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It is well known that standard hyperscaling breaks down above the upper critical dimension dc , where the

critical exponents take on their Landau values. Here, we show that this is because in standard formulations

in the thermodynamic limit, distance is measured on the correlation-length scale. However, the correlation-

length scale and the underlying length scale of the system are not the same at or above the upper critical

dimension. Above dc they are related algebraically through a new critical exponent �, while at dc they differ

through logarithmic corrections governed by an exponent �̂. Taking proper account of these different length
scales allows one to extend hyperscaling to all dimensions.
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1. Introduction

Since the 1960’s, the scaling relations between critical exponents have been of fundamental impor-

tance in the theory of critical phenomena [1–3]. Six primary critical exponents, α, β, γ, δ, η and ν, have

played themost important roles and these are related by four famous scaling relations. One of these— the

hyperscaling relation — involves the dimensionality d of the system. It has long been known that hyper-

scaling, in its standard form, fails above the upper critical dimension d = dc where the critical exponents

take their Landau, mean-field values. E.g., for the Ising model above dc = 4, one has α= 0, β= 1/2, γ= 1,

δ= 3, η= 0 and ν = 1/2, irrespective of the dimensionality d . Here, we report on a more complete form

for the hyperscaling relation which holds in all dimensions [4]. This involves a new critical exponent

which we denote by ϙ (pronounced “koppa” [5]) and which characterises the finite-size scaling (FSS) of

the correlation length. We report the evidence for the universality of ϙ through numerical studies of the

five-dimensional Ising model with free boundary conditions [4].

We also examine the hyperscaling at the upper critical dimension, which is characterised by mul-

tiplicative logarithmic corrections. These corrections are also characterised by critical exponents which

have scaling relations between them. The logarithmic hyperscaling relation involves an exponent ϙ̂which

is the logarithmic analogue of ϙ [6, 7].

We consider a lattice spin system in d dimensions. In units of the lattice constant, its linear extent is

L. We denote by PL(t) the value of a function P measured on such a system at a reduced temperature t .

The latter is defined as

t =
T −TL

TL
, (1.1)

where TL is the value of the temperature T at which the finite-size reduced susceptibility (defined below)

peaks and is referred to as the pseudocritical point.
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In the infinite-volume limit, TL becomes the critical point T∞ ≡ Tc and the specific heat and correla-

tion length scale nearby as

c∞(t) ∼ t−α, ξ∞(t)∼ t−ν. (1.2)

The standard form of the hyperscaling relation, which is valid at and below the upper critical dimension,

links the critical exponents in equation (1.2),

νd = 2−α. (1.3)

Equation (1.3) was proposed by Widom [8, 9]. Kadanoff later presented an alternative but similar argu-

ment for it [10] and Josephson derived the related inequality νd Ê 2−α on the basis of plausible but

non-rigorous assumptions [11, 12]. The scaling relations, including equation (1.3), are now well under-

stood through the renormalization group [13].

The Landau or mean-field values α = 0 and ν = 1/2 for the Ising model are well established for all

values of d at and above the upper critical dimension dc = 4. Since α and ν are fixed for d > dc, equation

(1.3) cannot hold there. This is referred to as the collapse of hyperscaling in high dimensions.

Here, we introduce a new critical exponent ϙ which characterises the leading FSS of the correlation

length,

ξL(0) ∼ L�. (1.4)

We show that the incorporation of ϙ into the hyperscaling relation (1.3) via

νd

ϙ
= 2−α, (1.5)

renders it valid in all dimensions (with ϙ= 1 in d É dc dimensions).

The critical dimension itself is characterised by multiplicative logarithmic corrections, so that equa-

tions (1.2) and (1.4) become

c∞(t) ∼ t−α| ln t |α̂, ξ∞(t)∼ t−ν| ln t |ν̂, (1.6)

and

ξL(0) ∼ L(ln L)�̂, (1.7)

at d = dc, respectively. Here, we also show that the logarithmic analogue of the hyperscaling relation at

the upper critical dimension is

α̂= d(ϙ̂− ν̂). (1.8)

Caution: this last scaling relation has been shown to hold at the upper critical dimension in a variety

of models including the Ising and O(N ) φ4 models, their counterparts with long-range interactions, m-

component spin glasses, the percolation and Yang-Lee edge problems. It does not hold in some cases

of logarithmic corrections below the upper critical dimension when the leading exponent α vanishes.

