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For theoretical description of pseudospin systems with essential short-
range and long-range interactions we use the method based on calcula-
tions of the free energy functional taking into account the short-range in-
teractions within the reference approach in cluster approximation. We pro-
pose a consistent formulation of the cluster expansion method for quantum
pseudospin systems. We develop a method allowing one to obtain within
the cluster approximation an Ornstein-Zernike type equation for reference
cumulant Green function of an arbitrary order. In the two-particle cluster
approximation we derived an explicit expression for pair temperature cumu-
lant Green function of the reference system. In the cluster random phase
approximation we calculated and studied thermodynamic characteristics,
elementary excitation spectrum, and integral intensities of the Ising model
in transverse field.
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1. Introduction

Modern statistical theory of condensed media pays a great attention to the stud-
ies of ferroelectric and magnetic materials, described by pseudospin models with
essential short-range and a long-range interactions, especially of hydrogen-bonded
ferroelectrics [1–12] and low-dimensional magnets [13,14]. For an adequate descrip-
tion of these objects, such an approach is required that would allow to use different
techniques to take into account a short-range and a long-range interaction. This is
a typical mathematical problem in theories of multiparticle systems. It has been
successfully solved in the studies of equilibrium properties of classical systems [15–
21] and metals [21–25] using the approach proposed in [15–18,22,24,25]. Within
this approach, the long-range and short-range interactions are described in phase
spaces of collective variables and individual coordinates, respectively. The system
with short-range interaction is called then the reference system.
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Using the idea of separating the reference system [15–18], in [26–30] a method
was proposed for description of pseudospin systems with essential short-range and
long-range interactions. This method is based on the calculation of the free energy
functional taking into account the short-range interactions within the reference ap-
proach. In [26,27,30] expansions of the free energy functional and functionals of the
temperature cumulant Green functions (CGF) in the inverse long-range interaction
radius were studied. For the first time there has been performed a total summation
of the reducible in blocks diagrams in the free energy functional and of non-compact
diagrams in functionals of CGFs for quantum pseudospin models. Expressions for
the free energy and temperature CGFs of the considered systems were obtained. It
was shown how to obtain consistent approximations for their thermodynamic and
dynamic characteristics, using classification of the approximations for free energy
functional according to loop diagrams.

It should be noted that the general expressions for thermodynamic and dynamic
characteristics of pseudospin systems with short-range and long-range interactions
obtained in [26–30] contain thermodynamic and correlation functions of the refer-
ence system. Hence, to solve a general problem one needs to solve a reference one,
that is, to calculate free energy and CGFs of the reference system. The maximal
order of the reference CGFs depends on the order of the approximation for the long-
range interactions. Depending on the reference Hamiltonian, the reference problem
can be solved exactly (see, for instance, [14,31–36]) or approximately, taking into
account peculiarities of the reference system. The best description of the reference
system for a wide class of pseudospin models can be obtained based on the clus-
ter expansions method (see [1–12,37–39]). In some papers [40–43] this method was
successfully used to study disordered magnetic and ferroelectric materials. Unfor-
tunately, the cluster method was correctly developed only for Hamiltonians with
commuting single-particle (describing the interaction of pseudospins with external
and internal fields) and multiparticle parts (describing the interaction between pseu-
dospins). It was mostly used to calculate thermodynamic characteristics of pseu-
dospin models. In [44–46] a problem of calculating the distribution functions for
Ising models within the cluster approach was considered but not solved completely.
Equations for pair correlation functions of the reference system (Ornstein-Zernike
type equation) in [44,45] were not derived consistently but constructed artificially.
The problem of calculating the quasimomentum-dependent pair correlation func-
tions was also considered in [46] within the cluster approach. The results obtained
are valid in paraphase only. Later, a method was proposed [47,48], which allows one
to obtain Ornstein-Zernike type equations for arbitrary order correlation functions
of Ising models. These equations for pair and three-particle correlation functions
were derived and solved within the two-particle cluster approximation (TPCA). It
was shown that the cluster approach to the calculation of correlation functions of
the reference Ising models proposed in [47,48] yields the known exact results [31,32]
for pair and three-particle correlation functions of the one-dimensional Ising model.

In [48,49], using the four-particle cluster approximation, pair ~q-dependent cor-
relation functions of deuterons were calculated for KD2PO4 type ferroelectrics and
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ND4D2PO4 type antiferroelectrics. Dynamics of hydrogen-bonded ferroelectrics tak-
ing into account the tunnelling effects was considered in [50–52] within the orig-
inal approach proposed in [50]. For the first time it has been shown, that in the
reference approach, with the short-range interactions and tunnelling taken into ac-
count in cluster approximation, the dynamic properties of the studied systems are
to a great extent determined by an effective tunnelling parameter, renormalized by
the short-range interactions. Later, this peculiarity of the dynamic properties of
hydrogen-bonded compounds was also noticed in [53]. Unfortunately, expressions
for dynamic (at ~q = 0 and E = 0) and static characteristics, calculated in [50–52],
turned out to be inconsistent. That results from the fact, that dynamic character-
istics were obtained using the method of two-time temperature Green functions,
equations for which were decoupled in the spirit of Tyablikov approximation. Thus,
the intracluster Green functions of the reference system were connected only via the
long-range interactions, whereas the short-range correlations were not taken into
account. Thus, the method has not been developed, which would allow one to con-
sistently describe thermodynamic and dynamic characteristics of reference quantum
pseudospin models.

In the present paper, for a theoretical description of pseudospin systems with
essential short-range and long-range interactions we shall use the self-consistent
reference approach developed in [26–30]. In section 2 we shall briefly consider the
main results obtained within this approach. Then, a consistent formulation of cluster
expansion method for reference quantum pseudospin systems will be given for the
first time. We shall propose a method, allowing to obtain Ornstein-Zernike type
equations for reference temperature cumulant Green functions of an arbitrary order
within a cluster approximation. An Ornstein-Zernike type equation for the pair
correlator will be derived and solved in the two-particle cluster approximation. The
last section is devoted to the investigation of the Ising model in transverse field
(IMTF) within the cluster random phase approximation (CRPA) using the results
obtained in this paper.

2. Theory of pseudospin system with short-range interactio ns
taken into account in reference approach

We consider pseudospin systems with short-range and long-range interactions,
described by the Hamiltonian

H({Γ}) = −βH =
N∑

ν=1

∑

a

Γa
νS

a
ν +

1
2

∑

ν,δ

∑

a,b

KabSa
νS

b
ν+δ +

1
2

∑

ν,µ

∑

a,b

Jab
νµS

a
νS

b
µ . (2.1)

Here Kab and Jab
νµ are the short-range and the long-range parts of the pair inter-

actions. Sa
ν (a = x, y, z or +,−, z) are components of a normalized (S z = −1, 1)

spin ~S. H({Γ}) means H({Γ}) = H(Γa1
1 , ...,Γ

a1
N ,Γ

a2
1 , ...,Γ

a2
N ,Γ

a3
1 , ...,Γ

a3
N , ). Hereafter,

the argument {Γ} will be frequently omitted. The factor β = 1/(kBT ), occurring in
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Γ, K, and J (in the above presented form of the Hamiltonian H), will be written
explicitly only in some of the final expressions.

After an identity transformation of the operators Sa
ν = 〈Sa

ν 〉 + ∆Sa
ν in the last

term of Hamiltonian (2.1), which describes the long-range interactions between pseu-
dospins, we obtain

H({Γ}) = kH({κ})− 1
2

∑

ν,µ

∑

a,b

Jab
νµ〈Sa

ν 〉〈Sb
µ〉+ 1

2

∑

ν,µ

∑

a,b

Jab
νµ∆S

a
ν ·∆Sb

µ . (2.2)

The first term in (2.2) describes the short-range interactions between pseudospins
placed in a field created by the long-range interactions and by Γa

ν

kH({κ}) = −β ·kH({κ}) =
N∑

ν=1

∑

a

κ
a
νS

a
ν +

1
2

∑

ν,δ

∑

a,b

KabSa
νS

b
ν+δ ; (2.3)

κ
a
ν = Γa

ν +
N∑

µ=1

∑

b

Jab
νµ〈Sb

µ〉 . (2.4)

The Hamiltonian kH({κ}) is called the reference Hamiltonian [26]. The argument
{κ} will be often dropped. Let us note that in the mean field approximation (MFA)
over the long-range interactions, the last term in (2.2) is neglected.

Our main task is to calculate the free energy

F ({Γ}) = −kBT lnZ({Γ}) , Z({Γ}) = Sp eH (2.5)

and pair temperature cumulant Green functions

b(2)(a1ν1,τ1\a2
ν1,τ2

\) = 〈Tτ ˜̃Sa1
ν1
(τ1)

˜̃Sa2
ν2
(τ2)〉cρ (2.6)

for the models, described by Hamiltonian (2.1). Here

˜̃Sa
ν(τ) = e−τHSa

ν eτH ; (2.7)

the averaging is performed with the density matrix

ρ = ρ({Γ}) = [Z({Γ})]−1 · eH . (2.8)

For the sake of convenience, in our calculations we do not use the free energy F ({Γ})
but the F({Γ})-function (logarithm of the partition function).

