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Magnon excitations in vortex-state nanorings
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The magnon mode excitation spectrum is calculated using the linearized Landau–Lifshitz equa-
tions applied to the ring in the vortex ground state. A combination of analytical techniques with
numerical evaluation of integrals is used to obtain the mode frequency with the effective magneto-
static volume charge as a small perturbation. In general, the modes can be classified according to
radial number n and azimuthal number m. It is shown that the frequency increases as n increases,
and the frequency decreases as m increases.
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Magnetic microdots made from a soft ferromagnetic
material such as Permalloy have been proposed [1] for
use as magnetic storage media, and the study of the
basic physics of magnetic particles in this size range
has led to interesting effects. For example, when the
radius is reduced to the micron and submicron range
the competition between exchange and the magne-
tostatic interaction will result in a vortex ground state
with the magnetization mainly confined to the plane.
This structure is stable because the curling effect in
the planar vortex will eliminate effective magneto-
static charges, thereby minimizing the energy. Howe-
ver, at the core of the planar vortex there is a high
exchange energy singularity, which is eliminated by
an out-of-plane rotation of the magnetization at the
core, resulting in a small surface magnetic poles
(magnetic charges), which has also been observed [2]
in thin dots. In materials such as Permalloy the
presence of the core results in a net magnetic moment
perpendicular to the plane over a central region of
about 20 nm diameter. If arrays of dots are to be used
in magnetic information storage, this vortex core pre-
sents several disadvantages. The net magnetic moment
of the will interact through the dipolar interaction
with other dots in the array, affecting properties such
as switching of the curling direction. Because of the
presence of the core, there is a low frequency

(subGHz) gyrotropic mode [3] that will complicate
the dynamics of the single as well as the array of dots.
Finally, the vortex state is only stable above a critical
diameter of approximately 100 nm, limiting the pos-
sible bit density in arrays of these systems.

Some of these problems can be overcome by the use
of a ring rather than a disk, which also has a vortex
ground state [4–6]. Owing to the geometry of the ring
there is no core, and therefore no magnetostatic fields
other than those from fluctuations about the vortex
ground state. In addition, the vortex state is stable for
smaller diameters than the dot resulting in a higher
potential bit density for an array of rings. In order for
the ring vortex state to be useful, it is necessary to de-
velop a simple method to produce the vortex state and
switch the curling direction of this state, which was
recently [4–6] shown to be accomplished by an in-
plane magnetic field pulse. More recently switching
was accomplished using a spin-polarized current pulse
[7] rather than an external magnetic field.

When considering the response of a ring vortex to a
pulse is desirable to have an understanding of the dy-
namic properties of the vortex state. In the disk, there
has already been both theoretical and experimental re-
search that has advanced the understanding of vortex
dynamics in this geometry. In general, the linearized
Landau–Lifshitz equations are solved [8–10] with the
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appropriate disk boundary conditions with both ex-
change and magnetostatic interactions to obtain the
magnon mode frequencies. For the vortex state disk
the lowest frequency subGHz gyrotropic mode as well
as a rich spectrum of higher frequency modes have
been observed [3,11] in experiments such as time-re-
solved Kerr microscopy as predicted by various solu-
tions of the Landau–Lifshitz equations. For the case of
rings, both experimental and theoretical studies are
lacking except for ferromagnetic resonance [12] done
with an array of rings. For this reason, in the follow-
ing the magnon mode frequencies are calculated on the
vortex ground state. This is done using the vor-
tex–magnon interaction including magnetostatic ef-
fects as was previously done for the vortex state where
the core [13] was included. It is remarked that the
modes are in the GHz range for all modes, and the
lower frequency subGHz gyrotropic mode does not ap-
pear owing to the absence of the vortex core.

We begin by considering small oscillations of the
magnetization about the vortex ground state with the
magnetostatic field included. The dynamic properties
are determined by the Landau–Lifshitz equation,
which is
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where W W� [ ]M is the energy functional,
� �� g /B �, g � 2 is the gyromagnetic ratio, and �B is
the Bohr magneton. The magnetization is expressed as
M � Ms ( sin cos , sin sin , cos )	 
 	 
 	 where 	 is the
polar angle relative to the ring symmetry axis, and 

is the azimuthal angle. First it is assumed that the
magnetization is uniform along the ring axis z. For
the ring in the vortex ground state the angular va-
riables can be written in terms of polar coordinates
(r, �) in the plane as
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where 	 , describe the small oscillations on the
ground of the magnetic vortex.