In these anomalous circumstances, an extra multiplicative logarithmic correction appears, as explained

below and in reference [6, 7]. E.g., the pure Ising model in two dimensions has ϙ̂ = ν̂ = 0 but α̂ = 1.

The random-site or random-bond Ising model in d = 2 has ϙ̂ = 0, ν̂ = 1/2 but α̂ = 0. The reason for an

extra logarithm in these cases is well understood and briefly presented in section 2. Here, we are only

concerned with d Ê dc, and refer the reader to references [6, 7] for details of these anomalous cases in

d < dc dimensions.

The d > dc hyperscaling relation (1.5) was derived in reference [4], while its logarithmic counterpart

(1.8) was developed in references [6, 7]. Next, both of these derivations are summarised.

2. Derivation of new hyperscaling relations

We begin with more general forms for the scaling of susceptibility and correlation length in infinite

volume, encompassing the leading behaviour both at and above the upper critical dimension in the ther-

modynamic limit, namely

χ∞ ∼ t−γ(ln t)γ̂, ξ∞ ∼ t−ν(ln t)ν̂. (2.1)
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The derivation which we are about to present involves a type of self-consistency analysis using the zeros

of the partition function. The Lee-Yang zeros are those points in the complex h-plane at which the par-

tition function ZL(t ,h) vanishes [14, 15]. Under very general conditions, Lee and Yang proved these to

be located on the imaginary h-axis, although this is not a pre-requisite for what is to follow here. What

is required, however, is the notion of the so-called Yang-Lee edge. In the infinite-volume limit, this is the

end point of the distribution of zeros which lies closest to the real h-axis. As such, it most strongly affects

critical behaviour. In line with the above ansätze, we assume that the Yang-Lee edge scales as

hYL(t)∼ t∆(ln t)∆̂. (2.2)

Here, ∆ is the gap exponent and ∆̂ is its logarithmic counterpart. These are given through static scaling

relations [6, 7]

α= 2+γ−2∆, α̂= γ̂+2∆̂. (2.3)

Our final ingredient is to promote equation (1.7) to a more general form,

ξL(0) ∼ L�(ln L)�̂. (2.4)

In each equation (2.1)–(2.4), the hatted exponents vanish above the upper critical dimension [16]. They

play an important role at dc itself. Circumstances in which they are non-vanishing below the upper criti-

cal dimension are not our main concern here.

We write the finite-size partition function in terms of the Lee-Yang zeros h j as

ZL(t ,h) = A
Ld
∏

j=1

[

h−h j (t ,L)
]

. (2.5)

Here, the zeros h j , which are dependent on both t and L, are ordered such that the smaller the index j ,

the closer the zero is to the real h-axis. In this way, h1 is the finite-size counterpart to the Yang-Lee edge.

The prefactor A plays no important role in what is to come and we henceforth drop it. The reduced free

energy per unit volume is

fL(t ,h) =−L−d ln ZL(t ,h) ∼−L−d
Ld
∑

i=1

ln
[

h−h j (t ,L)
]

. (2.6)

Differentiating twice with respect to the field delivers the (reduced) finite-size susceptibility as

χL(t ,h) ∼
∂2 fL(t ,h)

∂h2
=

1

Ld

Ld
∑

j=1

1
[

h−h j (t ,L)
]2

. (2.7)

From now on, we set h = t = 0 and drop the corresponding arguments in χL and h j . The finite-size

pseudocritical susceptibility is, therefore:

χL ∼
1

Ld

Ld
∑

j=1

1

h2
j
(L)

. (2.8)

Equation (2.8) constitutes the consistency check we have been looking for; it relates the finite-size suscep-

tibility to the L-dependency of the Lee-Yang zeros.

FSS is obtained by replacing infinite-volume correlation length in equation (2.1) by the finite-size

expression (2.4), ξ∞ → ξL . This means that FSS amounts to replacing

t → L− �
ν (ln t)

ν̂−�̂
ν . (2.9)

The susceptibility in equation (2.1) and the edge in equation (2.2) then take the FSS forms

χL ∼ L
�γ
ν (ln L)γ̂−γ

ν̂−�̂
ν , h1(L) ∼ L−

�∆
ν (lnL)∆̂+∆

ν̂−�̂
ν . (2.10)
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In fact, following reference [17], one expects the higher-index zeros to scale as a function of a fraction of

the total number of zeros, j /Ld . This expectation allows us to promote the second formula in equation

