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Abstract. We have calculated the phonon contribution to the energy of a superexchange. 
It is shown that the phonon contribution to the exchange interaction is comparable on the 
order of magnitude with the Coulomb superexchange. The numerical calculations are 
performed for a molecular cluster consisting of an exchange-coupled pair V 2+−F–−V 2+ 
and 10 nearest ions F- in KMgF3. The distinctions of a temperature dependence of the 
exchange interaction caused by phonons are discussed. In systems with the close located 
electronic levels, the account of interaction with a phonon field reduces in occurrence of 
resonant terms in the exchange interaction of paramagnetic ions. The similar terms result 
in occurrence of the exponential temperature dependence in an exchange interaction. As 
an example, the exchange pair of +2Cu ions in O2HCuClK 242 ⋅  has been considered. 
The experimentally observed anomalously strong temperature dependence of the 
exchange interaction of copper ions in this system can be described by the contribution of 
the resonant terms caused by a phonon contribution to the exchange interaction. The total 
exchange can be described by the dependence 1

10Σ )1( −−−≈ xeIII , where ΣI  is the 
complete exchange interaction in a system including the phonon contribution (the second 
term) , Tkx 0/δ=  with the parameters Κ29.00 ≅I , Κ22.01 ≅I , Κ192≅δ . The 
parameter δ  corresponds to the splitting of a doubly degenerated lowest term of the 
copper ion in the crystalline field. 
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1. Introduction 

The account of permutation symmetry effects in 
wavefunction for many-electron system is a basis of the 
microscopic theory of magnetism. For a long time in the 
theory of exchange interactions (EI), the influence of a 
phonon system on the size of an exchange splitting (as 
well as the influence of elementary excitations of 
another nature on EI) was not taken into account. 
Aggregate colour centers (an exchange-coupled pairs of 
F-centers or F2-centers) in alkali-halide crystals were 
intensively studied in the Kiev school in the 50s of the 
last century by M.F. Deigen [1]. The historical analysis 
of the first works devoted to the theory of the aggregate 
colour centers and bipolarons (BPs) [1-3] shows that the 
nonrelativistic magnetic exchange takes place in addition 
to the electron-phonon interaction (EFI) taken into 
account in functionals of the ground state. The stability 
of two-center BPs is provided by the exchange 

contribution caused by electron-phonon interaction to 
the energy of a two-electron system (in this system, the 
Coulomb exchange is ferromagnetic).  

For the first time, the phonon contribution to the 
energy of the simplest aggregate centers such as F2-
centers and BPs was investigated in the framework of 
continuum approximation [1-4]. This direction of the 
aggregate center theory is currently developed, too [5-8]. 
The availbility of the coupled two-electron states such as 
F2-centers and two-center BPs was possible to be 
explained only due to the account of permutation 
symmetry in these electron systems. The functional of 
the ground state in these systems, besides terms, 
concerning the kinetic energy and Coulomb energy, 
contained the contributions caused by interaction of 
electrons with the field of optical Eopt and acoustical Eac 
waves. These additional terms depend on a distance R 
between centers of the polarizing well for two polarons 
and between vacancies for two F-centers. In spite of the 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2005. V. 8, N 3. P. 30-38. 

 

 

© 2005, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

31 

fact that, for deriving these terms, the traditional 
Fröhlich canonical transformation [9]  was not 
performed just in those had been contained the sources 
of the theory of indirect interactions of the paramagnetic 
centers. Moreover, if as the zeroth approximation we 
choose the energy and the wavefunctions of isolated F-
centers or polarons (i.e., include the zeroth approxima-
tion terms into the Hamiltonian describing the interac-
tion of an isolated F-center with phonons), the explicit 
form for the energies of indirect interactions of these 
centers Eopt and Eac can be obtained by methods of the 
perturbation theory. However for the derivation of the 
effective Hamiltonian of indirect interactions (EHII), the 
permutation symmetry of the system must be taken into 
account. For the first time, it was made when modeling 
the interaction on the phonons of shallow paramagnetic 
centers [10]. In an implicit form, the exchange energy 
caused by phonons contained already in functionals of 
the ground states of F2-centers and BPs (strong 
coupling), however the purpose of the works [1-3] was 
to find a minimum of the basic state, and the separation 
of a spin-dependent part from the total energy was not 
carried out.  