According to the theory proposed in [26], to solve the formulated problem, one
should calculate the kF -function

kF({κ}) = ln kZ({κ}); kZ({κ}) = Sp e
kH (2.9)

and CGFs

kb(l)(a1ν1,τ1\
a2
ν2,τ2

\ ...\al
νl,τl

\) = k〈Tτ S̃a1
ν1
(τ1)S̃

a2
ν2
(τ2)...S̃

al
νl
(τl)〉ckρ ; (2.10)

S̃a
ν (τ) = e−τ ·kH Sa

ν eτ ·
kH, kρ = kρ({κ}) = [kZ({κ})]−1 · ekH (2.11)

518



Reference approach in theory of pseudospin systems

of the reference system (2.3). In the present paper the kF -function and pair CGFs
will be calculated within the two-particle cluster approximation.

Assuming that the reference problem is solved in [26] the expansion of the free
energy functional in the inverse radius of the long-range interactions was studied,
for the systems described by the Hamiltonian (2.1) and expressions for temperature
Green functions were obtained. Here we present only some of their results for non-
uniform fields (Γa

ν = Γa) up to r−d
0 in the long-range interactions.

The F -function of the considered system reads

F({Γ})= kF({κ})− N
2

∑

a,b

Jab
0 〈Sa〉ρ〈Sb〉ρ − 1

2

∑

ωn,~q

ln det
[
1̂− k̂b(2)(~q, ωn)Ĵ(~q )

]
, (2.12)

where

Jab
0 = Jab(~q = 0), κ

a = Γa +
∑

b

Jab
0 〈Sb〉ρ ; (2.13)

k̂b(2)(~q, ωn) and Ĵ(~q) are matrices 3 × 3 in the indices a, b; their elements are
Fourier transforms kb(2)(a b

~q,ωn
) and Jab(~q) of the pair CGFs of the reference system

kb(2)(aν,τ1\ b
µ,τ2

\) and of the long-range interactions J ab
νµ (for uniform fields (κa

ν = κ
a)).

For the pair CGFs b(2)(aν,τ1\ b
µ,τ2

\) in the frequency-momentum space, the following
relation [26] holds

b̂(2)(~q, ωn) =
[
1− M̂(~q, ωn)Ĵ(~q )

]−1

M̂(~q, ωn). (2.14)

Here we use the notation

M(a b
~q,ωn

) = kb(2)(a b
~q,ωn

) + 1
2N

∑

{a,b}

∑

{~qi,ωni
}

kb(3)(aν0,τ0\
a1
~q1,ωn1

\a2
~q2,ωn2

\)

×kb(3)(bν0,τ0\
b1
−~q1,−ωn1

\ b2
−~q2,−ωn2

\)R(a1 b1
−~q1,−ωn1

)R(a2 b2
−~q2,−ωn2

)

×δ(~q + ~q1 + ~q2)δ(ωn + ωn1
+ ωn2

)

+ 1
2N

∑

a1,a2

∑

~q1,ωn1

kb(4)(aν0,τ0\
b
−~q,−ωn

\a1
~q1,ωn1

\a2
−~q1,−ωn1

\)R(a1 a2
−~q1,−ωn1

) , (2.15)

where

R̂(~q, ωn) = Ĵ(~q )
[
1− k̂b(2)(~q, ωn)Ĵ(~q )

]−1

(ν0 = 0, τ0 = 0, ωn = 2πnβ−1) (2.16)

is the Fourier transform of the effective interaction in the considered system, whereas
kb(3)(aν0,τ0\

a1
~q1,ωn1

\a2
~q2,ωn2

\) and kb(4)(aν0,τ0\ b
−~q,−ωn

\a1
~q1,ωn1

\a2
−~q1,−ωn1

\) are Fourier transforms

of the three and four-particle CGFs of the reference system, respectively.
We also present here an expression for the order parameter [26]

〈Sa〉 = 〈Sa〉ρ = k〈Sa〉kρ + 1
2N

∑

a1,a2

∑

~q,ωn

kb(3)(aν0,τ0\
a1
~q,ωn

\a2
−~q,−ωn

\)R(a1 a2
−~q,−ωn

) . (2.17)

Hence, we have general expressions for the free energy (F = −kBTF) and pair
CGFs, and the equation for the order parameter in the r−d

0 approximation. These
expressions contain the free energy and correlation functions of the reference system.
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3. Two-particle cluster approximation for short-range
interactions

3.1. Problem formulation

Our task in this section is to obtain the kF({κ})-function, parameters k〈Sa
ν 〉kρ and

pair cumulant Green functions kb(2)(a1ν,τ1\ a2
µ,τ2

\ ) of the reference pseudospin system,
described by Hamiltonian kH({κ}) (2.3), in the two-particle cluster approximation
in the short-range interactions.

Let us define the functional of the partition function logarithm (the kF({ε})-
functional) of the reference model as [26]

kF({ε}, {κ}) = ln kZ({ε}, {κ}) ;

kZ({ε}, {κ}) = Sp
[
eH({ε})Tτ exp

(∫ 1

0

dτ kH(τ, {κ})
)]

, (3.1)

where

kH(τ, {κ}) =
∑

a

N∑

ν=1

κ
a
ν,τS

a
ν,τ +

1
2

∑

a,b

∑

ν,δ

KabSa
ν,τS

b
ν+δ,τ ; (3.2)

H({ε}) =
N∑

ν=1

Hν({εν}) ; Hν({εν}) =
∑

a

εaν S
a
ν ; Aτ = e−τH({ε}) A eτH({ε}) . (3.3)

Dependence κ
a
ν,τ on τ here is necessary to perform functional differentiation with

respect to κ
a
ν,τ [26]. It should be noted, that since spin operators at different sites

commute, and κ
a
ν is a scalar, the quantity Aτ (if A = Sa

ν or κa
ν) can be written as

Aτ = e−τHν({εν}) A eτHν({εν}) .

Starting from (3.1), we introduce functionals of CGFs of the reference system

kb(l)(a1ν1,τ1\
a2
ν2,τ2

\ ...\al
νl,τl

\{ε}) = k〈Tτ Sa1
ν1,τ1

Sa2
ν2,τ2

...Sal
νl,τl

〉c
kρ({ε})

;

kρ({ε}) = 1
kZ({ε}, {κ̃}) eH({ε}) exp

[ ∫ 1

0

dτ kH(τ, {κ})
]
. (3.4)

They will be found using

kb(l)(a1ν1,τ1\
a2
ν2,τ2

\ ...\al
νl,τl

\{ε}) = δ

δκa1
ν1,τ1

δ

δκa2
ν2,τ2

. . .
δ

δκal
νl,τl

kF({ε}, {κ}) . (3.5)

According to [26], the following relations between the kF({κ})-function (2.9) and
temperature CGFs (2.10) and their functionals hold

kF({κ}) = kF({ε}, {κ})∣∣∣κ
a
ν,τ=κ

a
ν

εaν=0

; (3.6)

kb(l)(a1ν1,τ1\a2
ν2,τ2

\ ...\al
νl,τl

\) = kb(l)(a1ν1,τ1\a2
ν2,τ2

\ ...\al
νl,τl

\{ε})∣∣∣κ
a
ν,τ=κ

a
ν

εaν=0

. (3.7)
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That is, calculation of the kF({κ})-function and temperature CGFs is reduced to
calculation of the kF({ε}, {κ})-functional.