(2.10) to

h j (L) ∼

(

j

Ld

) �∆
νd

[

ln

(

j

Ld

)]

∆̂+∆
ν̂−�̂
ν

. (2.11)

Inserting equations (2.10) and (2.11) into the consistency expression (2.8), one finds

L
�γ
ν (ln L)γ̂−γ

ν̂−�̂
ν ∼ L

2�∆
ν −d (ln L)−2∆ ν̂−�̂

ν −2∆̂
Ld
∑

j=1

(

1

j

)2 �∆
νd

. (2.12)

This is the equation from which we will now draw the hyperscaling relations at and above dc.

Firstly, we assume that there are, in fact, no leading logarithmic corrections, so that γ̂ = 0, ν̂ = 0,

∆̂= 0, ϙ̂= 0. This is the circumstance above the upper critical dimension as recently confirmed by Butera

and Pernici [16]. Even without these logarithmic corrections, the sum on the right hand side of equation

(2.12) generates an extra logarithm if 2q∆ = νd . In the Ising case above d = dc, the mean-field theory

gives ν= 1/2 and ∆= 3/2. If ϙ= 1 there, one has logarithmic corrections in d = 6. This is a contradiction

to the results established in reference [16]. Therefore, ϙ cannot, in fact, be 1 above d = dc.

This is an important result. It means that the finite-size correlation length is not comensurate with the

length above d = dc. This is contrary to explicit statements in reference [18] and in other literature. The

standard form for hyperscaling (1.3) only holds when the two length scales coincide. Above the upper

critical dimension, one must account for the fact that they differ. Our main result is derived by equating

the leading power-laws for L in equation (2.12). Inputting the leading static scaling relation in equation

(2.3) delivers the new expression for hyperscaling in equation (1.5).

The standard leading hyperscaling relation (1.3) is valid in d = dc dimensions so that νdc = 2−α.

Combining this with the new expression (1.5) leads to

ϙ=
d

dc
, (2.13)

for d Ê dc. Since equation (1.3) is also valid in d < dc dimensions, one gets, from equation (1.5), that ϙ= 1

there. The result (2.13) for d Ê dc agrees with an explicit analytical calculation by Brézin [19] for the

large-N limit of the N -vector model with periodic boundary conditions (PBC’s).

However, boundary conditions do not play a role in our derivation of equation (1.5). This means,

in particular, that the correlation length exceeds the actual length of the system close to t = 0 for free

boundary conditions (FBC’s) as well as for PBC’s. Again, this is contrary to many statements in the litera-

ture [18, 20–22]. In section 4, we will numerically verify that equation (2.13) indeed holds for FBC’s.

The logarithmic counterpart of the hyperscaling relation comes from equating powers of logarithms

in (2.12). Inserting the static relation for the correction exponents from equation (2.3), delivers equation

(1.8) when d = dc.

As stated in the Introduction, the specific heat takes on an extra logarithmic correction, beyond that

coming from the hyperscaling relation (1.8), below the upper critical dimension in special circumstances.

These circumstances involve the impact angle φ at which the complex-temperature (Fisher) zeros impact

onto the real axis in the thermodynamic limit. If α = 0, and if this impact angle is any value other than

π/4, an extra logarithm arises in the specific heat. This happens in d = 2 dimensions for example, but not

in d = 4, where φ=π/4 [17]. The reader is referred to reference [6, 7] for details of this anomaly.

The logarithmic critical exponent ϙ̂ was originally introduced as q̂ in reference [6, 7] along with the

scaling relation (1.8). That scaling relation (and its anomalous counterpart, in some d < dc cases) was

tested, and verified, against the known results in the literature there. The fact that the other exponents in

equation (1.8) are universal indicates that ϙ̂ is universal too.

Equation (1.5) is the leading-scaling counterpart of the logarithmic hyperscaling relation (1.8). Our

claim in this paper is that ϙ is a new critical exponent which is universal — as are the other exponents

appearing in equation (1.5). The extended hyperscaling relation (1.5) or (2.13) is, therefore, of similar
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status to the other standard scaling relations. Like them, equation (1.5) holds in all dimensions, including

d > dc.

