Микроконтактный спектр электрон-фононного взаимодействия в ртути

А.В. Хоткевич¹, В.В. Хоткевич², С.В. Морлок³, Б.Л. Конопацкий¹

¹Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: khotkevich@ilt.kharkov.ua

²Department of Physics, University of Bath, BA2 7AY, UK

³Национальный технический университет «Харьковский политехнический институт» ул. Фрунзе, 21, г. Харьков, 61002, Украина

Статья поступила в редакцию 22 января 2007 г.

Предложен метод создания микроконтактов из ртути для исследований в области микроконтактной спектроскопии. В данном методе при низкой температуре микроконтакты создаются между покрытыми ртутью металлическими электродами-подложками. Покрытия созданы экспонированием электродов в ртути при комнатной температуре. Экспериментально изучена нелинейная часть сопротивления контактов в нормальном состоянии с последующим восстановлением микроконтактной функции электрон-фононного взаимодействия. Результаты эксперимента находятся в хорошем согласии с известными данными по туннельному эффекту в сверхпроводниках. В частности, хорошо совпадают положения основного пика функции электрон-фононного взаимодействия, максимальная частота фононов, а также численные значения средней и среднеквадратичной фононных частот.

Запропоновано метод отримання мікроконтактів із ртуті для досліджень в галузі мікроконтактної спектроскопії. У цьому методі при низькій температурі мікроконтакти створюються між покритими ртуттю металевими електродами-підкладками. Покриття створено експонуванням електродів в ртуті при кімнатній температурі. Експериментально вивчено нелінійну частину опору контактів в нормальному стані з наступним відновленням мікроконтактної функції електрон-фононної взаємодії. Результати експерименту добре корелюють з відомими даними тунельного ефекту в надпровідниках. Зокрема, добре співпадає розташування основного піку функції електрон-фононної взаємодії, максимальної частоти фононів, а також чисельні значення середньої та середньоквадратичної частот фононів.

РАСS: 72.10.Di Рассеяние на фононах, магнонах и других делокализованных возбуждениях.

Ключевые слова: ртуть, электрон-фононное взаимодействие, микроконтактная спектроскопия.

Среди всех металлических элементов наибольшее значение константы электрон-фононного взаимодействия (ЭФВ) отвечает кристаллической ртути [1]. Поэтому ртуть можно рассматривать как важный модельный объект, например для микроконтактной спектроскопии, как в нормальном, так и в сверхпроводящем состоянии [2,3].

Достоверные сведения о спектральных функциях ЭФВ и плотности фононных состояний (ПФС) в ртути ограничены данными работ [4,5], где приведена термодинамическая функция ЭФВ, полученная методом туннельного эффекта в сверхпроводниках, и ПФС, определенная по результатам нейтронных измерений на трехосном кристаллическом спектрометре. В статье [6] расчетная гистограмма ПФС представлена в приведенных координатах ω/ω_{max} (ω_{max} — максимальная частота однофононной части спектра) и не согласуется с результатами работ [4,5].

В настоящей работе поставлена задача по получению точечных контактов из ртути при низких температурах, изучению методом микроконтактной спектроскопии в нормальном состоянии нелинейной части сопротивления контактов, связанной с ЭФВ, и восстановлению из прямых экспериментальных данных микроконтактной функции ЭФВ. Реализованный нами способ получения точечных контактов из ртути состоит в следующем. Вначале при комнатной температуре ртуть наносится в виде покрытия на два металлических электрода-подложки путем их смачивания в объеме ртути. В дальнейшем электроды охлаждаются до низких температур в разведенном состоянии, и затем в жидком гелии между электродами создаются контакты скользящего типа по известной сдвиговой методике (см., например, [2,3]), когда электроды в форме призм или цилиндров (проволок) соприкасаются между собой боковыми поверхностями, а потом сдвигаются друг относительно друга в плоскости соприкосновения. Для манипуляций с электродами при получении контактов применяли механическое устройство [7].

Использовали ртуть марки Р-0. Как материал электродов-подложек выбирали различные металлы и сплавы с невысокой, согласно [8], скоростью растворения в ртути: Au, Cu, Zn, Cd, Sn, латунь Л47 и различные виды бронз. (Ртутные покрытия, полученные на Рb и In, для создания контактов не применяли.) Электроды-подложки имели характерный линейный размер сечения от 0,05 до 1 мм и длину 5-10 мм. Перед нанесением ртути поверхность электродов химически или электрохимически полировали, как описано в [9]. Для возможно более полного исключения процесса образования амальгам, а также окисления поверхности ртути время с момента нанесения ртутного покрытия на электроды до помещения образцов в криостат, заполненный газообразным гелием и охлажденный до температуры жидкого азота, было сокращено примерно до 1 мин.

Толщина ртутного покрытия *t* составляла от 5 до 20 мкм и определялась как с помощью оптического микроскопа, так и из соотношения [10] $t = \Delta \sigma/L\rho g$, где $\Delta \sigma$ – удельная поверхностная энергия при растекании в среде газа [11], L — длина ртутного покрытия на образце в виде проволоки, ρ — удельный вес ртути, g — ускорение силы тяжести. Таким образом, толщина слоя ртути на электродах-подложках была много больше линейного размера эффективного объема генерации фононов в контакте [2], а также средней длины свободного пробега электрона в контактной области, и по отношению к плоскости контакта ртутные пленки на каждом из электродов можно рассматривать как массивный металл.