3.2. Cluster approximation. Free energy

Let us calculate now the kF({ε}, {κ})-functional in the two-particle cluster ap-
proximation. We perform a cluster expansion, with the lattice being divided into
the two-particle clusters [47,54,55]. As

∑
a
rϕa

ν,τS
a
ν,τ we denote an operator of the

effective field created by the site r and acting on the site ν, provided that the site
r is the nearest neighbour of the site ν (r ∈ πν). Obviously, the number of fields
acting on an arbitrary site ν ∑

r∈πν

∑

a

rϕa
ν,τS

a
ν,τ

is z (z is the nearest neighbours number). After an identity transformation, the
reference Hamiltonian (3.2) takes the form

kH(τ, {κ, ϕ}) =
∑

ν

Hν(τ, {κ̃ν}) +
∑

(ν,r)

Uνr(τ, {rϕν ,
νϕr}) , (3.8)

where

Hν(τ, {κ̃ν}) =
∑

a

κ̃
a
ν,τS

a
ν,τ ; κ̃

a
ν,τ = κ

a
ν,τ +

∑

r∈πν

rϕa
ν,τ ; (3.9)

Uνr(τ, {rϕν ,
νϕr}) =

∑

a

(
− rϕa

ν,τS
a
ν,τ − νϕa

r,τS
a
r,τ +

∑

b

KabSa
ν,τS

b
r,τ

)
. (3.10)

Hν(τ, {κ̃ν}) means Hν = Hν(κ̃
a1
ν,τ , κ̃

a2
ν,τ , κ̃

a3
ν,τ ). Hereafter, the arguments {κ̃ν}, {rϕν}

will be frequently omitted.
Let us present the kF({ε})-functional (3.1) as
kF({ε}, {κ, ϕ}) =

= lnSp
{
eH({ε})Tτ exp

[ N∑

ν=1

∫ 1

0

dτ Hν(τ)
]
exp

[∑

(ν,r)

∫ 1

0

dτ Uνr(τ)
]}

=
∑

ν

Fν({εν}, {κ̃ν}) + ln〈Tτ exp
(∑

(ν,r)

∫ 1

0

dτ Uνr(τ)
)
〉ρ0({ε}) . (3.11)

Here Fν({εν}) is the so-called single-particle intracluster F({ε})-functional
Fν({εν}, {κ̃ν}) = lnZν({εν}, {κ̃ν}) ; (3.12)

Zν({εν}, {κ̃ν}) = Sp
Sν

{
eHν({εν})Tτ exp

[ ∫ 1

0

dτ Hν(τ, {κ̃ν})
]}

(3.13)

and averaging is performed with the functional of the density matrix

ρ0({ε})=
∏

ν

ρν({εν}) ; (3.14)

ρν({εν}) =
1

Zν({εν}, {κ̃ν})
eHν({εν}) exp

[ ∫ 1

0

dτ Hν(τ, {κ̃ν})
]
. (3.15)
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We restrict our consideration by the first order of the cluster expansion [47,54,
55]; this corresponds to the two-particle cluster approximation. Then the kF({ε})-
functional becomes a sum of the single- and two-particle intracluster F({ε})-fun-
ctionals

kF({ε}, {κ, ϕ}) =
∑

ν

Fν({εν}, {κ̃ν}) +
∑

(ν,r)

ln〈Tτ exp

(∫ 1

0

dτ Uνr(τ)

)
〉ρ0({ε})

= (1− z)
∑

ν

Fν({εν}, {κ̃ν}) + 1
2

∑

ν,r

Fνr({εν, εr}, {rκ̃ν ,
ν
κ̃r}) . (3.16)

The two-particle Fνr({εν, εr})-functional reads

Fνr({εν , εr}, {rκ̃ν ,
ν
κ̃r})= lnZνr({εν , εr}, {rκ̃ν ,

ν
κ̃r}); (3.17)

Zνr({εν, εr})= Sp
S1,S2

{
eHν({εν})+Hr({εr})Tτ exp

[∫ 1

0

dτ Hνr(τ, {rκ̃ν ,
ν
κ̃r})

]}
; (3.18)

Hνr(τ, {rκ̃ν ,
ν
κ̃r}) = Hν(τ, {κ̃ν}) +Hr(τ, {κ̃r}) + Uνr(τ)

=
∑

a

[
r
κ̃

a
ν,τS

a
ν,τ +

ν
κ̃

a
r,τS

a
r,τ +

∑

b

KabSa
ν,τS

b
r,τ

]
; (3.19)

r
κ̃

a
ν,τ = κ̃

a
ν,τ − rϕa

ν,τ = κ
a
ν,τ +

∑

r′∈πν
r′ 6=r

r′ϕa
ν,τ . (3.20)

Putting εaν = 0 (κa
ν,τ = κ

a
ν ,

rϕa
ν,τ =

rϕa
ν , see also (3.6)), and going to the uniform

fields case κa
ν = κ

a (rϕa
ν = ϕa), from (3.16) we obtain the kF -function of the reference

system in the TPCA for the uniform fields

kF({κ, ϕ}) = (1− z)NF1({κ̃}) + Nz
2
F12({ ˜̃κ}) ; (3.21)

F1({κ̃}) = lnZ1({κ̃}) ; Z1({κ̃}) = Sp
S1
eH1({κ̃}) ; (3.22)

H1({κ̃}) =
∑

a

κ̃
aSa

1 ; κ̃
a = κ

a + zϕa ; (3.23)

F12({ ˜̃κ}) = lnZ12({ ˜̃κ}) ; Z12({ ˜̃κ}) = Sp
S1,S2

eH12({ ˜̃κ}) ; (3.24)

H12({ ˜̃κ}) =
∑

a

[ ˜̃κa(Sa
1 + Sa

2 ) +
∑

b

KabSa
1S

b
2] ; ˜̃κa = κ

a + (z − 1)ϕa. (3.25)

3.3. System of equations for single-particle distribution functions and vari-
ational parameters

Let us now find equations for functionals k〈Tτ Sa
ν,τ 〉kρ({ε}) and for cluster fields

rϕa
ν,τ . From (3.5) we obtain
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k〈Tτ Sa
µ,τ 〉kρ({ε}) =

∂ kF({ε})
∂ κa

µ,τ

+
∑

ν

∑

r∈πν

∑

b

∫ 1

0

dτ ′
∂ kF({ε})
∂ rϕb

ν,τ ′

·
δ rϕb

ν,τ ′

δ κa
µ,τ

. (3.26)

Starting from the fact that the kF({ε})-functional (3.16) is a sum of the single- and
two-particle F({ε})-functionals, we get

∂ kF({ε})
∂ κa

ν,τ

= (1−z)F (1)
ν ( a

τ |{εν}) +
∑

r∈πν

F (1,0)
νr ( a

τ |{εν , εr}) ; (3.27)

∂ kF({ε})
∂ r1ϕa

ν,τ

=(1−z)F (1)
ν ( a

τ |{εν})+
∑

r∈πν
r 6=r1

F (1,0)
νr ( a

τ |{εν, εr}), (r1∈πν). (3.28)

Here we introduce the notations

F (k)
ν ( a1

τ1
| a2

τ2
| ··· ak

τk
| {εν}, {κ̃ν}) =

∂

∂ κ̃
a1
ν,τ1

· ∂

∂ κ̃
a2
ν,τ2

··· ∂

∂ κ̃
ak
ν,τk

Fν({εν}, {κ̃ν}) , (3.29)

F (k,l)
νr ( a1

τ1
| a2

τ2
| ··· ak

τk
| a′1

τ ′
1

‖ a′2
τ ′
2

‖ ··· a′
l

τ ′
l
‖ {εν, εr}, {rκ̃ν ,

ν
κ̃r}) =

=
∂

∂ rκ̃
a1
ν,τ1

··· ∂

∂ rκ̃
ak
ν,τk

· ∂

∂ νκ̃
a′
1

r,τ ′
1

··· ∂

∂ νκ̃
a′
l

r,τ ′
l

Fνr({εν, εr}, {rκ̃ν ,
ν
κ̃r}) . (3.30)

From the explicit form of the intracluster F({ε})-functionals (3.12), (3.17) it follows
that

F (k)
ν ( a1

τ1
| a2

τ2
| ··· ak

τk
| {εν}, {κ̃ν}) = 〈Tτ Sa1

ντ1
Sa2
ντ2

··· Sak
ντk

〉cρν({εν}) ; (3.31)

F (k,l)
νr ( a1

τ1
| a2

τ2
| ··· ak

τk
| a′1

τ ′
1

‖ a′2
τ ′
2

‖ ··· a′
l

τ ′
l

‖ {εν, εr}, {rκ̃ν ,
ν
κ̃r}) =

= 〈Tτ Sa1
ντ1

Sa2
ντ2

··· Sak
ντk

S
a′1
rτ ′

1

S
a′2
rτ ′

2

··· Sa′
l

rτ ′
l

〉cρνr({εν ,εr}) , (3.32)

where the averagings are performed with the density matrix functionals (3.15) and

ρνr({εν , εr}) =
eHν({εν})+Hr({εr})

Zνr({εν, εr}, {rκ̃ν , νκ̃r})
exp

[∫ 1

0

dτ Hνr(τ, {rκ̃ν ,
ν
κ̃r})

]
. (3.33)

Hereafter, the functionals (3.31) and (3.32) will be called the single-particle and
two-particle intracluster functionals of CGF, respectively.