Thus for a long time, the availability of spin-
dependent exchange terms in the energy of the F2- center 
ground state remained as though unrecognized. 
However, from the viewpoint of researching magnetic 
interactions, just the spin-dependent part in the energy of 
two-electron systems holds the greatest interest. 

Spin-dependent terms in the energy of an indirect 
interaction of two shallow impurities through a phonon 
field were obtained using the method of the perturbation 
theory in [10, 11]. In these works, the main attention was 
focused on the spin-dependent part of the energy of the 
indirect interaction, and the terms that had not an 
exchange character were omitted. And only after 
solution of a similar task by the methods of strong 
coupling [12], noticed was the complete analogy of the 
systems considered in [10-12] with those containing F2-
centers and well investigated by M.F. Deigen [1]. 

Presently, interest in the study of exchange-coupled 
pairs of impurities has regenerated in the context of an 
opportunity to use such two-electron systems as a basis 
for the development of quantum computers that could 
operate using both the spin [13] and nuclear resonances 
[14, 15]. In both schemes, EI between impurities 
provides the interaction between qubits. The results of 
the work [16] show that the polarons and BPs are good 
candidates to logical switching in the molecular circuits 
of conducting polymers. Therefore, theoretical studies of 
the energy spectrum of simplest two-electron systems 
such as BPs (free and coupled) and exchange-coupled 
pairs in crystals are not only of pure theoretical interest, 
but of practical importance as well. 

Step of going from shallow paramagnetic centers 
(PC) to the PC of small radius, the direct exchange 
interaction concedes a place to a superexchange through 
intermediate anion (diamagnetic, as a rule). Therefore, 

naturally this bring up the question of influence of the 
orbital-lattice interaction on the energy of exchange 
splitting of more complex systems including the 
intermediate diamagnetic atoms. Our work is devoted to 
construction of the effective Hamiltonian describing the 
indirect interaction (EHII) between two deep PC of 
small radius, spatially divided by a diamagnetic anion. 

2. Effective Hamiltonian of indirect interaction 

Let's consider the elementary system consisting of two 
PC with the spins 212 == SS1  in a crystal. The 
Hamiltonian of this system has the following form 

int0
ˆˆˆˆ HHHH ++= f , (1) 

where intĤ  describes the interaction between electrons 

of PC and the field of elementary excitations, 0Ĥ  

includes all Coulomb interactions in a system, fĤ  is 
the Hamiltonian of the elementary excitation field. Let's 
carry out the canonical transformation SS H ii ee ˆ−  with 

the operator ( )∫
∞−

−−=
0

int
1 ˆ ττ dHS h . 

The operator of PC interaction through a boson field 
(further, for definiteness, phonons) can be written in the 
most general form as 
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where bq
+ (bq) are the Bose operators of creation 

(annihilation) of phonons with the wavevector q, N is the 
number of electrons in the system, the functions F(q) 
and V(q, ri ) depend on a specific kind of PC interacting 
with bosons, ri is the coordinate of i-th electron. For the 
large radius centers V(q,ri) = exp(iqri). 

After statistical averaging over the electronic 
coordinates and boson field variables, we derived the 
following expression for the energy of singlet (S) and 
triplet (A) states  

( )

∑

∑

∑

×

×
⎪⎭

⎪
⎬
⎫

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

+
−

−
−

⎪
⎩

⎪
⎨

⎧
−= −

θ
θ

θ θθ ωωωω

ω

Ψ)exp(Ψ

)(

1

)(

)(Φ)(

,

2
,

12
,

iAS

qq

AS
q

AS

ri

nn

FE

q

qq

qq

q

hh

h

 (3) 

where ∑=
i

ASiASAS rV ,,, Ψ),(Ψ)(Φ qq . For large 

radius PC, the functions )(, qASΦ  represent the 
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electronic form-factors of impurity systems in the singlet 
and triplet states, correspondingly: ωq is the phonon 
frequency with the wavevector q, qn  is the mean 

number of excitations with the wavevector q, θ is the 
number of excited states in this electron system, ωθ  is 
the frequency of θ-th excited state of the electron 
system.  