В температурном интервале 4,2–2,0 К измеряли сопротивление контакта в нормальном состоянии и зависимости от напряжения на контакте напряжений первой и второй гармоник низкочастотного модулирующего сигнала, пропорциональные первой и второй производным вольт-амперной характеристики (BAX). Сверхпроводимость образцов разрушалась постоянным внешним магнитным полем. Отметим, что при выключении магнитного поля и температуре, меньшей критической температуры сверхпроводящего перехода в ртути, на ВАХ контактов между ртутными покрытиями на электродах из нормального металла наблюдался критический ток Джозефсона.

Данные рис. 1 отвечают контакту сопротивлением 2,45 Ом, полученному на электродах-подложках из Zn, измерены при температуре 2,2 К и эффективном значении модулирующего сигнала 303 мкВ. Температурное и модуляционное размытие [2] кривых на рис. 1 составляет 1,1 мэВ. Восстановление микроконтактной функции ЭФВ $g_{pc}(\omega)$ из измеренных характеристик контактов проводилось как в [2] с использованием современной версии обрабатывающей программы [12]. При этом подсчитывали такие интегральные характеристики как константа ЭФВ λ_{pc} и средние фононные частоты $\langle \omega \rangle$ и $\langle \omega^2 \rangle$. Следует подчеркнуть, что величины $\langle \omega \rangle$ и $\langle \omega^2 \rangle$ могут быть определены из данных микроконтактной спектроскопии весьма точно [9].

График микроконтактной функции ЭФВ (рис. 1) хорошо согласуется с известными данными [4,5] для термодинамической функции ЭФВ $g(\omega)$ и ПФС по положению главного пика на оси энергий и величине максимальной частоты однофононной части спектра. Различия в деталях тонкой структуры полученной функции ЭФВ $g_{pc}(\omega)$ и $g(\omega)$ [4] вполне объяснимы проявлением влияния микроконтактного формфактора, которое наблюдается для многих металлов [2,3]. Согласно [4], для ртути константа ЭФВ $\lambda = 1.6$, а $\langle \omega \rangle = 3.3$ мэВ и $\langle \omega^2 \rangle^{1/2} = 4.2$ мэВ. Наибольшее (следовательно, наиболее достоверное [2]) из полученных значений λ_{pc} для разных образцов, отвечающее графикам, представленным на рис.1, составляет $\lambda_{pc} = 1.55$.

Рис. 1. Вторая производная ВАХ точечного контакта и микроконтактная функция ЭФВ в ртути.

Средние фононные частоты, определенные по микроконтактной функции ЭФВ, равны: $\langle \omega \rangle = (3,3 \pm 0,1)$ мэВ и $\langle \omega^2 \rangle^{1/2} = (4,2 \pm 0,1)$ мэВ. (Приведена ошибка среднего арифметического при усреднении по характеристикам четырех контактов, которая характеризует, естественно, разброс данных, а не точность в определении абсолютных значений.) Таким образом, предложенный способ создания точечных контактов из ртути оказывается практически пригодным для проведения исследований по микроконтактной спектроскопии, и интегральные численные характеристики восстановленной микроконтактной функции ЭФВ хорошо согласуются с туннельными данными.

Авторы выражают благодарность И.П. Гребенник за консультации по физике смачивания, а также Ю.А. Колесниченко за интерес к работе.

- 1. Е.Л. Вольф, Принципы электронной туннельной спектроскопии, Наукова думка, Киев (1990).
- 2. A.V. Khotkevich and I.K. Yanson, *Atlas of Point-Contact Spectra of Electron–Phonon Interactions in Metals*, Kluwer Academic Publishers, Boston–Dordrecht–London (1995).
- 3. Yu.G. Naidyuk and I.K. Yanson, *Point-Contact Spectroscopy*, Springer, New York (2004).
- 4. W.N. Hubin and D.M. Ginsberg, Phys. Rev. 188, 716 (1969).
- 5. W.M. Kamitakahara, H.G. Smith, and N. Wakabayashi, *Ferroelectrics* **16**, 111 (1977).
- 6. L.J. Slutsky and G.E. Jelinek, J. Chem. Phys. 40, 531 (1964).
- Н.Л. Бобров, Л.Ф. Рыбальченко, А.В. Хоткевич, П.Н. Чубов, И.К. Янсон, А.с. 1631626 СССР, М. Кл.5. Н 01. L 21/28, Опубл. 28.02.91, Бюл. № 8.
- М.Н. Гавзе, Взаимодействие ртути с металлами и сплавами, Наука, Москва (1966).
- 9. А.В. Хоткевич, *Дис. ... докт. физ.-мат. наук*, ФТИНТ, Харьков (1990).

- 10. И.П. Гребенник, Частное сообщение, Харьков (2005).
- 11. А.И. Быховский, Растекание, Наукова думка, Киев (1983).
- 12. В.В. Хоткевич, А.В. Хоткевич, Деп. ВИНИТИ № 164-В86, Москва (1986).

Point-contact electron–phonon interaction spectra in mercury

A.V. Khotkevich, V.V. Khotkevich, S.V. Morlok, and B.L. Konopatskyi

The method of making the mercury-based point contacts has been developed for point-contact spectroscopic investigations. According to this method point-contacts are formed at low temperature in between the mercury-coated surfaces of the metallic substrate-electrodes. The coatings were made by exposing the electrodes to a mercury bath at room temperature. The nonlinear part of the normal-state resistance in contacts was studied experimentally, and then the point-contact spectral function of the electron-phonon interaction was reconstruction. The experimental results are in good agreement with the known data on the tunnel effect in superconductors. In particular, there is a good match with the position of the main peak of the function of the electron-phonon interaction, the maximum phonon frequency, the values of the mean phonon frequency and the meansquare phonon frequencies.

PACS: 72.10.Di Scattering by phonons, magnons, and other nonlocalized excitations.

Keywords: mercury, electron-phonon interaction, point-contact spectroscopy.