Similar to (3.6), from (3.12) and (3.17) one can obtain expressions relating the
intracluster F -functions with their functionals

Fν({κ̃ν}) = Fν({εν}, {κ̃ν})∣∣∣κ̃
a
ν,τ=κ̃

a
ν

εaν=0

; (3.34)

Fνr({rκ̃ν ,
ν
κ̃r}) = Fνr({εν , εr}, {rκ̃ν ,

ν
κ̃r})∣∣∣

r
κ̃

a
ν,τ=

r
κ̃

a
ν , ν

κ̃
a
r,τ=

ν
κ̃

a
r

εaν=εar=0

. (3.35)
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One can also derive expressions relating the single-particle and two-particle intra-
cluster CGFs with their functionals

〈Tτ S̄a1
ν (τ1) S̄

a2
ν (τ2) ... S̄

ak
ν (τk)〉cρν = 〈Tτ Sa1

ν,τ1
Sa2
ν,τ2

... Sak
ν,τk

〉cρν({εν}) ∣∣∣κ̃
a
ν,τ=κ̃a

ν

εaν=0

, (3.36)

〈Tτ ¯̄Sa1
ν (τ1)

¯̄Sa2
ν (τ2) ··· ¯̄Sak

ν (τk)
¯̄Sa′1
r (τ ′1)

¯̄Sa′2
r (τ ′2) ··· ¯̄S

a′
l

r (τ
′
l )〉cρνr =

= 〈Tτ Sa1
ντ1

Sa2
ντ2

··· Sak
ντk

S
a′
1

rτ ′
1

S
a′
2

rτ ′
2

··· Sa′
l

rτ ′
l

〉cρνr({εν ,εr}) ∣∣∣
rκ̃a

ν,τ=
rκ̃a

ν , νκ̃a
r,τ=

νκ̃a
r

εaν=εar=0

, (3.37)

where

S̄a
ν (τ) = e−τHν Sa

ν eτHν ; ρν =
eHν

Sp(eHν )
; Hν({κ̃ν}) =

∑

a

κ̃
a
νS

a
ν ; (3.38)

¯̄S
a

ν(τ) = e−τHνr Sa
ν eτHνr ; ρνr =

eHνr

Sp(eHνr)
;

Hνr({rκ̃ν ,
ν
κ̃r}) =

∑

a

[rκ̃a
νS

a
ν +

ν
κ̃

a
rS

a
r +

∑

b

KabSa
νS

b
r ] . (3.39)

From equations (3.26)–(3.28), taking into account the condition of the extremum
of the kF({ε})-functional with respect to rϕa

ν,τ

∂ kF({ε}, {κ, ϕ})
∂ rϕa

ν,τ

= 0 , (3.40)

we obtain the system of equations for the functionals k〈Tτ Sa
ν,τ 〉kρ({ε}) and cluster fields

rϕa
ν,τ

k〈Tτ Sa
ν,τ 〉kρ({ε}) = F (1)

ν ( a
τ | {εν}, {κ̃ν}), (3.41)

F (1)
ν ( a

τ | {εν}, {κ̃ν}) = F (1,0)
νr ( a

τ | {εν, εr}, {rκ̃ν ,
ν
κ̃r}). (3.42)

One can see that equation (3.42) for rϕa
ν,τ , obtained from the kF({ε})-functional

extremum condition (3.40), is equivalent to equations

〈Tτ Sa
ν,τ 〉ρν({εν}) = 〈Tτ Sa

ν,τ 〉ρνr({εν ,εr}) .

That is, in the present approximation (see (3.36)–(3.39)) the relations between the
density matrices are not violated:

〈Sa
ν 〉ρν = 〈Sa

ν 〉ρνr =⇒ ρν = Sp
Sr
ρνr .

Putting εaν = 0 (κa
ν,τ = κ

a
ν ,

rϕa
ν,τ =

rϕa
ν , see also (3.7), (3.36), (3.37)), taking into

account the following relations

〈Sa
ν 〉ρν =

∂ Fν({κ̃ν})
∂ κ̃a

ν

, 〈Sa
ν 〉ρνr =

∂ Fνr({rκ̃ν ,
ν
κ̃r})

∂ rκ̃a
ν
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and going to the uniform fields case κ
a
ν = κ

a (rϕa
ν = ϕa, κ̃a

ν = κ̃
a, r

κ̃
a
ν = ˜̃κa), from

(3.41), (3.42) we obtain the system of equations for the single-particle distribution
functions k〈Sa〉kρ and cluster fields ϕa in the TPCA for the uniform fields case.

k〈Sa〉kρ =
∂ F1({κ̃})
∂ κ̃a

, (3.43)

∂ F1({κ̃})
∂ κ̃a

=
1

2

∂ F12({ ˜̃κ})
∂ ˜̃κa

. (3.44)

Here F1({κ̃}) and F12({ ˜̃κ}) are the single-particle and two-particle intracluster F -
functions for the uniform fields case (3.22), (3.24). The factor 1

2
in the right hand side

of equation (3.44) arose at going from the partial derivative of the Fνr({rκ̃ν ,
ν
κ̃r})-

function with respect to r
κ̃

a
ν in the non-uniform fields case to the partial derivative

of the F12({ ˜̃κ})-function with respect to ˜̃κa in the uniform fields case.

3.4. Pair distribution functions

Let us briefly discuss the method of calculation of the pair CGFs functionals of
the reference system presented in [54], based on the technique developed in [47] for
the Ising model. Starting from (3.5) and (3.41), we obtain an expression for the pair
CGF functional

kb(2)(a1ν,τ1\
a2
µ,τ2

\{ε})= k〈Tτ Sa1
ν,τ1

Sa2
µ,τ2

〉c
kρ({ε})

=
∑

a3

∫ 1

0

dτ3 F (2)
ν (a1τ1|

a3
τ3
|{εν})·

δ κ̃a3
ν,τ3

δ κa2
µ,τ2

. (3.45)

Having in mind the calculations of the pair CGFs (see (3.7)) for the uniform
fields case, and since for specific systems single-particle intracluster pair CGFs
〈Tτ S̄a1

ν (τ1) S̄
a2
ν (τ2)〉cρν (see (3.31), (3.36)) in uniform fields case can be calculated

directly, we need to obtain an equation for δ κ̃a3
ν,τ3
/δ κa2

µ,τ2
[47,54,56].

We introduce the notations

κ̃
′
νµ(

a3
τ3
|a2τ2 ) =

δ κ̃a3
ν,τ3

δ κa2
µ,τ2

; r
κ̃

′
νµ(

a3
τ3
|a2τ2 ) =

δ r
κ̃

a3
ν,τ3

δ κa2
µ,τ2

; rϕ ′
νµ(

a3
τ3
|a2τ2 ) =

δ rϕa3
ν,τ3

δ κa2
µ,τ2

. (3.46)

Taking the functional derivative δ /δ κa2
µ,τ2

from both sides of equation (3.42), and
taking into account the relation

r
κ̃

′
νµ(

a3
τ3
|a2τ2 ) = κ̃

′
νµ(

a3
τ3
|a2τ2 )−

rϕ ′
νµ(

a3
τ3
|a2τ2 ) (3.47)

(see (3.20)), we obtain

∑

a3

∫ 1

0

dτ3 F (2)
ν ( a1

τ1
| a3

τ3
|{εν}) · κ̃ ′

νµ(
a3
τ3
|a2τ2 ) =

=
∑

a3

∫ 1

0

dτ3 F (2,0)
νr ( a1

τ1
| a3

τ3
|{εν, εr})

[
κ̃

′
νµ(

a3
τ3
|a2τ2 )− rϕ ′

νµ(
a3
τ3
|a2τ2 )

]

+
∑

a3

∫ 1

0

dτ3 F (1,1)
νr ( a1

τ1
| a3

τ3
‖{εν, εr})

[
κ̃

′
rµ(

a3
τ3
|a2τ2 )−

νϕ ′
rµ(

a3
τ3
|a2τ2 )

]
. (3.48)
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Going to a matrix form in (3.48) 1 and performing some transformations, we obtain:

[
F̂ (2,0)

νr ({εν, εr})− F̂ (2)
ν ({εν})

]
· ̂̃κ ′

νµ + F̂ (1,1)
νr ({εν , εr}) · ̂̃κ ′

rµ =

= F̂ (2,0)
νr ({εν , εr}) · rϕ̂ ′

νµ + F̂ (1,1)
νr ({εν, εr}) · νϕ̂ ′

rµ . (3.49)

Introducing the notations

f̂νr = [F̂ (2,0)
νr ({εν , εr})]−1 · F̂ (1,1)

νr ({εν, εr}) ;

v̂νr = [F̂ (2,0)
νr ({εν , εr})]−1 · F̂ (2)

ν ({εν , εr}) , (3.50)

we rewrite equation (3.49) as

rϕ̂ ′
νµ + f̂νr · νϕ̂ ′

rµ = f̂νr · ̂̃κ ′
rµ + (1̂− v̂νr)̂̃κ ′

νµ , (r ∈ πν). (3.51)

We obtain an equation (3.51) with unknown rϕ ′
νµ,

νϕ ′
rµ. One more linearly indepen-

dent equation still should be derived. After changing indices r ⇋ ν, we get

νϕ̂ ′
rµ + f̂rν · rϕ̂ ′

νµ = f̂rν · ̂̃κ ′
νµ + (1̂− v̂rν)̂̃κ ′

rµ , (ν ∈ πr). (3.52)

One can easily see that (3.51) and (3.52) are a system of equations for rϕ ′
νµ,

νϕ ′
rµ.