Let's pay attention that, for two-level system with the 
wavefunctions SΨ  and AΨ , owing to the selection 

rules, the temperature dependence caused by )(Tnq  

cannot appear. 

3. Zero-point phonon contribution in the energy  
of a superexchange 

Designating the energy difference AS EE −  as 2JΣ, we 
rewrite the spin-dependent part of the impurity system 
energy as 

21SSH ΣΣ −= J2ˆ .   (4) 

For the system containing more than two electrons, it 
is possible to generalize the expression (4) to the form 

∑∑
= =

−
Σ =

1 2

1 1

1
21 )(

n

i

n

j
ijJnnJ ,   (5) 

where the summation is carried out over all the 
nonpaired electrons, 1n  and 2n  are the numbers of these 
electrons in the first and second systems, accordingly. 

Let's consider a many-electron system. The 
approximated wavefunction is chosen as the Slater 
determinant made of one-electron spin-orbitals. For the 
simplicity, it is considered that ΨS and ΨA are 
orthonormalized. Let's also assume that the elementary 
system for which the concept of a superexchange is 
entered consists of four electrons (one electron per each 
PC and two pairing electrons per an intermediate 
diamagnetic anion).  

As a specific object the exchange-coupled pair of 
ions of V 2+−F −−V 2+ (S1 = S2  = 3/2) in KMgF3 is 
considered. The chosen object is well investigated both 
experimentally [17] and theoretically [18]. The 
contribution of an orbital-lattice interaction to the energy 
of a superexchange was investigated in [19]. In this 
work, the calculations of the superexchange through 
phonons were carried out by formal substitution of the 
operator for the van Vleck orbital-lattice interaction into 
the expressions for the energy of the superexchange 
derived in [18]. Thus, naturally, the terms describing the 
contribution of the ion configuration have been lost. 
Formally, such terms could appear only in the first order 
of a perturbation theory, and the averaging over the 
phonon variables yielded to zero result.  

The expression for EHII in the terms (3) has a 
general form and holds for a many-electron 

wavefunction, which is used in the theory of the 
superexchange. The maximal contribution to the energy 
of a superexchange caused by zero phonons will give 
terms in (3) described by the expression 

∑ ⎟
⎠
⎞⎜

⎝
⎛ −−=

=

−

q
AASSq

J
2

int
2

int
1 ΨˆΨΨˆΨ)ω(

2

HHh .

 (6) 

This expression corresponds to the ion configuration 
of the four-electron system d(4)(+R) − p(1,2)(0) −  
– d(3)(−R). The nucleus coordinates of ions participating 
in the superexchange (R, 0, −R) is specified in brackets. 
The designations accepted in [18] are used hereinafter. 

Let's pay attention to that we spend the canonical 
transformation before the averaging over the electron 
coordinates. If the similar transformation eliminating 
linear on the operator of electron-phonon interaction was 
carried out after averaging over the electronic 
coordinates, we would find the members of the higher 
order in the spin variables. For the concrete case of the 
exchange-coupled pair V 2+−F−−V 2+   in KMgF3, we 
derive the operator of an orbital-lattice interaction in the 
van Vleck form and use the orthonormalized orbitals of 
four-electron system according to the rules, stated in 
[18]. Then for the energy of exchange splitting 
determined by the expression (4), with the account of (3) 
and (5), neglecting the orbital-lattice interaction of 
diamagnetic anion F−, we derive the equation 

[

] .
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  (7) 

where the summation is carried out over all the normal 
coordinates of a molecular cluster consisting of the 
exchange pair  V 2+−F−−V 2+   and ten nearest neighbours 
of  V 2+ ions. The overlapping integrals are determined 
by the expressions 3141 aaaaS −== , and 

43 aaT = , where the orbitals a1 and a2 correspond to 
the  px orbital of diamagnetic anion F−, the orbitals a3 
and a4 corresponds to dxz one of paramagnetic ion of 
V 2+, Vj(r3, r4) are the first derivatives over normal 
coordinates of crystal potential in the location electrons 
with coordinates  r3, r4. 

