 1)X(0, a5 (@0,

(t, aHl)

1
1 — Fr(tH{watio1)

_|_

satisfying conditions:

sup [g7 ({wa}i)l = B < 00, i =1,k(a), € X",
{wa }i €07

[l T et <o,

@

[ag, afyy)

{wali € Q7Y i =1,k(a), a € X,

where

sl 1) =
= g ({nbr )~ Ty | b P et i)

(s, al_H)

The random process

§({a, wa}) = ZX o, a1 fa(&" ({wa}i)

belongs to the subclass Ky if the family of functions fo(x) > 0, v € R, a € X,

are strictly monotonous, sup |f.(z)| = fi* < oo, inf |fl(z)| = f& > 0, moreover,
rzER! zER!

<

AFP(sH{wati-1) I3
sup sup sup o o
i {wa}io1€Q~1 s€la®,a® )1—F (s-Hwati-1)

Proof. To prove the theorem 4 it is sufficient to verify the fulfillment of the condi-
tions of definition 2. The condition 1 is valid, because

Ui ({wati-nt) = fo(T7 (H{wa}i-1))

is continuous on the right, where

) B 1
T (t{watio1) = 1 — F(tl{wa}io1)

/ 68 ({wa k) F2 (dw? {wa }ir):

(t, al_H)
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Moreover,

9% (s|{wq } P (ds{wati1) 00
L T O B R

7

T E [a?7a?+1>7 {watio1 € Qifl, ae X0,

The Radon-Nicodym derivative of the charge ©¥@({wa}i—1,dt), generated by
Y ({watiz1,t), equals

Yi({watioi, dt) f(;(Tza(t\{Wa}z‘—l))@?’a(ﬂ{wa}zA).

Fr(dt{wation) 1= Fo(t-H{watio1)

Thus,
Ui ({watio1,d7)

717a<{wQ}i*1’ 17/)04 {Wa}z 1, T ) fa(gi ({wa}i—laT))

f (T (tHwa i) F(dT{wa }io1)
U({wati-1, 7)1 = F(r-[{wa}ti-1)]

is non-negative and monotonously non-decreasing on [a$, af,,), where

U{watia, 7) = /f;(gf‘({wa}zm) + 2T (THwa tic1) — 9§ ({wa}ioa, 7)])d2

Further,

: It AF? (s|{wati1)
Ay *({wa i1, t) < Z-sup  sup sup —
f2 i {wa}i—1€Q 1 s€laf afy ) 1— F; (S*Hwa}ifl)

< 1.

I3 / Fr(dr{watio1)
lim Wa ti-1,t) = S lim ! = 00,
Jim 7 Headiont) 2 o T 1= PR endio)

[a?,

lim ’7 ({wa}i—lvt) = 07 {wa}i—l € Qi_l, a € Xo.

t—af

(c) is evident from (b) and boundedness of ¥ ({wa }4)-
At last

/ | fa (97 {watio1, ) exp{—7"*({wa }iz1, t-) 17" ({wa}io1, dt) <

[al 7a1+1)

(BT + £a(0)).
The theorem 4 is proved.
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5. Options and their pricing

We assume that {2, F, P} is a full probability space, generated by the family of
distribution functions F&(w&{was}io1), i = 1,k(a), a € X° and a measure du(a)
on the o-algebra Y. Further on we assume that XY is a space of possible hypothesis
each of which may occur with probability p(«a), that is, an evolution of stock price
can come by one of the possible scenario. This scenario is determined by sequence
a and a probability space {Q,, F2, P.}.

Theorem 5. Let ¢({a,wa}) = ¢*({Watr(a)) be a random value on the probability
space {2, F, P}, satisfying conditions:
1) |¢a({wa}k(a))| < Ca <00, ac XO, f CadM(OZ) < 005
X0
2) there exists t& € [a, af ) such that

0% ({wati-1, 51, {wa}it1.k(a)) — @ ({wati-1, 52, {wa it 1k(ay)| <

< CPF(s1l{wabi1) = F(s2l{wabio1)|, €4 > 0, s1, 52 € [t2,a2),

Czq < oo, 1=1, k:(a), {wa}i_l € Qi_l, {wa}[iJrLk(a)] € Qk(a)_i, o € X,
Further, let £)({a, wa}) be a local non-singular martingale on {Q, F, P},

k(o)

& ({o,wa}) = ZX[(I az_H ({Wa})

& ({wati}) = g7 ({wali)xtap, 0(wi)
1

T F {wa i) / 95 ({wa ) B (deof {wa bio )X ag ) (@),

(t, a

z+1)

satisfying conditions

sup |97 ({wa}i)| = B < 00, i =1, k(a), a € X°,
{Wa}ze Q?