Summing up over r ∈ πν in (3.51) and taking into account the fact that

̂̃κ ′
νµ = δνµ · 1̂ +

∑

r∈πν

rϕ̂ ′
νµ , (3.53)

from the system of equations (3.51), (3.52) one obtains a closed equation for κ̃ ′
νµ

{
1̂ +

∑

r∈πν

f̂νr

[
1̂− f̂rν ·f̂νr

]−1[
f̂rν − f̂−1

νr ( 1̂− v̂νr)
]}

̂̃κ ′
νµ =

= δνµ ·1̂ +
∑

r∈πν

f̂νr

[
1̂− f̂rν ·f̂νr

]−1

v̂rν · ̂̃κ ′
rµ . (3.54)

1Here the matrices have a block structure; for instance in terms of (x, y, z):

F̂ (2)
ν

({εν}) =




F (2)
ν (x| x|{εν}) F (2)

ν (x| y|{εν}) F (2)
ν (x| z|{εν})

F (2)
ν (y| x|{εν}) F (2)

ν (y| y|{εν}) F (2)
ν (y| z|{εν})

F (2)
ν (z| x|{εν}) F (2)

ν (z| y|{εν}) F (2)
ν (z| z|{εν})


 ,

where the submatrices

F (2)
ν

(a1| a2|{εν})=




F (2)
ν

(
a1

0

∣∣ a2

0

∣∣{εν}
)

F (2)
ν

(
a1

0

∣∣ a2

dτ

∣∣{εν}
)

F (2)
ν

(
a1

0

∣∣ a2

2dτ

∣∣{εν}
)
··· F (2)

ν

(
a1

0

∣∣ a2

1

∣∣{εν}
)

...

F (2)
ν

(
a1

1

∣∣ a2

0

∣∣{εν}
)

F (2)
ν

(
a1

1

∣∣ a2

dτ

∣∣{εν}
)

F (2)
ν

(
a1

1

∣∣ a2

2dτ

∣∣{εν}
)
··· F (2)

ν

(
a1

1

∣∣ a2

1

∣∣{εν}
)




are the M×M matrices (M = 1
dτ + 1). At dτ −→ 0 M −→ ∞.
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Let us put εaν = 0 and go to the uniform fields case κ
a
ν = κ

a

F̂ (2,0)
νr ({εν , εr}) = F̂ (2,0)

(ν−r)({εν, εr}) −→ F̂ (2,0)
12 ; F̂ (2)

ν ({εν}) −→ F̂ (2)
1 ;

F̂ (1,1)
νr ({εν , εr}) = F̂ (1,1)

(ν−r)({εν, εr}) −→ F̂ (1,1)
12 ; f̂νr = f̂(ν−r) −→ f̂ ;

v̂νr = v̂(ν−r) −→ v̂ (3.55)

in equation (3.54). Then it can be rewritten as

[
1̂ + (z−1)f̂ 2 − z( 1̂− v̂)

]
̂̃κ ′
νµ = [1̂− f̂ 2] δνµ + f̂ · v̂

N∑

r=1

πνr · ̂̃κ ′
rµ , (3.56)

where

πνr =

{
1, r ∈ πν
0, r /∈ πν

. (3.57)

It should be remembered, that with putting εaν = 0 we go from the single-particle and
two-particle intracluster CGF functionals (see (3.31), (3.32)) to the corresponding
CGFs (see (3.36), (3.37)).

Going to the frequency-momentum representation in (3.56) and solving the ob-
tained equation, we get for ̂̃κ ′(~q, ωn)

̂̃κ ′(~q, ωn) =
[
1̂ + (z−1)f̂ 2(ωn)− z[ 1̂− v̂(ωn)]− f̂(ωn)·v̂(ωn)·π(~q )

]−1

× [ 1̂− f̂ 2(ωn)] . (3.58)

Here

f̂(ωn) = [F̂ (2,0)
12 (ωn)]

−1 · F̂ (1,1)
12 (ωn) ; v̂(ωn) = [F̂ (2,0)

12 (ωn)]
−1 · F̂ (2)

1 (ωn) (3.59)

and F̂ (2,0)
12 (ωn), F̂ (1,1)

12 (ωn), F̂ (2)
1 (ωn) are 3× 3 matrices in the indices a, b (a = x, y, z

or +,−, z), their elements are Fourier transforms (F (2,0)
12 (a,bωn

), F (1,1)
12 (a,bωn

), F (2)
1 (a,bωn

)) of

the pair intracluster CGFs 〈Tτ
¯̄Sa
1(τ)

¯̄Sb
1(0)〉cρ12, 〈Tτ ¯̄Sa

1(τ)
¯̄Sb
2(0)〉cρ12, 〈Tτ S̄a

1 (τ)S̄
b
1(0)〉cρ1,

respectively. π(~q ) is the Fourier transform of the function πνr. For simple lattices
with a hypercubic symmetry, π(~q ) reads

π(~q ) = 2
d∑

i=1

cos(qi · α) ; (3.60)

d is the lattice dimensionality; α is the lattice constant. The obtained matrix ex-
pression (3.58) can be rewritten as

̂̃κ ′(~q, ωn) =
[
zv̂(ωn)− (z−1)[ 1̂+ f̂(ωn)] + z[ 1̂− f̂(ωn)]

−1 f̂(ωn)·v̂(ωn)·Θ(~q )
]−1

× [ 1̂ + f̂(ωn)] , (3.61)
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where Θ(~q ) for simple lattices with a hypercubic symmetry is

Θ(~q ) = 1− π(~q )

z
=

2

d

d∑

i=1

sin2
(qi · α

2

)
. (3.62)

Putting εaν = 0, going to the uniform fields case in relation (3.45), and going
to the frequency-momentum representation, we obtain expressions for pair CGFs,
which are convenient to rewrite in a matrix form in the indices a, b:

k̂b(2)(~q, ωn) = F̂ (2)
1 (ωn) · ̂̃κ ′(~q, ωn) . (3.63)

Hence, in order to calculate the pair CGFs of the reference system in the uni-
form fields case from (3.63), we need to calculate (according to (3.61) and (3.59))

the single- and two-particle intracluster pair CGFs F (2)
1 (a,bωn

) = (〈Tτ S̄a
1 (τ)S̄

b
1(0)〉cρ1)ωn

,

F (2,0)
12 (a,bωn

) = (〈Tτ ¯̄Sa
1(τ)

¯̄Sb
1(0)〉cρ12)ωn

, F (1,1)
12 (a,bωn

) = (〈Tτ ¯̄Sa
1(τ)

¯̄Sb
2(0)〉cρ12)ωn

.

4. Ising model in transverse field

4.1. Thermodynamics. General results

We consider the Ising model in transverse field with a renormalized pseudospin
operator (Sz = (−1, 1)).

H = −
N∑

ν=1

(hSz
ν + ΓSx

ν )− 1
2

∑

ν,δ

KSz
νS

z
ν+δ − 1

2

∑

ν,µ

JνµS
z
νS

z
µ . (4.1)

Here K and Jνµ are the short-range and long-range pair interactions, respectively;
Γ is the transverse field; the quantity h→ 0 is introduced for the sake of convenience.
Hereafter, the factor β = (kBT )

−1 is written explicitly.
In the framework of MFA for the long-range interactions, the Hamiltonian (4.1)

can be written as

H = kH + 1
2
NJ0m

2 , (4.2)

where

J0 =
N∑

µ=1

Jνµ , m = 〈Sz〉ρ (4.3)

and kH is the Hamiltonian of the reference IMTF

kH = −
N∑

ν=1

[
κ

zSz
ν + κ

xSx
ν

]
− 1

2

∑

ν,δ

KSz
νS

z
ν+δ ; (4.4)

κ
z = h+ J0m ; κ

x = Γ . (4.5)

528



Reference approach in theory of pseudospin systems

According to the results of previous sections, the free energy of IMTF within the
TPCA for the short-range interactions, with the long-range interactions taken into
account within the MFA, is

F = −kBT · kF + 1
2
NJ0m

2. (4.6)

The kF -function of the reference IMTF

kF = (1− z)NF1 +
zN
2
F12 (4.7)

is expressed via the single-particle

F1 = lnZ1 , Z1 = Sp
S1
e−βH1 , (4.8)

H1 = −
∑

a=x,z

κ̃
aSa

1 ; κ̃
a = κ

a + zϕa , (a = z, x), (4.9)

and two-particle

F12 = lnZ12 , Z12 = Sp
S1,S2

e−βH12 ; (4.10)