The energy of the vortex state contains contri-
butions from both isotropic ferromagnetic exchange
and the magnetic dipolar interaction. In the conti-
nuum approximation these two contributions to the
energy density can be written as an inhomogeneous
isotropic exchange term and an effective magneto-
static field,
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where M is the magnetization, Ms is the saturation
magnetization, and the vortex energy is obtained
by integration of the energy density over the ring
volume:

W w d x� �� ( , )M M 3 . (4)

The first term in Eq. (3) is the contribution from the
exchange interaction, which is short-range and local
in nature, and the second term contains the magne-
tostatic field H m . The sources of this field are both
volume charges arising from � �M and surface charges
from the normal component of M at the surface. The
out-of-plane components of magnetization produce
the charges on upper and lower surfaces, having the
form H zm � �4� 	� cos , which are local, and other
contributions have the form of nonlocal fields obtain-
ed from the potential, H m � ���. The potentials
from the volume and edge surface magnetostatic
charges are known to be,
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where
( ) cos ( ) ( )r r� � � � � � � � � � � �2 2 2 22r r rr z z� � ,
the upper sign is used at the inner edge Ri and the
lower sign is used at the outer edge Ro . The other pa-
rameter L is the ring thickness, and the ring radius
satisfies the condition R Lo �� . Finally, the energy
can be expressed as a sum of contributions from
exchange, edge, and volume charges, W W� �ex
� �W We v .

The edge field, being formally proportional to the
small parameter L/Ri o, , has singular behavior near
the edges, and rapidly decays as R / R ri o i o, ,( )� for
R r Li o, � �� . Thus, the edge magnetostatic field is
sharply peaked at the edge, and it gives the effective
boundary condition [13]. To obtain the concrete form
of the boundary condition for the ring geometry it is
first necessary to calculate the magnetostatic energy
arising from the effective magnetostatic charge at the
ring edges. We begin with the key ansatz for the
functions 	 and , see Eq. (2)

	 � � �( , , ) ( ) cos ( )r t f r m t� � ,

� � � �( , , ) ( ) sin ( )r t g r m t� � ,
(6)

separating the radial and azimuthal parts of the de-
viations [13]. This is the same form that was used to
describe vortex–magnon scattering with ferromagnet
with easy-plane anisotropy [14], and it can be shown
to be exact in the linear approximation when con-
sidering magnons, fully taking into account the non-
local magnetostatic field. Now the edge contribution
to the potential can be evaluated by integration of � s
in Eq. (5) using the above ansatz with � �( , , )r t as
the edge surface charge density. First the integration
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over z� in the definition of the magnetostatic potential
is done by assuming that the magnetization is uniform
along the ring axis, which should be a good ap-
proximation for L Ri o�� , . Then partial differenti-
ation with respect to r gives the edge-charge magneto-
static field as

H R Lg r m t F r Rr i o i o� � �, ,( ) sin ( ) ( , )� � , (7)

where, as before, the sign corresponds to the inner
and outer edges of the ring. The function F is defined
by the angular integral
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and � � �� �� . The edge charge magnetostatic energy is
obtained by using Hr in Eq. (3) and integration of
Eq. (4). The resulting angular integration is trivial
leading to a factor of 2� for m = 0 or � for m � 0 with
a remaining radial integration in this expression,
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where Im = 2 for m = 0 and Im = 1 for m � 0.
The effective boundary conditions are obtained

through a variation of the energy as was done pre-
viously [8,13] for the case of the vortex-state magnetic
disk. First the inhomogeneous exchange energy con-
taining the gradient operator in Eq. (3) can be
integrated over z and � to obtain this energy as a radial
integral,
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where the subscripts indicate differentiation. A care-
ful variation of the energy, � �W/ g, will also result
in «surface» terms evaluated at r Ri o� , as well as
terms leading to the Landau–Lifshitz equation.
Included in the surface terms will be the r-derivative,
as a result of integration by parts, as well as the edge
contribution to the magnetostatic energy to give the
effective boundary conditions at the inner and outer
edges,
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where the upper sigh is used at the outer edge and the
lower sign is used at the inner edge, and
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The dynamic equations for the small deviations from
the vortex state are obtained from the variation of the
energy including both the exchange and magneto-
static energy. Now, however, the magnetostatic terms
arise from the volume charge only since the edges
were accounted for in the boundary conditions. This
gives the Landau–Lifshitz equations satisfied by g
and f. Linearizing these equations we obtain the set
of coupled equations
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where ! � � ��/ Ms4 is a dimensionless magnon fre-

quency, l A/ Ms0
24� � is exchange length. The local

part of the magnetostatic field is contained in
the Schr�dinger-like operators in the first terms of
Eqs. (13), (14), and the volume magnetostatic effects
are included in the integral operator,
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For the parameters applicable here, an approximate
solution of Eq. (14) is f g� ! , which results in the
equation satisfied by g:

� � � �
�
�

2
2

0
2 2

0
2

1

4
g

l
g

M l r
s

v! �

�
. (16)

In the following it is assumed that the left-hand side
of Eq. (16) is small, allowing perturbation techniques
to be applied. For all modes the zeroth order solution
without the magnetostatic term are known for any
boundary condition as the sum of Bessel functions

g k r J kr Y krm m0( , ) ( ) ( )� � ( , (17)
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where k is the wave number and ( is a constant that
will be determined from the boundary conditions
at the inner and outer edges. Now a perturbation
technique is developed to obtain the frequency in
terms of the nonlocal magnetostatic operators, with
�v s o/ M L/R4� � and kl0 being small parameters.
Then from Eq. (16) the following expression for the
frequency can easily be obtained:
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where the brackets indicate the integration,
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expression for the frequency