[ Id sl

[al’a ’ a?+1)

Fe(ds{wa}i-1)

<00, {watiii €7, a e X°,
[ Fo(s fwa)y) O Wedin

0 o] () i1) =
= g {nbr ) Ty | SR b) et o),

(s, aZ_H)

If the random process has got the form

k(o)

§({a,wat) = ZX[a at,) () fa (€ ({wa ki),
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where a family of functions fo(z) >0, x € R*, a € € X is such that each of the

functions fo(x) is strictly fulfillment, sup |f;(z)] = fi* < oo, inf |fi(z)]= f3 >0,
zER1L TER
and

AFP(sH{wati-1) I3
sup  sup sup - =
t {wa}i—1€Q11 s€laf,a?, ) 1— Fz (5*|{wa}ifl>

then there erists a measure Py on {Q, F°}, generated by a certain family of dis-
tribution functions F (w{watic), i = 1,k(a), o € X, a probability measure
duy (@) on the o-algebra X and a modification &({a, wa}) of the the random process
&({a, wa}) such that & ({o,wa}) is a local non-singular martingale on the probability
space {Q, F1, P.} with respect to the flow of the o-algebras F}, where the o-algebras
F1 and F} are the completion of the o-algebras F° and Fy correspondingly with
respect to the measure Py. Moreover, for the reqular martingale M*{¢({c, wa })|F}}
on the probability space {Q, F1, P} the representation

MHo({o,wa IFi} = Moo ({watr) + /wk(a)(3|wa)d€s({aawa})a t € a,b)

[a,t]
1s valid, where

k(o)

N o2 (sl (ki)
(5|lwa) ZX[G aiy1) "O‘(3|{wa}i—1)’

07 (s{watic1) =

1
(98 wa b)) F N (dwd {wa it
BT /)f (57 () (e o),

@?(SH%}z‘ 1) =
1
*({wa F“ldwo‘ We tie1
TR /)¢{ FOF (ot Hwa o),

# ({wa) / [ i fwaia

Qi1 Qpe(a)

X iy (dwf {wa i) x - x B (dwiio) {wa i) -1)-

Proof. The conditions of the theorem 5 guarantee the monotonous of the conditions
of the theorem 4. Therefore the random process & ({a, w,}) belongs to the subclass
K°. Moreover,

= fal9i ({wati-1,8)) —

= o7 ({wati-1,8) —

U ({watio1 af) = fal&E ({wat) = fa / 9 {wa 1) i (dwi{wa}ioa) | =

(afs af1)
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= fal9i1({wati-1)) = fiLi({watio1)

with probability 1 on the probability space {2, F, P}, since

gisi({wation) = / 97 ({wa }i) Fi* (dwi'{wa }io1)

(af, aff1)

with probability 1. Further,

/fa ))dp(a) < oo,

where dp; () = u(a)dpu(a),
v = [ grenFrs)
(af, aff,)

(a) = X Xa(a) + [fa(v(a)] " xxova (@)
5 :

D= / 0a(@) + [ (0(@)] xooa(e) bpu(o),

Xa(a) is the characteristic function of the set A = {«, fo(v(a)) < 1}. Based on
the lemma 7 there exists a measure P; on the o-algebra F°, generated by a certain
family of distribution functions F*'(w®{wa}ic1), @ = 1,k(a), o € X° and the
measure du;(a) on o-algebra ¥ such that the random process

k(o)
6(10:0)) = D X, g (D6 (o))
E ({wa}) = fa (07 ({0} ) Xue, 1(0)
/ Fa (g (e }) P (deof e o 1)X, 0 (00,

7 1+1)

i=1k(a), acX’

1
+ (07
1 — F (t{wa}tio1)

is a modification of the random process &;({c,w,}) on the probability space
{Qa -Fla Pl} _

Since £Y({,w. }) is also a local non-singular martingale, then & ({a,w,}) is also
a local non-singular martingale because

{t €la,b), &a({wa}i) =0, i =1,k(a)} C

C {t € [a,b), &2 {walis) =0, i = LE(@)},
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due to the strict monotony of f,(x), where
&ra ({watio1) =

1
(02 ({wa i) N (dw? {wa i
ST /)f (67 () P (st i)

= fa(97({wa}i)) — fa<Tia<t‘{wa}i*1))7

T (tHwatio1) = T F‘a(;{wa}il) / 95 ({wa }i) B (dwf [{wa Fi1),
(¢ aftyq)
&a({watiot) = g8 ({wati) — T (tH{wa o).