The leading part of equation (2.10) provides the leading FSS of the susceptibility and the Yang-Lee

edge at the pseudocritical point t = 0. If ϙ is universal as we claim, FSS should also be universal above

dc. However, the standard belief in the literature is that above the upper critical dimension, FSS is not

universal [18, 20–22]. In particular, until now, FSS with FBC-s has been believed to differ from FSS with

periodic boundaries. We next explain how our theory differs from standard literature regarding FSS and

we then go on to provide evidence which (a) identifies ours as correct and (b) explains the difference

between them.

3. Finite-size scaling

Equation (2.10) provides the FSS of the susceptibility and the Yang-Lee edge at the pseudocritical point

t = 0. In these formulae, γ, ν and∆ assume their mean-field values 1, 1/2 and 3/2, respectively, for d Ê dc.

Setting ϙ= 1 provides the FSS at the critical dimension. For the O(N ) model with γ̂= (n +2)/(n +8),

ν̂= (n+2)/2(n+8), ∆̂= (1−n)/(n+8) and ϙ̂= 1/4 [19, 23–25], one obtains

χL(0) ∼ L2(ln L)1/2, h1(L) ∼ L−3(lnL)1/4, (3.1)

independent of n, a result already derived in reference [24] and verified numerically in the periodic Ising

case in references [21, 23, 26].

Above the upper critical dimension, where there are no leadingmultiplicative logarithmic corrections

[16], FSS for the susceptibility and edge is given by

χL(0) ∼ L
�γ
ν , h1(L) ∼ L

�∆
ν , (3.2)

respectively. If it were the case that ϙ= 1, equation (3.2) would reduce to

χL(0) ∼ L
γ
ν , h1(L) ∼ L

∆

ν , (3.3)

which certainly holds below d = dc [27, 28]. Equation (3.3) also results from the Gaussian approximation.

To distinguish the scaling forms (3.2) and (3.3), we refer to them as Q-FSS and Gaussian FSS, respectively

[4].Q-FSS is calledmodified FSS in reference [29], a term earlier used in reference [30] for the adjustments

to standard FSS induced by logarithmic corrections in four dimensions, following the introduction of a

modified scaling variable in reference [23]. Q- or modified FSS has been verified many times over for

PBC’s in 4,5,6,7 and 8 dimensions in references [21, 23, 24, 26, 30–37].

However, for ϙ to be a new critical exponent of similar status to the others, it must be universal. For

this to be the case, Q-FSSwould have to hold independent of boundary conditions. However, the standard

belief for over 40 years is that systems with FBC’s, in particular, have χL ∼ L2 or ϙ= 1 [20, 22, 38, 39]. The

most recent independent numerical investigation of whether Gaussian FSS or Q-FSS applies to the d = 5

Ising model with FBC’s, contained in reference [22], also supported the conventional belief that equation

(3.3) prevails. If this were indeed the case, it would destroy the universality of ϙ and the new hyperscaling

relation (1.5). In reference [4], we examined the d = 5 dimensional Ising model with PBC’s and FBC’s. We

reaffirmed that ϙ= d/4 in the PBC case and we provided overwhelming evidence that ϙ= d/4 in the FBC

case too. Here, we focus on the latter result, since that is the one most critical for Q-theory and the most

at odds with standard opinion in the literature.

4. Numerical evidence for universality

In this section, we provide evidence for the universality of ϙ. The evidence we present is that Q-FSS

holds for FBC’s, just as it does for PBC’s for the Ising model in five dimensions.

As stated, it is well established that above the upper critical dimension, the Isingmodel on PBC lattices

obeys Q-FSS at the critical point. In particular, the formula (3.2) has been verified many times for the
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susceptibility at criticality [21, 31, 32, 34–37]. The corresponding expression for the Lee-Yang zeros has

been verified in reference [4]. It will come as no great surprise to the reader to know that the same forms

govern FSS at the pseudocritical point in the PBC case too. This has also been verified for susceptibility

and the zeros in reference [4]. (In fact, Q-FSS has also been verified for the magnetization as well, both at

the critical and pseudocritical points in reference [4].)

Long-standing belief is that the Q-FSS form (3.2) does not hold for FBC’s above the upper critical di-

mension. Instead, standard belief is that the Gaussian form (3.3), with ϙ = 1 holds there [20, 22, 38, 39].

Indeed, recent, explicit numerical support for χL ∼ Lγ/ν = L2 at the critical point was given in reference

[22]. We contend that this interpretation is incorrect. Our proposition is that Q-FSS applies in the FBC

case above d = 4, just as it does in the PBC case. However, to observe it, one must perform FSS for FBC’s

at the pseudocritical point, rather than at the critical one. We will demonstrate that the infinite-volume

critical point is too far away from the pseudocritical point to “feel” the finite-size scaling regime.