( ) ( ) ( ) ( , ,! !2
0
2

0
2

0
1
4

� � � �� �g rdr dr dr r g kr F r r

R

R

R

R

i

o

i

o

�
+ m

R

R

i

o

) ,�
(19)

where !0 0� kl and +( ) ( )r d rg /dr� 0 .
Next we obtain the values of k and ( by substitution

of this form of g0 into Eq. (11) at the outer and inner
edges. To get the expression for ( in terms of the wave
number, it is enough to consider the condition at
r Ro� ,
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Here and in the next equation we used the notation
� �J dJ z /dzm m( ) , � �Y dY z /dzm m( ) . Notice that the

denominator of Eq. (20) can have zeros resulting in
discontinuities of this function, which will be noted
later. When Eq. (20) is used in Eq. (11) at the inner
edge, Ri we obtain the equation giving the wave
numbers,

H k kJ Jm i i m i( ) [ ( ) ( )], � � �+ + 

� � � � � � �[ ( ) ( )] [ ( ) ( )]kY J kJ Jm o o m o m o o m o+ + + +  

� � � �[ ( ) ( )]kY Jm i i m i+ + 0, (21)

where brevity the notation +i ikR� , +o okR� is
used. Numerical solution of Eq. (21) gives the values
of the wave numbers, and owing to the oscillatory
property of the Bessel function, there are an infinite
number of zeros, with the smallest k corresponding to
the lowest frequency. Here we will only consider the
first two or three zeros of the m � 0, 1, 2 modes,
which are illustrated as a plot of H k( ) versus k in
Fig. 1 for the m � 0 mode Ro � 200 nm, Ri � 100 nm
ring of thickness L � 50 nm. The values of k are then
used in Eq. (20) to calculate the parameter (, both of
which are shown in Fig. 2 as a function of Ri with

Ro � 200 nm and L � 50 nm. Notice that k is a smooth-
ly increasing function of Ri , but the parameter ( is
discontinuous owing to the nature of the boundary
conditions and Bessel functions.

The nature of the radial eigenfunction for the
Ro � 200 nm, Ri � 100 nm ring of thickness L � 50 nm
is illustrated in Fig. 3. Also these radial solutions are
approximately pole-free, implying that the zeros are
very close to the inner and outer edges, and they
closely resemble the Bessel functions J krm( ). More-
over, as the eigenvalue n increases, there are addi-
tional interior nodes, and the number of interior nodes
is n � 1.

Finally, the values of k and ( are used in Eq. (19)
to calculate the mode frequencies for the Ro � 200 nm
ring of thickness L � 50 nm, and these results are
shown in Fig. 4 for the first two radial modes and the
first three azimuthal modes. It is seen that there is a
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Fig. 1. The left-hand side of Eq. (21), represented by H k( )
as a function of k, showing the first three zeros, n � 1, 2, 3.
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Fig. 2. The wave number k1 (dashed curve) and � (solid
curve) versus the inner ring radius, Ri for the m � 0 mode.
Here Ro � 200 nm and L � 50 nm.



set of modes corresponding to the azimuthal number m
for each value of n, starting with the lowest fre-
quencies for n � 1. It is also interesting to observe that
the m � 0 mode has the highest frequency for every
value of n considered here, and the frequency de-
creases with increasing m. This effect referred to as
negative dispersion has also been recently observed
[15] in the magnon mode spectrum for the vortex-state
disk. For the case of wide rings (Ri � 40 nm) a very
rich spectrum is seen in Fig. 4, with the frequency of
the n � 1, m � 0 mode close to the n � 2, m � 2 mode.
For narrower rings the splitting of the azimuthal
modes decreases and the n � 1, n � 2 becomes distinct.
For Ri � 130 nm the azimuthal mode splitting be-
comes less than 1 GHz, which is the approximate
resolution of time-resolved Kerr microscopy.

In conclusion, there is a rich spectrum of magnon
modes excited in Permalloy vortex-state rings that can
be classified according to radial and azimuthal (n, m)

eigenvalues. The m � 1 mode can be excited by an
in-plane pulse, which has been shown to reverse the
curling direction in the vortex-state ring. For this
reason, the m � 1mode can possibly have effects on the
dynamics of vortex switching. The m � 0 modes can be
excited by an out-of-plane pulse of a magnetic field.
Other modes not considered here are the higher fre-
quency modes with additional radial modes n � 2 as
well as the higher m modes. The frequency of any
mode can be obtained from numerical solution and
integration of Eqs. (17)–(19) exhibiting a structure
similar to Fig. 4.
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Fig. 3. The zeroth order radial eigenstate for the m � 0
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