To finish the proof of the theorem 5 it is sufficient to verify the monotonous of the
conditions of the theorem 3. Really,

= fa(97({wa}i)) —

F{'(dsH{wa}io1) <
1= F (s [{wa}io)

[l tslwadin

lag, agyy)
[ff{]Q / 0, F‘a(dSHwa}i—l)
< pi " (sH{wati- —a < o0,
f? [ | | ( |{ } 1)|1 _Fvl (5—|{wo¢}i—1)
af', afyy

{wa}i_l S Qi_l, ae X°
FNd .
[ ettty ey

1— F(s-[{watiot)
[ag, agyq)

a,l ]
<20, / 5 OE?SH%}H)
1= F" (s-{wa}i-1)

[ag, t§]

Fl(ds{wa}io1)
1— F (s-[{wa}tio1)

s [ = Fr o)
[t afq)
because the first integral is finite and the second integral is finite since

s U2 (i, dr)
(i, ) / Ao e S X o e

_ / F (dr{wa}io)
¢’ 1— FN (7 {watio)
/ f (TP (rHwa}io1)) F(dT{wa}io1)
U({wati-1, 7 )[1_F;a(7—|{wa}z—1)]
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Therefore

F{Y(ds]{wa }io1) i
1— F' (s_[{wa}ic1) LS8

/ (1= F&(s{wn}i)™
[ts, afyq)

The theorem 5 is proved. Then we assume that interval [a,b) coincides with the
interval [0, T'), that is a = 0, b = T. The time T is the terminal time of monotonous
of the option.

Definition 5. A stock market is effective on the time interval [0,T), if there is a cer-
tain probability space {Q), F, P}, constructed above, a random process £)({a,wa}) on
it, describing the evolution of the average price of stocks such that &2 ({a, ws})e™"
is a non-negative uniformly integrable and non-singular martingale on {Q, F, P}
with respect to the flow of the o-algebras F;, where the o-algebras F and F; are the
completion of the o-algebras F° and F_ with respect to the measure P on F°, gen-
erated by the family of distribution functions Ff(w{|{wa}i—1). The random process
E({a,wy}) has the form

k(o)

& ({a, wa}) = Boe' ZX[a a2 (D& ({wa k), (23)

SZ@({WOJ}Z‘}) = gz('l({woz}i)X[a?, t}(wz('l)
1

TPt ) / 95 ({wa i) F (dwi [{wa 1) X, s, ) (W]), (24)

(t, al+1)

where v is an interest rate, the evolution of price of a stock being described by a
certain random process

Si{a,wa}) = ae ) (1) fa (& ({wa i),
Vo = a( a‘b <{wa}k(a ) (25)

for a certain family of functions fo(x) > 0, v € R, o € X° which are strictly

fulfillment, sup |f.(x)] = f¥¥ < oo, inf |f!(x)| = f& > 0, moreover,
rzER! zER!

AFf(sf{watioy) _ f3

sup sup sup o <
T {wa}i—1€Q1 s€ad,af )1_F ( Hwa}i*l)

(26)

The limit
¢ ({wa i) = hm §t({a wa }) By e

satisfies the conditions:

1) |¢a({wa}k(a))| < Ca <00, ac XO, f CadM(OZ) < 005
X0
2) there exists t& € [a, a ) such that

|¢a({wa}z‘—1, 51, {wa}[i+1,k(a)}) - ¢a({wa}i—1, 52, {wa}[i+1,k(a)})| <
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< COF (s1){watio1) — F(sal{wati1) |5, €5 > 0, s1, 82 € [t8,a8,),
Cf < 00, i=1,k(a), {wati-1 € V7, {watiitik@)) € V@7 a e XO.

Let us consider an economic agent on the stock market, who acts an as investor,
that is, he or she wants to multiply his or her capital using the possibilities of the
stock market. We assume that the stock market is effective and the evolution of a
stock price occurs according to the formula (25). We assume that the evolution of
non-risky active price occurs according to the law

B(t) = Bye'™, (27)
where r is an interest rate, By is an initial capital of the investor on a deposit.