H12 = −
∑

a=x,z

˜̃κa(Sa
1 + Sa

2 )−KSz
1S

z
2 ; ˜̃κa = κ

a + (z−1)ϕa , (a = z, x) (4.11)

intracluster F -functions. Let us show briefly how these functions can be obtained.
The Hamiltonian H1 acts based on the two functions of state of a single particle

1 +
2 − (4.12)

In the representation (4.12), the single-particle Hamiltonian reads

H1 = −
(

κ̃
z

κ̃
x

κ̃
x −κ̃

z

)
. (4.13)

Taking into account (4.8), one can easily obtain the single-particle partition function
in an explicit form

Z1 = 2ch(βΛ) ; Λ =
√

(κ̃z)2 + (κ̃x)2 . (4.14)

The two particle Hamiltonian H12 acts based on the four functions of state of a
two-particle cluster

1 + +
2 + −
3 − +
4 − −

(4.15)
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In the representation (4.15), the Hamiltonian H12 reads

H12 = −




2 ˜̃κz +K ˜̃κx ˜̃κx 0

˜̃κx −K 0 ˜̃κx

˜̃κx 0 −K ˜̃κx

0 ˜̃κx ˜̃κx − 2 ˜̃κz +K




. (4.16)

Based on (4.10) and (4.16) we obtain the two-particle partition function

Z12 =

4∑

i=1

e−β(E12)i , (4.17)

where

(E12)4 = K , (4.18)

whereas three other eigenvalues (E12)1, (E12)2, (E12)3 of the matrix (4.16) are roots
of a cubic equation

E3
12 +KE2

12 −
[
K2 + 4(˜̃κx)2+ 4(˜̃κz)2

]
E12 −K

[
K2+ 4(˜̃κx)2− 4( ˜̃κz)2

]
=0 . (4.19)

From (3.43) and (3.44), taking into account the fact that in the framework of
the MFA for the long-range interactions

〈Sz〉ρ = − 1

N

d F

d h
= k〈Sz〉kρ = − 1

N

d kF

d κz
(4.20)

(this can be obtained from the explicit expression for the free energy (4.6)), we get
equations for the parameters m = 〈Sz〉ρ, η = 〈Sx〉ρ and cluster fields ϕa (a = z, x)

κ̃
x

Λ
th(βΛ) =

4˜̃κx

Z12

3∑

i=1

[−(E12)i −K]e−β(E12)i

3(E12)2
i
+ 2K(E12)i − [K2 + 4(˜̃κx)2 + 4(˜̃κz)2]

, (4.21)

κ̃
z

Λ
th(βΛ) =

4˜̃κz

Z12

3∑

i=1

[−(E12)i +K]e−β(E12)i

3(E12)2i + 2K(E12)i − [K2 + 4(˜̃κx)2 + 4(˜̃κz)2]
, (4.22)

m =
κ̃

z

Λ
th(βΛ), (4.23)

η =
κ̃

x

Λ
th(βΛ). (4.24)

When the long-range interaction is absent (J0 = 0), we have a system of two equa-
tions (4.21) and (4.22) for ϕx, ϕz in an implicit form ((E12)i are roots of cubic
equation (4.19)) and expressions (4.23) for m and (4.24) for η. When J0 6= 0, we
have a system of three equations (4.21) – (4.23) for ϕx, ϕz, and m, and an expression
for η.
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Numerical analysis of the thermodynamic characteristics and longitudinal static
susceptibility χzz (which is too cumbersome to be presented here) obtained here
within the TPCA in the short-range interactions, with the long-range interactions
taken into account within the MFA, as well as the study of the applicability bounds
of this approach to the IMTF on different types of lattices at different values of
the parameters Γ, J0 will be given elsewhere. Here we shall only briefly consider the
major results atK > 0, J0 > 0, Γ> 0. We shall use the terminology of ferroelectricity.

For the one-dimensional IMTF at J0 =0, the two-particle cluster approximation,
unlike the MFA for the short-range interactions, does not predict the existence of
ferroelectric ordering (at T > 0 and arbitrary Γ the system is in the paraelectric
phase). Comparison of the TPCA results for the free energy, entropy, and specific
heat as functions of temperature (expressions for entropy and specific heat were
obtained for the paraelectric phase only) at different values of Γ/K has shown, that
this approximation yields fair results for these characteristics at all temperatures ex-
cept for the low-temperature region. Thus, at high temperatures, the TPCA results
accord with exact results not only qualitatively, but also well enough quantitatively.
The lower is the temperature the more the results of TPCA differ from the exact
ones (too low values of free energy, entropy, and specific heat), whereas in the low-

temperature region T < Tl (kBTl/K < th( 4

√
1
6
·Γ/K) + 1

6
· Γ/K) are qualitatively

incorrect (for instance, the free energy is an increasing function of temperature).

For the one-dimensional model at J0 > 0, as well as for two-dimensional and
three-dimensional models at J0 > 0, the TPCA for the short-range interactions with
the long-range interactions taken into account within the MFA predicts that a limit-
ing value (Γ/K)k exists which depends on J0 and z, and above which a ferroelectric
ordering is impossible (the latter is a qualitatively correct result). At (Γ/K) a <
Γ/K < (Γ/K)k (where (Γ/K)a =

√
c(z,Γ, J0, K)·zJ0/K, c(z,Γ, J0, K)≈ 2) this ap-

proximation predicts a phase transition from the paraelectric phase to the ferroelec-
tric phase on lowering temperature and the phase transition from the ferroelectric
to the paraelectric phase – the so-called anti-Curie point. At small enough values of
Γ/K 6 (Γ/K)a the anti-Curie point is absent, but the temperature behaviour of the
thermodynamic characteristics remains qualitatively incorrect. The low-temperature
region of T <Tl, where the TPCA yields incorrect results for thermodynamic char-
acteristics, is reduced when the values of Γ/K and J0/K decrease (see table 1). In
the high-temperature region T > Tl at J0 = 0 and z > 2, the TPCA is much more
correct than the mean field approximation for the short-range interactions.

We also performed a numerical analysis of the TPCA results at neglecting the
variational parameter ϕx (ϕx=0). This version of the approximation is not suitable
for one-dimensional chains. Thus, at small enough values of J0/K < 0.09 and Γ/K,
Curie temperature increases on increasing Γ/K. At J0 = 0 and Γ/K ∈ ]0, 1.28] a
ferroelectric ordering is predicted.

For two-dimensional and three-dimensional lattices, neglecting the variational
parameter ϕx leads to a slight quantitative worsening of the results in a high-
temperature region and to a qualitatively correct description of temperature de-
pendences of thermodynamic characteristics (m(T ), χzz(T )) in a low-temperature
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Table 1. Temperature of the anti-Curie point Ta, temperature Tl below which
unphysical results for m(T ) and χzz(T ) are obtained, and Curie temperature for
a square lattice (z = 4) at different values of Γ and J0 within the TPCA for the
short-range interactions, calculated with the long-range interactions taken into
account in the MFA.

kBTa/K kBTl/K kBTc/K J0/K Γ/K
0.01 0.57 2.86 0.0 0.5
0.26 0.93 2.40 0.0 2.0
0.03 0.96 3.04 0.4 2.0

region. The larger is the lattice dimensionality and the value of the long-range inter-
action and the smaller is the transverse field the smaller is the mentioned worsening.

4.2. Thermodynamics and intracluster pair distribution fu nctions in para-
electric phase

In order to study the dynamic characterictics of the IMTF in the paraelectric
phase, we write here certain relations for some thermodynamic quantities in the
paraelectric phase (κz = κ̃

z = ˜̃κz = ϕz = 0, m = 0). The eigenvalues (E12)i of
two-particle Hamiltonian (4.16) in the paraelectric phase are (see (4.19)):

(E12)1 = −L ; (E12)2 = L ; (E12)3 = K ; (E12)4 = −K , (4.25)

where

L =

√
K2 + 4(˜̃κx)

2
. (4.26)

From (4.25) we obtain the two-particle partition function in the paraelectric phase
explicitly

Z12 = 2
[
ch(βL) + ch(βK)

]
. (4.27)

In the paraelectric phase, equations (4.22), (4.23) turn to identity, while equation
(4.21) for the variational parameter ϕx can be written explicitly, using (4.25)

th(βκ̃x) =
4˜̃κx

LZ12
sh(βL) . (4.28)

We also present here an expression for η = 〈Sx〉ρ:

η = th(βκ̃x) . (4.29)

To calculate the pair CGFs of the reference model (4.4) within the TPCA (see
(3.63)), we need to know the single-particle and two-particle intracluster pair CGFs

F (2)
1 (a,bωn

), F (2,0)
12 (a,bωn

), F (1,1)
12 (a,bωn

) (a, b = x, y, z). Let us calculate now the two-particle
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intracluster CGFs. It is convenient to do so in the self-representation of the operator
H12.