When deriving the expression (7), we used the 
property of permutation symmetry of the orbital-lattice 
interaction operator. The similar symmetry is possible 
only for simultaneous accounting the electrons 
interaction with the nearest neighbours of both centers. 
Thus, it is necessary to include into consideration all 11 
fluorine ions. At the approximated calculations of matrix 
elements of the operators Vj (r3, r4), the traditional 
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Fig. 1. Crystalline structure of KMgF3: V 2+. 

expansion on electron coordinates of PC should be 
carried out relatively  to the nearby intermediate ion F-, 
participating in a superexchange. The similar expansion 
will not disturb the permutation symmetry of the initial 
Hamiltonian. 

Let's pay attention to the fact that the maximal 
contribution in EI through phonons will be given by 
terms that appropriate to the normal coordinates 
interacting with the isolated PC. Therefore, the formal 
application of the expression (7) to the four-electron 
system with dxz-orbitals of magnetic ions can result in 
occurrence of the exchange splitting deprived of the 
physical sense for our system. Such terms will describe 
the orbital-lattice interaction of  V4+ions. 

The ground state of the considered V2+ ion is an 
orbital singlet, and therefore the only normal oscillation 
appropriated to completely symmetric displacement of 
six nearest neighbours of V2+ ion is active. The influence 
of local oscillations of the exchange complex on the 
energy of the superexchange is not examined in this 
work. The operator Vj(r3, r4) is described in the 
approximation of point ions. For numerical estimations, 
we used the linear dispersion law for phonon 
frequencies. For definiteness, we consider that exchan-
ge-coupled pair is spaced along the direction [100]. The 
integration over the phonon variable is carried out within 
the first Brillouin zone. The maximal wavevector is 
determined by expression 3

mq  = 2π2N ⁄ V, where N is the 
number of atoms in an elementary cell, V is the volume 
of an elementary cell. For KMgF3, qm ≈ π ⁄ R, where R is 
the distance between a vanadium ion replacing the 
magnesium one, and the nearest fluorine ion (R  ≈ 1 Ǻ). 
For the sound velocities and the crystal density, we used 
the values given in [21]: Cl ≈ 6.93⋅105cm⋅c–1 and 
Ct ≈ 4.05⋅105cm⋅c-1 for longitudinal and transverse 
speeds, correspondingly, ρ ≈ 3.15 g⋅cm-3. 

The matrix elements of the crystal potential 
appropriated to a totally symmetric oscillations of the 
nearest neighbours of vanadium ions were calculated 
using the Slater one-electron functions. For integrals of 
overlapping the values S ≈ 0.075 and T ≈ −0.0018 were 
used (In accord with [18]). The expansion of Vj(r3, r4) 
over the electron coordinates was carried out up to the 
members of the sixth order. In the longwave 
approximation, the energy of a superexchange through 
phonons determined by Eq.(7) add up to ≈1.75 K 
(ferromagnetics). For the given system, the energy of the 
Coulomb superexchange was calculated in the work 
[18], it was ≈ –7.2 K (antiferromagnetics), that is nearly 
twice as large as the experimental value –3.2 K [18]. The 
value of interaction obtained in our experiment results in 
a shift of exchange energy to the experimental value. In 
the order of magnitude, the superexchange through 
phonons is comparable with the Coulomb 
superexchange. 

Thus, even for paramagnetic ions with the frozen 
orbital moment, the interaction in question can take a 
significant effect on a size of a total exchange. For ions 

with a degenerate ground state, the similar interaction 
will result in occurrence of an additional contribution to 
a total exchange and will not be reduced to vibron 
reduction of EI of the Jahn – Teller ions [22]. 