Definition 6. A stochastic process d;({a,wa}) belongs to the class Ao, if

o({a, wa}) = ZX az, ) (00 ({wata),

0" ({wa}i) = b ({wa}is XGag, a(@f) + 07" ({wadi-1, )X(e, agy ) (W),

b ({walist) is a measurable mapping from the measurable space {0, FOY to the
measurable space { R*, B(R")} at every fizedt from the interval [0, T), b ({wa Yio1,t)
is a measurable mapping from the measurable space {Q~1, F? |} to the measurable
space {R', B(RY)} at every fized t € [0,T). Moreover, b ({wa}i,t) is a bounded
measurable mapping from the measurable space {[0,T),B([0,T))} to the measurable
space { R, B(R")} at every fized {wa}; € Q) b3 ({wa }io1, 1) is a bounded measurable
mapping from {[0,T),B([0,T))} to {R', B(R")} at every fized {ws}i—1 € Q1.

Let the capital of an investor X;({a,w,}) at time ¢ equal

Xi({o,wa}) = Bt)Bi({a, wa}) + n({e,; wa}) Se({e, wa}), (28)

where the stochastic processes f;({a,wa}) and v ({a, wa}) belong to the class Ay.
The pair m; = {Bi({a,wa}), 1:({,wa})} is called the financial strategy of the in-
vestor. The capital of the investor with the financial strategy m; will be denoted by

Xi({a, wa})-

Definition 7. A financial strategy 7 = {Bi({a, wa}), 1e({,wa })} of an investor is
called self-financing if the random processes By({a,wqa}) and v({a, wa}) belong to
the class Ay, for the investor capital X] ({a,wy}) the representation

X7 ({avwad) = X5@) + [ Brl{awndBO)+ [ ({awa)dS, (o)) (20)

[0,] [0,]
1s valid, the discounted capital

X ({a, wa})

Vo) = S
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belongs to the class of local martingale on the probability space {§, Fi, P} with
respect to the flow of the o-algebras F}, M| X[ ({a,ws})| < oo, where Fy, Py and
F} are constructed in the theorem 5.

A class of self-financing strategy is denoted by SF.

Lemma 10. Let a financial strategy mp = {5i({a, wa}), e({a,wa})} be self-finan-
cing, then for the investor capital the representations

X7 ({onwa}) = X3(a) + / B ({0 wa })AB(7) + / 7 ({wa})AS, ({0, wa}) (30)

[0,¢] [0,¢]

X7 ({o, wa}) = € X{ () + Boe" / ¥ ({o, wa})dS ({or, wa}) (31)
0.4

are equivalent, where

k(@)
S 0a}) = o > X, et (DSl (i) (32)

Proof. Since X[ ({a,w,}) is a process of a bounded variation on any interval [0, ¢],
therefore from (31) and lemma 1

X7 ({0 wa}) = X3 (a) + / X8+ By / 7 ({0 w0 })AS2 (o wa}) | de?
[0,¢] [0,¢]

1B, / e, ({0, wo })AS ({0, wa })

[0,¢]
— X5+ [ Xtawh G+ [ B lawhisiaw))
[0,] [0,]

Since

Si(fawab) = BSY ({0 wa}),

aS(fo,wa}) = S9({a,wal)AB() + BO)AS) ({1 wa), (33)

therefore, taking into account (28) and (33), we obtain
Xr o) = X5(@) + [ 8{anbianr) + [ T (oo, (o))

[0,] [0,]

+/%({O@wa})d57({a,wa})— /%({Oé,wa})Sf({Oawa})dB(T)

[0,¢] [0,¢]
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= X7(@)+ [ Bl{awaldBE) + [ n({anwa))dS, (o wn))
[0,] [0,t]

This proves the lemma 10 in one direction. Applying the same argument in the
inverse direction we obtain the proof of the lemma 10.
Denote by SE¥ a set of self-financing strategies satisfying the conditions

MUY ({a,wa)|F > =MHR|IF}, MR < oo,
where R is a non-negative random value on {Q, F1, P }.