Since we have explicit expressions for the eigenvalues of the two-particle Hamilto-
nian (4.16) in the paraelectric phase (see (4.25)), it is easy to obtain the normalized
unitary matrix, which diagonalizes the two-particle Hamiltonian

Û =




r1 r2 0 1/
√
2

r2 −r1 1/
√
2 0

r2 −r1 −1/
√
2 0

r1 r2 0 −1/
√
2


 . (4.30)

Here we use the notations

r1 =
1
2
·
√

1 +K/L ; r2 =
1
2
·
√
1−K/L . (4.31)

Going from the Pauli operators to their four-row analogs [50–52]

σa
1 = Sa

1 ⊗ I ; σa
2 = I ⊗ Sa

2 ; a = x, y, z (4.32)

(here I is the two-row unit matrix, ⊗ is the direct product symbol; matrices σ a
ν obey

Pauli commutation rules) and performing a unitary transformation

σ̃a
ν = Û−1σa

ν Û , (4.33)

we obtain the pseudospin operators in the self-representation of the operator H12:

σ̃z
1 =

√
2




0 0 r2 r1
0 0 −r1 r2
r2 −r1 0 0
r1 r2 0 0


 ; σ̃z

2 =
√
2




0 0 −r2 r1
0 0 r1 r2

−r2 r1 0 0
r1 r2 0 0


 ;

σ̃x
1 =




2 ˜̃κx/L −K/L 0 0

−K/L −2 ˜̃κx/L 0 0
0 0 0 −1
0 0 −1 0


 ; σ̃x

2 =




2 ˜̃κx/L −K/L 0 0

−K/L −2 ˜̃κx/L 0 0
0 0 0 1
0 0 1 0


 ;

σ̃y
1 = i

√
2




0 0 r1 r2
0 0 r2 −r1

−r1 −r2 0 0
−r2 r1 0 0


 ; σ̃y

2 = i
√
2




0 0 −r1 r2
0 0 −r2 −r1
r1 r2 0 0
−r2 r1 0 0


 . (4.34)

Expanding operators σ̃a
i (4.34) in finite series in the four-dimensional Hubbard op-

erators [50–52], following [14,57], we easily calculate the two-particle cumulant pair
intracluster Green functions:

F̂ (2,0)
12 (ωn) =




F (2,0)
12 (x,xωn

) 0 0

0 F (2,0)
12 (y,yωn

) F (2,0)
12 (y,zωn

)

0 F (2,0)
12 (z,yωn

) F (2,0)
12 (z,zωn

)


 ,

F̂ (1,1)
12 (ωn) =




F (1,1)
12 (x,xωn

) 0 0

0 F (1,1)
12 (y,yωn

) F (1,1)
12 (y,zωn

)

0 F (1,1)
12 (z,yωn

) F (1,1)
12 (z,zωn

)


 , (4.35)
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where

F (2,0)
12 (x,xωn

) = (〈Tτ σ̃x
1 (τ) σ̃

x
1 (0)〉cρ12)ωn

= Asδ(ωn) + A+(ωn) ;

F (2,0)
12 (y,yωn

) =
4

βLZ12ψ(ωn)
[(2 ˜̃κx)

4
sh(βL) + C+ · ω2

n] ;

F (2,0)
12 (y,zωn

) = −F (2,0)
12 (z,yωn

) =
8˜̃κxωn

βLZ12ψ(ωn)
[C− + sh(βL)ω2

n] ;

F (2,0)
12 (z,zωn

) =
16( ˜̃κx)

2

βLZ12ψ(ωn)
[C− + sh(βL)ω2

n] ; (4.36)

F (1,1)
12 (x,xωn

) = (〈Tτ σ̃x
1 (τ) σ̃

x
2 (0)〉cρ12)ωn

= Asδ(ωn) + A−(ωn) ;

F (1,1)
12 (y,yωn

) = − 16BKω2
n

βZ12ψ(ωn)
;

F (1,1)
12 (y,zωn

) = −F (1,1)
12 (z,yωn

) =
32BK ˜̃κxωn

βZ12ψ(ωn)
;

F (1,1)
12 (z,zωn

) =
64BK( ˜̃κx)

2

βZ12ψ(ωn)
. (4.37)

Here we use the notations

As =
( 4 ˜̃κx

LZ12

)2
· [1 + ch(βK)ch(βL)] ; B = 1

2
[ch(βL)− ch(βK)] ;

A±(ωn) =
8K

βLZ12

(Ksh(βL)

4L2 + ω2
n

± Lsh(βK)

4K2 + ω2
n

)
;

C± = [L2 +K2]sh(βL)± 2LKsh(βK) ; (4.38)

ψ(ωn) = [(L+K)2 + ω2
n][(L−K)2 + ω2

n] . (4.39)

The most convenient way of obtaining the single-particle intracluster CGFs is,
by performing a rotation in a spin space, to go to such a coordinate system, where
Hamiltonian (4.13) is diagonal. We present here the final result (after the inverse
transformation) in the paraelectric phase in terms of a = x, y, z:

F̂ (2)
1 (ωn) =




[1− η2]δ(ωn) 0 0
0 g(ωn) g′(ωn)
0 −g′(ωn) g(ωn)


 . (4.40)

Here we use notations

g(ωn) =
4

β
· η · κ̃x

(2κ̃x)2 + ω2
n

; g′(ωn) =
ωn

2κ̃x
· g(ωn) . (4.41)

At obtaining (4.40) we used the fact that within TPCA for the short-range interac-
tions, taking into account the long-range interactions in the MFA, 〈S x〉ρ1 = 〈Sx〉ρ ≡
η.
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4.3. Dynamics in paraelectric phase. Cluster random phase a pproximation

Our task is to investigate the dynamics characteristics of the IMTF in the para-
electric phase within the TPCA for the short-range interactions and within the
(r−d

0 )0 approximation for the long-range interactions [54,58] – the cluster random
phase approximation. The first step is then to calculate the temperature CGFs.

In CRPA the pair CGF Ĝ(~q, ωn) ≡ b̂(2)(~q, ωn) according to (2.14) is

Ĝ(~q, ωn) = [1− kĜ(~q, ωn)βĴ(~q )]
−1 kĜ(~q, ωn) , (4.42)

where

Ĵ(~q ) =




0 0 0
0 0 0
0 0 J(~q )


 , (4.43)

(in terms of a = x, y, z), and kĜ(~q, ωn) ≡ k̂b(2)(~q, ωn) is the pair CGF of the reference
system, which in the TPCA reads (3.63).

From (4.42), (3.63), using (4.35), (4.40), we obtain pair CGFs. For Gxx(~q, ωn),
and Gzz(~q, ωn) in the paraelectric phase we have:

Gxx(~q, ωn) = δ(ωn) · Gxx
α (~q ) , Gzz(~q, ωn) =

4Γη[p
+
+ ω2

n][p− + ω2
n]

R(~q, ωn)
. (4.44)

Here we introduce the notations

Gxx
α (~q ) = [1−η2]

{
z[1−η2]
dx(T )

− (z − 1) + z[1−η2] bx(T )
dx(T )

Θ(~q )

}−1

;

dx(T ) =
K2

L2
· η

β ˜̃κx
+ 2

[
1− K2

L2

]1 + ch(βL)ch(βK)

ch(βL) + ch(βK)
;

bx(T ) =
1

2sh(βK)

{
K3

L3
sh(βL)−sh(βK)+βK

[
1−K

2

L2

]1+ch(βK)ch(βL)

ch(βL)+ch(βK)

}
; (4.45)

R(~q, ωn) = [p
−
+ ω2

n]
[
ω4
n + u2ω

2
n + u0 − 4ΓηJ(~q )[p

+
+ ω2

n]
]

+
4BLΓK
˜̃κxsh(βL)

·ψ(ωn)zΘ(~q );

p
±
=K2+L2+

2LK[− sh(βK)± 2B]

sh(βL)
; ps =K2+L2+

2LK[sh(βK)−2B]

sh(βL)
;

u2=2z2[K2+L2]+(z−1)2[(2κ̃x)2+p
+
]− 2z(z−1)

{
κ̃

x[(2 ˜̃κx)2+ps]

2 ˜̃κx
+ p

+

}
;

u0 = 4Γ{4z( ˜̃κx)3 − (z−1)κ̃xp
+
} . (4.46)

In calculations of (4.44) we used the relations (4.28), (4.29).
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It should be noted that from (4.44) one obtains the static longitudinal suscepti-
bility (χzz = βGzz(0, 0)) of the IMTF in the paraelectric phase

χzz =

[
zLZ12

2{L+K
L−K

· eβL − L−K
L+K

· e−βL − 4LK
L2−K2 · eβK}

− (z−1)κ̃x

th(βκ̃x)
− J0

]−1

, (4.47)

(J0 = J(~q=0)) which accords with the one calculated from thermodynamic relations
in the TPCA for the short-range interactions, with the long-range interactions taken
into account in the MFA.