4. Temperature dependence of spin-spin interactions  

For a long time, the modulation of an exchange integral 
by thermal vibrations of a lattice was considered as the 
only source of the temperature dependence of exchange 
interactions. Following [23] we expand the exchange 
integral  

( )
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+−≈
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where RuR
rrr

+=12 , R
r

 is the zero-temperature equili-
brium vector connecting a pair of magnetic ions, the axis 
0Z is directed along R

r
, the vector { }yxRzu ,,−=

r
 

corresponds to the relative ion displacement from the 
equilibrium position, the angular brackets means the 
averaging over the phonon variables, 

∫∫ ≈−=−
T

L

T

L dTTRdTTRRz
00

)()1)((exp αα , ( 9) 

where αL(T) is the temperature-dependent coefficient of 
the linear expansion. 

To estimate αL(T), it is possible to use independent 
experiments. The physical sense of the I(R) change with 
the account of inharmonicity, is reduced to decreasing 
the exchange integral with growing R as a result of 
increasing interionic distance. Except for the anharmonic 
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contribution, Eq. (8) contains the harmonic component 
that reduces the increase of an exchange interaction with 
a rise in temperature. We assume that: 

( )

( )( ) ,112 1
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222
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⎛ −+=

=−==

s
Ri

s en
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Rzyx

q
q

qqqe ωλh
 (10) 

where M is a mass of a crystal, λq is the unit vector in 
the direction q, eq,s is a polarization vector, nq is the 
mean number of phonons with the momentum q, ωq,s is 
the phonon frequency with the momentum q and the 
polarization s. 

For the linear dispersion law, we obtain: 

( ) ( )( ) kdk
k
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D
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1

s0
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v2 ρπ

h , (11) 

where ( )( ) 1
0 1exp −−= Tkkvn sk h , ρ0 is the density of a 

crystal, kD is the maximal wavevector of phonons, vs is 
the sound velocity. The Debye temperature is defined as 

0kkv DsD h=θ , where k0 is the Boltzmann constant. 
Let's consider two limiting cases: 
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In the majority of crystals, the melting temperature 
changes in the limits from 1000 to 2000 K. At the same 
time, Dθ  changes from 300 to 800 K. Therefore the 
limiting case (12) practically never can be valid, which 
basically casts doubt on the validity of the linear 
approximation (12). However, the numerical 
calculations show that this approximation is valid even 
at DT θ< . So, for KMnF3 at T = 300 K, the linear 
approximation (12) is accurate up to 6 %. At these rough 
approximations made when writing Eq. (12), this 
accuracy is quite sufficient. At T < 100 K, the main 
contribution in (11) is given by zero phonons, and the 
temperature changes 〈x2〉 can be mainly neglected. When 
the exchange integral decreases exponentially with 
increasing the interionic distance, the contribution of 
harmonic terms results in the increase of exchange 
interaction when decreasing the temperature. Otherwise, 
the accounting for the inharmonicity results in the 
reduction of a total exchange. In the most cases, the 
inharmonic contribution surpasses the harmonic one at 
least by the order of magnitude. 

In the work by Shrivastava [19], the temperature 
dependence of a superexchange turned out by other way, 
namely as a result of the account of the contribution of 

the orbital-lattice interaction in energy of a 
superexchange. After substitution the operator of the 
orbital-lattice interaction in the expression for energy of 
a superexchange derived by Huang and Orbach [18], 
Shrivastava obtained: 
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13 aaS = , 43 aaT = , (15) 

where a3, a4 are the dxz-orbitals of the first and second 
cations, DΔ  is the power difference appropriated to  
carry a charge between cations. 