For the Ising model, upon which our numerical evidence is based, the partition function is

ZL(t ,h) =
∑

{si }

exp
(

−βE −hM
)

, (4.1)

in which E =−
∑

〈i , j 〉 si s j , M =
∑

i si , β= 1/kT , h = βH , H is the strength of an external field, k is Boltz-

mann’s constant and si represents the value of an Ising spin at site i of the lattice. The summation in

equation (4.1) is over spin configurations and the sum over 〈i , j 〉 is over nearest-neighbour pairs of sites

on the hypercubic lattice. For a finite-size system, we measure the overall susceptibility as

χL(t) = L−d
(

〈M2
〉−〈|M |〉

2
)

. (4.2)

For a size-L hypercubic lattice, with FBC’s, only (L −2)d sites are in the interior or bulk. Spins located

on these interior sites interact with 2d nearest neighbours. In this sense, they are genuinely immersed in

a d -dimensional medium. The remaining Ld − (L−2)d spins are located on the surface of dimensionality

d−1 or lower and interact directly with correspondingly fewer neighbours. These are not, therefore, fully

immersed in d -dimensions. For example, with L = 24 sites in each direction, the largest lattices analysed

in reference [22] had only 65% of sites in the bulk. Therefore, the resulting calculations of χL are not truly

representative of five dimensionality. Obviously the smaller lattices are even less representative of 5D.

To get around this problem and truly probe the five-dimensionality of the FBC lattices, we decided

to remove the contributions of the outer layers of sites to equation (4.2) and to other observables. We

implemented this by omitting the contributions of the L/4 sites near each boundary and keep only the

contributions of the (L/2)d interior sites. Each of these sites has 10 neighbours, as it should in five dimen-

sions.

10 20 30 40 50L
10

0

10
1

10
2

10
3

χ L

all sites
core sites
χ

L
~L

2

χ
Lcore

~L
2.5

5d FBC at T
L

Figure 1. (Color online) FSS for the pseudocritical Ising susceptibility calculated on 5D lattices using all

sites (upper data set, in red) and using only core sites (lower data, in blue). The upper data set appears to

scale as χL ∼ L2, indicative of Gaussian FSS, but this is spurious and due to the preponderence of surface

sites. The lower data, which are genuinely five-dimensional, scale according to the Q-FSS form χL ∼ L5/2,

supporting the universality of � (see also figure 4 (a) of reference [4]).
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Figure 2. (Color online) FSS for the 5D Ising susceptibility at the critical point Tc from all sites (upper red

data) and core sites (lower blue data). Neither Gaussian nor Q-FSS is supported (see also figure 5 (a) of

reference [4]).

FSS for the susceptibility in the FBC case is represented in figure 1 where χL is plotted against L on a

logarithmic scale at pseudocriticality. The upper data set (red circles) corresponds to calculations of the

susceptibility χL in equation (4.2) using all lattice sites. The dotted line is the best fit to the form χL ∼ L2. At

first glance this appears to be a rather good fit, supportive of the Gaussian FSS formula (3.3) with γ/ν= 2

and of the traditional view of FSS for FBC lattices. However, closer inspection shows some deviation of

the large-L data from the dotted line. We interpret this as signaling that the apparently good fit to χL ∼ L2

is spurious.

The lower (blue) data set in figure 1 corresponds to calculations of χL using the interior L/2 lattice

sites only. The dashed line is the best fit to the Q-FSS form (3.2) with ϙγ/ν = 5/2 and the line clearly

describes the large-L data well. This is the evidence that the Ising model defined on the five-dimensional

core of the L5 lattices obeys Q-FSS (3.2) rather than Gaussian FSS (3.3). This, in turn, is the evidence for

the universality of ϙ.

In figure 2, we present FSS for the susceptibility at the critical point Tc with FBC’s. Again, the upper

data set represents the circumstance where all sites contribute to (4.2) and the lower data set corresponds

to the usage of core sites only. Neither set of data is compatible with Gaussian or Q-FSS.