To explore the dynamic properties of the IMTF we needn’t know the temperature
CGFs (4.44), but the retarded CGFs. We can calculate them [59] by performing
analytical continuation of the temperature CGFs G ab(~q, ωn) (iωn → E + iE ′) and
going to the limit E ′ → 0. The final results for spectral densities J xx(~q, E) and
J zz(~q, E), defined as

J ab(~q, E) = lim
E′→0

[
2~β

eβE − 1
ImGab(~q, ωn)|ωn→−iE+E′

]
, (4.48)

and for the pair cumulant correlation function 〈S z
~qS

z
−~q〉c are the following.

The spectral density J xx(~q, E) of the IMTF in the paraelectric phase within the
CRPA reads

J xx(~q, E) = δ(E) · Gxx
α (~q ) . (4.49)

Let us note, that an exact expression for J xx(~q, E) of the one-dimensional IMTF
with the short-range interactions only [31] has not only the central peak (∼ δ(E))
but also two symmetrical resonance zones. The absence of the resonance zones within
the CRPA for J xx(~q, E) results from neglecting the fluctuations of cluster fields in
this approximation.

The spectral density J zz(~q, E) (in the paraelectric phase) can be presented as

1
~
J zz(~q, E) =

∑

i=−,+,r

kJi (~q )
[
δ(E −Ei(~q )) + eβEi(~q )δ(E + Ei(~q ))

]
, (4.50)

where Ei(~q ) (i = −,+, r) are the elementary excitation spectrum modes, determined
from the equation (see (4.44), (4.46))

R(~q, ωn)|ωn→−iE
= 0 , (4.51)

and kJi (~q ) are the integral intensities of the elementary excitations spectrum modes

kJi (~q ) = 4πT Γη Ai(~q )·
[p

+
−E2

i (~q )][p− − E2
i (~q )]

(eβEi(~q ) − 1)Ei(~q )
. (4.52)

Here we use the notations:

Ai1(~q ) =
1

[E2
i1
(~q )− E2

i2
(~q )][E2

i1
(~q )− E2

i3
(~q )]

,
i1, i2, i3 = (−,+, r) ,
i1 6= i2, i2 6= i3, i3 6= i1 .

(4.53)
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It should be noted that at ~q = 0 (see (4.44), (4.46)) there are only two modes

E±(0) =
1√
2

√
U2 ±

√
U2

2 − 4U0 , (4.54)

where
U2 = u2 − 4ηΓJ0; U0 = u0 − 4ηΓJ0 p+ . (4.55)

The mode E−(~q ) is soft (E−(0) → 0, T → Tc).
For the pair cumulant correlation function 〈S z

~qS
z
−~q〉c from

〈Sa
~qS

b
−~q〉c|t−→0

= 1
~

∫ ∞

−∞

dE J ab(~q, E) , (4.56)

we obtain

〈Sz
~qS

z
−~q〉c|t−→0

= 2T Γη
∑

i=−,+,r

Ai(~q )·cth(12βEi)·
[p

+
−E2

i (~q )][p− − E2
i (~q )]

Ei(~q )
. (4.57)

Let us briefly consider the results of numerical analysis of the longitudinal char-
acteristics of the IMTF at z = 2, Jνµ = 0 (K = 1). As we have already mentioned,
within CRPA the spectrum of the longitudinal characteristics of the model contains
three nondamping modes E−(q), E+(q), Er(q) with the integral intensities kJ

−(q),
kJ+(q) and kJr (q) in the spectral density J zz(q, E). The calculated dependences of
Ei(q), k

J
i (q) at different transverse fields and temperatures are presented in figure 1.

On increasing Γ, temperature, and q, redistribution of the intensities from low fre-
quencies to higher frequencies is observed. At large Γ and at low temperatures the
redistribution on increasing q takes place, first, mainly from E−(q) to Er(q), and
then from Er(q) to E+(q). At large Γ and at high temperatures the redistribution
takes place mainly from E−(q) to E+(q). At small Γ the redistribution is practically
absent.

In figure 2 we present exact and approximate (CRPA) results for the static corre-
lator 〈Sz

νS
z
ν+n〉 at kBT = 0.6 and kBT = 1.0 at different Γ. The CRPA gives too low

values of 〈Sz
νS

z
ν+n〉, especially at low temperatures. Thus, the autocorrelator 〈S z

νS
z
ν〉

at low temperatures is essentially smaller than unity. The higher is the temperature
and the smaller is Γ the better the CRPA results accord with the exact ones.

Let us also discuss the redistribution of the modes intensities E−(0), E+(0) on
changing Γ and temperature. At temperatures kBT >

√
Γ, change of the modes

positions and integral intensities (obtained within the CRPA) on changing Γ and T
qualitatively describes the change in the frequency dependences of the real part of
the relaxation function ReΨzz(0, E), calculated numerically [35,36] or exactly. Thus,
for instance, at Γ = 1 and kBT = 0.8 (see figure 3) Re Ψzz(0, E) has a prominent
resonance zone at E close to zero. Smearing of this resonance zone on increasing T is
qualitatively described by increasing kJ

+(0) and E−(0) and by decreasing kJ−(0). On
the other hand, for instance, at T → ∞ (see figure 4), a shift of the resonance zone
ReΨzz(0, E) to higher frequencies region on increasing Γ is described by increasing
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Figure 1. Elementary excitations spectrum modes Ei(q) and their integral inten-
sities kJi (q) (within CRPA) as functions of quasimomentum q at different tem-
peratures (thick lines – kBT = 1.0, thin lines – kBT = 4.0) for Γ = 0.5, 1.5, 2.0.
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Figure 2. Static correlation function 〈Sz
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z
ν+n〉 at different values of Γ and tem-

perature (kBT = 0.6, 1.0) calculated within CRPA (solid lines) and exactly [60]
(dash lines). Exact and approximate (CRPA) results for Ising model (short dash
lines) coincide.
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Figure 3. Frequency dependence of 2Γ ·Re Ψzz(0, E) for Γ = 1.0 at different
temperatures (kBT = 0.8, 4, ∞) calculated numerically [35,36]. Vertical lines
correspond to the mode integral intensities kJ

−(0), kJ+(0) within CRPA (solid
line) and kJ0 (0) within RPA (dash line).
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Figure 4. Exact results for frequency dependence of 2Γ·ReΨzz(0, E) at T → ∞
at different values of Γ (Γ = 0.5, 1.0, 1.5, 2.0). Vertical lines correspond to the
mode integral intensities kJ

−(0), k
J
+(0) within CRPA (solid line) and kJ

0 (0) within
RPA (dash line).

E−(0) and k
J
+(0). The fact that the resonance zone at Γ = 0.5 is more prominent than

at Γ = 1.0 is described by decreasing kJ−(0) and increasing kJ+(0) at Γ increasing. The
fact that at Γ = 2.0 the resonance zone ReΨzz(0, E) is more prominent than at Γ =
1.5 is described by closing in the positions of E−(0), E+(0) modes at Γ increasing.
In figures 3, 4 we also depicted the results of the random phase approximation
(RPA) for the short-range interactions. This approximation describes the frequency
dependences of the real part of the relaxation function in the cases presented in
figures 3, 4 qualitatively well only at T → ∞ Γ = 1.5, 2.0.

We restricted the presented numerical analysis of the longitudinal characteristics
of the one-dimensional IMTF (at Jνµ = 0) by the values of the transverse field
0.2 6 Γ 6 2. A more detailed analysis both at Jνµ = 0 and at Jνµ 6= 0 and with
the values of the microparameters corresponding to the CsH2PO4 crystal will be
performed elsewhere.
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Базисний підхід в теорії псевдоспінових систем

Р.Р.Левицький, С.І.Сороков, О.Р.Баран

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 18 квітня 2000 р.

Для теоретичного опису псевдоспінових систем з суттєвими корот-

косяжними та далекосяжними взаємодіями використовується ме-

тод, який грунтується на розрахунку функціоналу вільної енергії з

базисним урахуванням короткосяжних взаємодій у кластерному на-

ближенні. Для квантових псевдоспінових систем запропоновано по-

слідовне формулювання методу кластерних розвинень та метод,

який дає змогу в рамках кластерного наближення отримати для ба-

зисних температурних кумулянтних функцій Гріна довільного поряд-

ку рівняння типу рівнянь Орнштейна-Церніке. В наближенні двоча-

стинкового кластера в явному вигляді отримано вираз для парної

температурної кумулянтної функції Гріна базисної системи. У кла-

стерному наближенні хаотичних фаз розраховані та досліджені тер-

модинамічні характеристики, спектр елементарних збуджень та інте-

гральні інтенсивності гілок спектра моделі Ізінга в поперечному полі.

Ключові слова: фазові переходи, псевдоспінові моделі, базисний

підхід, кластерне наближення, рівняння Орнштейна-Церніке, м’яка

мода

PACS: 03.65.-w, 05.30.-d

543



544