Using the numerical values of the matrix elements of 
the operator 5V  given in [19]  

2.2)( 3
1

2
1
2

2
3 −≈− − aYYra a.u., 

32.0)( 3
1

2
1
2

2
4 ≈− − aYYra  a.u., 

for an interatomic separation between the nearest 
neighbours of the complex XY6 of 78.30 =R a.u., 

0757.0=S 0018.0−=T , 568.0=ΔD a.u., we have got 

2109 QI f −≈ (erg). (16) 

To estimate the efficiency of the interaction (16) in 
comparison with the traditional mechanism of 
modulation of the Coulomb superexchange by 
oscillations of the lattice, we shall calculate the 
contribution of harmonic terms for the pair of  V 2+ ions 
in KMgF3. 

For the even normal coordinates, the following 
expression is valid 

( ) ( )( ) .2sin2112
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0
0

1
0

00
2

2

kdk
k

kRkRn

Q

D

k∫ −−+×

×=
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h

  (17) 

By comparing Eqs (17) and (11) with the accounting 
that, for the V 2+ ions in KMgF3, 02RR = , we derived  

22 4 Qx = . (18) 

Having taken the experimentally determined value of 
the exchange interaction  J(R) = – 4.4 K [17] and 
believing, for the pair of V2+ ions in KMgF3 [23, 24], 

12)
ln
ln(

0
−≅=RRRd

Id rr , (19) 
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Fig. 2. Electronic orbitals of an exchange-coupled pair of 

+−+ −− 22 VFV  (ionic configuration). 

 
Fig. 3. ependences on the distance between ions V 2+ and −F  
of the various contributions to an exchange energy for an 
exchange-coupled pair +−+ −− 22 VFV  in KMgF3. 

ph
0ph 29 JJ =  corresponds to the superexchange through 

phonons ( ph
0J is determine from Eq. (7) in the text of our 

paper), JACC, JAC, JIO, JCC  are the various configurations 
contributions to the exchange energy have been calculated in 
the work [18]. 

we have got the expression for the contribution of 
harmonic phonons, which is determined by Eq. (8)  
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107
2
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RJ
R
RJJhr −≈

−
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⎤
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⎡ ′′+

′
= (erg) .(20) 

I. e. in this case, the both methods give practically 
the identical values. 

In the work [19], the comparison of Eqs (16) and 
(20) was not carried out, therefore the author of this 
works made, in our opinion, erroneous conclusions 
about magnitude of the relative contribution Jph 
determined by Eq. (14) into a total exchange. Actually, 
the antiferromagnetic phonon contribution is suppressed 
by the ferromagnetic one caused by the account of 
inharmonic terms as, in crystals of the KMgF3  type, they 
exceed hrJ  by an order [23]. 

There exist situations, in which the 
phenomenological approach consisting in expansion of 
the exchange energy on a small displacement is 
obviously unacceptable. So, in the systems with the 
close located levels (Debye energy exceeds the splitting 
energy of levels inherent to an isolated ion in a crystal 
field), the adiabatic approximation admitting expansion 
(8) does not valid. One of the characteristic examples of 
a similar situation is +2Cu  ion in the strong cubic field 
and in the weak field of a lower symmetry (Figs 4a, b). 
Such system are characterized by these two close located 
levels. The distance between these levels for solid salts 
can be from 300 to 800 K [25]. The consistent 
microscopic theory must be used for the description of 
the temperature dependence of EI in such systems. It 
means that the orbital-lattice interaction should be 
included into the initial Hamiltonian and, having 
founded the decision of the appropriate Schrödinger 
equation, a phonon contribution into the energy of 
singlet and triplet states of an exchange-coupled pair 
must be determined. Thus, for the systems with close 
located levels, the exponential temperature dependence 
of a singlet-triplet splitting both the shallow centers in 
crystals with a complex zone of conductivity, and then 
for paramagnetic ions [11] was predicted. 

One of the most interesting examples that can not be 
explained on the basis of the traditional 
phenomenological approach is the temperature 
dependence of an exchange energy of Cu2+ pair ions in 
the crystal K2CuCl4 · 2H2O. 