Lemma 11. Let my = {Bi({a,wa}), v({a,wa})} be a self-financing strategy, that
is, m € SFT then {Y;", FL,t € [0,T]} is a supermartingale and for any stop time
71 and 15 such that Py(1 < 72) = 1 the inequality

MUY (o waDIFL T < YV ({0, wa})
15 valid.
The proof is similar to the proof of the analogous lemma in [2].
Corollary 3. If m; € SF then for any stop time 7 >0, P (T < o0) =1

MY (o)) < V5 () = 28

Definition 8. A self-financing strategy m; is an arbitrage strategy on [0,T], if from
that
Xi(@) <0, X7({a,wa}) 20

it follows that X7 ({a,wa}) > 0 with a positive probability.

Lemma 12. Any strateqy m, € SFT, where R is non-negative and integrable random
value on probability space, is not arbitrage strategy.

The proof of the lemma is analogous to the proof of the similar lemma in [2]. Let
o1 = dr({o, wa}) = 03 ({wWa i) be F° measurable random value on the probability
space {Q, F°, P}.

Definition 9. A self-financing strategy my € SE® is (x*, ¢7)-hedge for the European
type option if the capital XT({a,ws}), corresponding to this strategy is such that
X{(a) = x% and with probability 1 with respect to the measure P

Xr({o,wa}) = dr({a, wa}).

(2%, ¢r)-hedge w7 € SF®R is called minimal if for any (z%, ¢7)-hedge 7, € SF® the
inequality
Xi({a,wa}) =2 XT ({a, wa})

18 valid.
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Then we consider self-financing strategies, belonging to SF°, that is, in this case
X7 ({a,wa}) 2 0.

Definition 10. Let Hr(z%, ¢r) be the set of (x®, ¢7)-hedges from SF°. Investment
value is called the value

C%(ng) = inf{:L‘a = 07 HT(ZL'Q, ng) 7& ®}7 o€ X07
where ) is the empty set.

The main problem is to calculate C'%(¢7) and to find an expression for the portfolio
of an investor 7; at every moment of time ¢ the initial capital of which is z®.
Further on we assume that T' < oo, then

SOeTT

lim ({0, 0}) = Sr({wa}) = “5fa(0({or.wa)).

Theorem 6. Let a stock market be effective, the evolution of a risky active price

comes according to the formula (25) and the evolution of non-risky active price occur
by (27). If f(x) is a certain function such that |f(x1) — f(x2)| < Clzy — 22| and the
paying function at terminal time T is given by the formula

Jr({e,wa}) = f(ST({a, wa})),

moreover, the conditions

f1Ca f«(0)
v du(a) < oo, v

are wvalid, then the minimal hedge 7} exists, evolution of the capital investor
X ({a,wa}), option price Xi(a) and self-financial = strategy {8 ({a, wa}),
v ({a,wa})} corresponding to the minimal hedge w; are given by the formulas

X; ({a,wa}) = MY f(Sr({a,wa}))IFD, (34)

Xo(@) = e "M f(Sr({avwa})), % ({awad) = tue (tHwha),  (35)

6:({057 wg}) _ ng({(L wa}) B 7:;%?)7 wa})St({a, wa}>’ (36)

where
k(o)

N o5 (sl wadin)
(s|lwa) ZX[a agy) A’a(SHwa}ifl)’

%’ “(sHwati-1) =
F({wati-1,8))

fC\l(gz
/ Fa (g% (o }) FE (e {w }in),

S, a

1
1- ﬂa’l(usa}z‘—l)(

z+1)
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o7 (sH{wati-1) =

! / 50 ({wa }) Fo (duf {wa } i),

= ¢ ({wati-1,8) — 1 — F*' (s{{wa}iz1)

z+1)

5 ({wa}) TT/ g/f%WVlh(H%hwmmmm»

Qit1 Qk(a)
X Py (dwfyy {wa i) X % F) (o) [{wa () -1)-

Proof. To prove the theorem 6 it is sufficient to verify the monotonous of the
conditions of the theorem 5. Since

SoerT

ST({aawa}): A fa(¢({avwa}))a

then
F(Sr(fown))) _
BoerT =
1 fa(o) faCa / / /
< T rTJ1 _ )
= BoerT f<0> + CSOe V., + CSOe V., Ca7 Cadﬂ<@) < o0

XO

|f(fa(@®({wati-1, s1,{Watiir1.k))) — F(fa(@"({watio1, s2, {wa it 1,ka)))| <
< OO (s1l{watior) — FR(sol{watim)|, € >0, s1, 82 € [t a%4y),

L= 17 k(Oé), {wa}ifl S Qiilv {wa}[iJrl,k(a)]) € Qk(a)*i’ o€ XO'