Thus Q-FSS applies at the pseudocritical point in the d = 5 Ising model with FBC’s, but neither Q-FSS

nor Gaussian FSS applies at the critical point. To investigate why, we next examine the rounding and

shifting. Both of these arise in any finite-size system because the counterpart of the divergence at Tc in

infinite volume is a smoothened peak. The width of the peak is called its rounding and the location of the

peak (the pseudocritical point) is shifted with respect to the critical point. If the rounding, ∆T , is defined

20 30 40 50
L

10
-4

10
-3

∆T

all sites
core sites
∆T~L

-2.5

∆T~L
-2

5d FBC at T
L

Figure 3. (Color online) FSS of the susceptibility rounding is compatible with the Q-FSS θ = �/ν = 5/2

rather than with the Gaussian FSS θ= 1/ν= 2.
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0.11440 0.11448β
0.4

0.6

0.8

1

χ L
co

re
/χ

L

Lcore=L
Lcore=3L/4
Lcore=L/2
Lcore=L/4

5d FBC L=40

Figure 4. (Color online) The value of the pseudocritical temperature is independent of whether it is de-

fined from the susceptibility peak using all lattice sites or only the core (see figure 7 of reference [4]).

as the width of the susceptibility curve at half of its peak height (the “half-height width”), then one expects

∆T ∼ L−θ , (4.3)

where θ is referred to as the rounding exponent. If tL = |TL −Tc|/Tc is the shift of the pseudocritical point

relative to the critical one, then one has

tL ∼ L−λ, (4.4)

where λ is the shift exponent. For standard (d < dc) FSS, one normally has θ =λ= 1/ν although this is not

always the case. Above the upper critical dimension this would lead to θ = 2. For Q-FSS, one may expect

that θ = λ= ϙ/ν= 5/2, but, again, this is not a requirement. Our main concern is the relative sizes of the

rounding and the shifting in the FBC case. If the shifting is bigger than the rounding, then the infinite-

volume critical point Tc will be too far away from the pseudocritical point to come under its effect — it

will be outside the FSS regime. This would explain why FSS at the critical point is different from FSS at

the pseudocritical point. In this case, FSS at Tc would certainly not be Q-FSS, but there is no reason for it

to be Gaussian FSS either.

The rounding is investigated in figure 3 for the entire lattice and its core. It is obvious that the round-

ing is not of the standard, Gaussian type. Instead, it follows the Q-theoretic expectation, with rounding

exponent θ = ϙ/ν= 5/2. This means that the rounding is sharper than one may naively expect, or the FSS

regime is narrower than what the Gaussian theory would deliver.

In figure 4 we plot the ratio of the core susceptibility to the total susceptibility for the FBC case and for

various definitions of the core. Whether the susceptibility is determined using the innermost 25%, 50% or

10 20 30 40 50
L

10
-1

10
0

|T
L
-T

c|

|T
L
-T

c
|~L

-2.5

|T
L
-T

c
|~L

-2

5d FBC, all sites

Figure 5. (Color online) The high-dimensional Ising shift exponent λ for FBC’s comes from the Gaussian

formula λ = 1/ν = 2. This means that the shifting is bigger than the rounding in the FBC case, and the

critical point Tc is too far from the pseudocritical point TL to come under its scaling effect (see also

figure 6 (b) of reference [4]).
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8 16 32
L

10
-5

10
-4

10
-3

10
-2

h 1,
2(L

)

1st LY zero, all sites
2nd LY zero, all sites
1st LY zero, core
2nd LY zero, core

h
1,2

~L
-3.75

5d FBC at T
L

Figure 6. (Color online) The first two Lee-Yang zeros for Ising systems with FBC’s at pseudocriticality obey

Q-FSS whether the full lattice or only the core sites are used in their determination (see also figure 8 (c)

of reference [4]).

75% of sites in each direction, or, indeed, whether it comprises contributions from all the sites including

the boundaries, makes little difference to the location of the susceptibility peak. The shift exponent is

measured in figure 5 using contributions to the susceptibility from the entire lattice. The shift exponent

is clearly λ= 1/ν= 2.

Thus, the shifting is indeed bigger than the rounding. Therefore, the critical point Tc is too far away

from the pseudocritical point TL to feel its effect. In other words, the finite-size susceptibility at the critical

point is outside the pseudocritical FSS domain. This explains the results in figure 2 — the remoteness of

Tc from TL means that the plot is beyond the FSS regime.