The EPR spectrum of Cu2+ ions in the temperature 
interval from 77 up to 295 K was investigated in the 
works [26, 27]. Susceptibility data taken around the 
helium temperature indicate that the approximate 
equality K0.30≈kJ  is valid [28]. The measured data 
on the low-temperature thermodynamic behaviour 
(specific-heat data) has been analyzed by Wood and 
Dalton [29]. Thus, the authors of  [26] came to the 
conclusion that at all the temperatures the nearest 
environment of  Cu2+ ions keeps the configuration 
shown in Fig. 4a, i.e., the degeneracy of the basic state 
2D is removed by the tetragonal crystal field. It was 
especially emphasized that the EPR spectrum of  Cu2+ 
ions does not have the features characteristic for Jan-
Teller systems, and its temperature changes can be 
caused only by anomalous strong dependence of the 
exchange energy of Cu2+ pair ions on the temperature 
(see Fig. 5). 

As seen from Fig. 4a, the spatial configuration of the 
system consisting of the copper cation and intermediate 
anions participating in the superexchange is extremely 
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Fig. 4. Exchange-coupled pair of ions Cu2+ in 

O2HCuClK 242 ⋅ . Spatial arrangement (a), energy levels 
splitting of the ion Cu2 + in a crystalline field (b). 

 
Fig. 5. Temperature dependence of the exchange energy of 
ions Cu2 + in O2HCuClK 242 ⋅ . The curve (1) corresponds to 
the experimental one obtained in the work [26] for 

K39577 ≤≤ T , and , completely coincided with it the 
theoretical dependence defined Eq. (23). The theoretical 
dependence are normalized such that the exchange energy 

)(TJ at T = 77 K is 0.27 K and at K952=T  K.J 050=Σ  
in accordance with experimentally-observed those in the work 
[26]. 7 35 GHz  EPR width , ! − 65 GHz EPR widths [26]; μ 
EPR line shift [27]; . Τ − susceptibility [28], 4 − specific- heat 
data [29]. 

difficult. Any of the known scheme of 90° or 180° 
exchanges can not be applied for this system. Therefore, 
the microscopic calculations of the superexchange 
energy for this system are not performed up to now. At 
present, the only question that can be discussed is as 
follows: what known mechanisms of an exchange can 
give even qualitative explanation of observed 
temperature changes of the singlet-triplet splitting 
energy. The effects caused by thermal expansion of the 
crystal can explain no more than 6 % of observed 
reduction of the exchange energy. There are no bases to 
use for an explanation of this effect the low-temperature 
dependence of EI caused by the contribution of odd 
vibrations, as was made by Shrivastava in [27]. The 
contribution of the phonon mechanism investigated by 
Shrivastava, as was shown above, at best can be 
comparable by the order of its magnitude with that 
arising as a result of accounting for the inharmonicity. 
Besides, the dependence proposed by Shrivastava in [30]  

∫ −−−≈
T

dxexTJJJ x
600

0

156
10 )1( , (21) 

where 0.2760 =J , 16
1 105.3 −⋅=J , is not so good 

approximation to describe the experimental curve J(T) 
(see Fig. 5), as informed in [30]. The exchange (21) 
tends to zero at about Т = 207 К. The corresponded 
experimental results give for this temperature 340 K 
[26].  

The strong temperature dependence EI of Cu2+ ions 
can arise in two limiting cases: for strong and weak 
coupling. Let's consider these opposite cases separately. 

5. Temperature dependence of exchange interaction 
for Jan-Teller ions (strong coupling) 

One of the plausible reasons of a strong temperature 
dependence of EI caused by the Jan–Teller nature of the 
interacting centers was considered in the works by Kugel 
and Khomski [31], when in the case of a degenerate 

orbitals, the exchange Hamiltonian can be written down 
as  

,)
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where ji SS
rr

,  are spin-operators of the first and second 

centers, ji ττ
rr

,  are pseudospin operators. 
As is known, in systems with a strong electron-

phonon interaction, the suppression of off-diagonal 
matrix elements of the operators x

iτ
v

 and x
iτ
v

 occurs. In 
the operator (22), the constants I0 and Izz are not 
renormalized, Ixz and Ixy get the small multipliers 

))(/exp( 2ωhkTEJT− . The reduction of an exchange 
will be especially strong when the following conditions 
are performed: kT Dωh≥ , DJTE ωh> . In [31], the 
opportunity to apply the similar mechanism to the crystal 
K2CuCl4 ⋅2H2O was not checked. 