Further, £2({a,wa})e™ is a non-negative martingale on {), F, P} satisfying condi-
tions:
sup  [gF({wa}i)| = B < Co < 00, i =1,k(a), a € X°,

{wa }:i€Q?

moreover, since

sewat) = [ [ b fwabiaw)
Qiv1 (o)
XF2 (dwt  [{wa i) X ..o F&a)(dw,‘j(aﬂ{wa}k(a)_l).
9% ({wati-1, 1, {wa i+ 1,k(0)) — " ({watio1, 52, {wa it k@))] <
< CPIFR(s1H{watiot) — F(sal{wa}ict) [, €], > 0, s1, 52 € [t a8),),
C <00, i=1,k(a), {wa}is1 € V7Y {watiitik@) € Q@7 a € X,
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therefore
Fe(ds{wa}i) .
0, 7 afi i—1 0
; ofi— < ) afi— Q 3 X )
[ / )|'Ol el 1)|1 F(s—[{wati-1) 20 {wabi1 € @ s
af, afyy

P?’a(3|{wa}i—1) =

L F(Hwe b)) FX(dwHwg Yot
et ) / AT @l ),

= g;' ({wati-1,8) — 7

Hence it follows that for the regular martingale

o {0512} ‘ 7}

BoerT

the representation

o { Hilloe)) )

BoerT
— ! <5Tg0‘z;j‘f’a}>> + / Vi) (Twa)dS2({, wa}), t € [a,b)

[a,t]

is valid, where

» o (sH{wa}i-1)
Vi(a)(S|wa) ZX i) "O‘(s|{wa}i—1)’

@?’Q(SH%}i—l) =
= fal9i'{wati-1,5))
/ £ (0% (o }1) F (Al | {wo }in),

S, a?—'»l)

o5 (sl{wati-1) =
! / B ({wa})) F (Al {wa}ia),

1
1— F (s{wa}io1)

= ¢ ({wati-1,5) —

Fal( Hwa ti-1)

5 ({wal) = oz / [ STV (6 (s )

Qit1 Qk(a)
X Fi (dwfig{wa}i) x - x B (dwiio) {wa k) -1)-
S9({a,wa}) is a modification of

k(o)

Si{aswal}) = BOV Zx 2, a2 ) (D fal& ({wa}i))-
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such that S?({a,w,}) is a regular martingale on the probability space {Q, Fi, P},
where F; is the completion of F° with respect to the measure P, generated by the
family of distributions F™' (w®|{wa}iz1), i = 1,k(a), a € X° and

Fal& " ({wati})) = fal9? ({wai))Xlap, 4 (wf)

1 - . )
+1—F@-C“’1<t|{wa}“ / fo(g7 ({wada)) 7 (dwf {wati-1) X0, ag, ) (@7),

aiy1)
i=1k(a), acX’
The latter means that for the discounted capital

Yi({a,wa}) = M {f(STé{OZ;;%})) w}

the representation

YVi({a,wa}) =
_ ot <STB{‘;‘H‘?Q} / Vi) (T|wa)dS2({, wa}), t € [a,D)
[a,t]

is valid. Since
Xt({o{7 wa}) - Boertn<{06 wa})7

then
Xi({a,wa}) = e M, f(Sr({a, wa}))
+ Bye" / Vi(o) (T|wa)dS2({a,wa}), t € [a,b). (37)
[a,t]

Taking into account the lemma 10, the definition of self-financing strategy, we obtain
the proof of the theorem 6.
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MaTtemaTuyHa moaesnb GOHAO0BOro PUHKY

M.C. loHuyap
IHCTUTYT TeopeTnyHoi Pi3ukm im. M.M.Boronto6osa HAH YkpaiHu,
252143 Kuis, Byn. MeTponoriyHa, 14°

Otpumanro 30 TpasHa 2000 p.

B po60Ti nobynoBaHO MaTeMaTMyHy MOLENb PUHKY LiHHUX nanepis. OT-
pvMaHi pe3ynbTati € 4OOPO0 OCHOBO AJ1A aHani3y noai Ha GoHJ0BO-
MY PUHKY.

Kniouosi cnoBa: Bunaakosuyi npouec, epekTuBHUN PUHOK LIIHHUX
rniarnepis, OLiHIOBaHHS OrLiOHIB

PACS: 02.50.+s, 05.40.+

496