The first of the above-stated conditions ( DT ωh≥ ) is 
not valid, since the Debye temperature is 700 K, and the 
strong temperature dependence of EI begins (as it has 
been already shown at 77 and 300 K) exchange splitting 
goes to zero [26]. As to the second condition 
( DJTE ωh> ), the invariance of a spatial configuration 
at all the temperatures shown in Fig. 4a (as reported in 
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[26]) offers a plausible assumption of the presence of 
two closely located levels in the system (Fig. 4a), 
appearing as a result of the removal of a degeneration 
2D-term of Cu2+ ion by the tetragonal crystal field. I.e., 
just the opposite conditions are carried out. 

Let's consider an explanation of the phenomenon 
observed in K2CuCl4 

. 2H2O on the basis of the 
"resonant" mechanism resulted in the exponential 
temperature dependence of an exchange splitting in 
systems with closely located levels.  

6. The temperature dependence of the superexchange 
caused by phonons 

Qualitatively new temperature effects can appear in 
systems with the closely spaced electron levels δ < k0θ  
(where θ is the Debye temperature, δ is the power 
splitting of two close located levels), for which the 
expression (3) will result in the occurrence of following 
temperature dependence of the EI  

1
10Σ )1( −−−≈ xeIII ,   (23) 

where x = δ / k0T. We assume that 0I  and 1I  do not 
depend on the temperature. 

The accurate reproduction of an experimental curve 
described by the temperature dependence of the EI 
between Cu2+ ions in K2CuCl4 [26] can be achieved at 
the following choice of parameters appropriated to the 
temperature dependence of the exchange energy in the 
crystal K2CuCl4 ⋅ 2H2O: Κ29.00 ≅I , K,220.01 ≅I  

Κ  192≈δ .  

7. Conclusion 

The theoretical consideration of the influence of an 
electron-phonon interaction on the energy spectrum of 
the exchange-coupled pairs of deep PCs in crystals is 
carried out in this work. Using the example of the 
exchange-coupled pair of the ions of V 2+−F −−V 2+ in 

3KMgF  it is shown that the phonon contribution to a 
superexchange plays a considerable role in a total 
exchange interaction of PCs even for those with frozen 
orbital moment. The energy term describing a polaron 
contribution to an exchange interaction of similar centers 
corresponds to the ionic configuration of the concerned 
system.  

When providing the description of an interaction of 
PCs with the close located energy levels, the additional 
"resonant" term caused by the orbital-lattice interaction 
appears in the exchange energy of the system by a 
complete analogy with the resonance fluorescence 
theory of phonons. At a rather low temperatures 
( θ<T ), the temperature dependence corresponding to 
the “resonant” part of the exchange interaction can be 
described by an exponential function like )exp( Tθ− . 
The occurrence of the similar terms can be reduced to 

the anomalously strong temperature dependence of the 
total superexchange, including a change of a sign of this 
exchange interaction when the temperature rises. The 
exchange pair of the copper ions in the crystal 

O2HCuClK 242 ⋅  is considered as an example of 
similar systems. The examination of the similar 
interaction is extremely utterly for the Anderson theory 
of the high-temperature superconductivity (HTSC) 
concerned with the consideration of exchange 
interactions between magnetic ions [32], and also in the 
mechanisms of HTSC, resulting from the formation of 
spin polarons and bipolarons in the crystals with the 
magnetic ordering analyzed by Mott [33]. The energy of 
the exchange interaction enters into the above-listed 
mechanisms as a phenomenological parameter. With the 
noticeable temperature dependence of given parameter 
(for example, the resonant mechanism of an exchange 
interaction analyzed in the our work), the HTSC 
mechanisms of such type gain additional peculiarities 
and will be considered in the original research.   
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