To complete our investigations of equations (3.2) and (3.3) in the FBC case, the FSS for the Lee-Yang

zeros is tested in figure 6 at the pseudocritical point. In fact we present the scaling of the first two zeros

for FBC lattices using the contributions from all sites and from the core-lattice sites only. In each case, the

zeros scale with L−q∆/ν = L−15/4 according to the Q-FSS formula on the right of equation (3.2) rather than

the traditional, Gaussian formula in equation (3.3).

5. Dangerous irrelevant variables

The origins of the new exponent ϙ can be explained through the dangerous irrelevant mechanism

in the renormalization group. Standard FSS in d < dc may be understood by writing the finite-size free

energy below the upper critical dimension as [40]

fL(t ,h) = b−d fL/b

(

tbyt ,hbyh
)

. (5.1)

The correlation length is

ξL(t ,h) = bΞL/b

(

tbyt ,hbyh
)

, (5.2)

which identifies ν= 1/yt through setting b = L and h = 0, and then taking the limit L →∞. At t = 0, it gives

ξL ∼ L. In the absence of the external field h, equation (5.1) can be written fL(t ,0) = L−d f1

[

(L/ξ∞)1/ν,0
]

.

Thus, standard FSS is controlled by the ratio x = L/ξ∞(t). Moreover, in the scaling regime where x ≪

1, the function f1(x1/ν) ∼ xd is universal, leading to fL(t) ∼ t dν. Differentiating this twice delivers the

specific heat and standard hyperscaling (1.3).

A more complete version of equation (5.1) is [1]

fL(t ,h,u) = b−d fL/b

(

tbyt ,hLyh ,uLyu
)

. (5.3)

Here, u is associated with the φ4 term in the Ginzburg-Landau-Wilson action. For d < dc, it is a relevant

scaling field, but at dc, u becomes marginal and above it is irrelevant. There, the Gaussian fixed point
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controls the critical behaviour with yt = 2, yh = 1+d/2 and yu = 4−d [13]. Naively differentiating equa-

tion (5.1) or (5.3) delivers functions different to those from Landau theory. This is because the limit u → 0

is singular, and should be properly accounted for. For this reason, u is termed a dangerous irrelevant

variable. Its proper treatment leads to rewriting equation (5.3) as [18, 41]

fL(t ,h,u) = b−d fL/b

(

tby∗
t ,hby∗

h

)

= L−d f1

(

tLy∗
t ,hLy∗

h

)

, (5.4)

in which

y∗
t = yt −

yu

2
=

d

2
, y∗

h = yh −
yu

4
=

3d

4
. (5.5)

Similar considerations for the correlation length deliver

ξL(t ,h,u) = L�Ξ(

tLy∗
t ,hLy∗

h

)

. (5.6)

In reference [18], the assumption was made that ϙ= 1. This was driven by the belief that “the correlation

length ξL is bounded by L” even for PBC’s. In this case, the second length scale would be needed to modify

FSS [42, 43]. Introducing ℓ∞(t) ∼ t−1/y∗
t , the first argument on the right-hand side of equation (5.4) or (5.6)

may be written (ℓ∞(t)/L)y∗
t and ℓ∞(t) was deemed to control FSS. It was dubbed the thermodynamic

length by Binder [42]. Its finite-size counterpart ℓL was called the coherence length in reference [29],

where the so-called characteristic length λL (t) was also introduced as the FSS counterpart of the infinite-

volume correlation length.

From our considerations, it is clear that this plethora of different lengths is unnecessary; the exponent

ϙ in equation (5.6) is not bounded by 1. A direct, explicit, numerical calculation of the FSS of the correla-

tion length for the 5D PBC model in reference [21] showed ξL ∼ L5/4 there. This was verified in reference

[4]. It is by now well established that the replacement of the scaling variable L/ξ∞(t) of standard FSS

by L�/ξ∞(t) of Q-FSS is correct for the susceptibility, magnetization and pseudocritical point in periodic

Ising models in four [21, 23], five [21, 31, 44, 45], six [32, 34, 35], seven [36] and eight [37] dimensions. The

results presented here and in reference [4] support our assertion that the same holds true for FBC’s, and

that ϙ is universal.

Thus, the breakdown in standard hyperscaling (1.3) above the upper critical dimension may be ex-

plained through dangerous irrelevant variables. The breakdown of FSS was less clear, however. Although

the above formulation in terms of dangerous irrelevant variables does not involve explicit statements re-

garding boundary conditions, while it has been broadly accepted for PBC’s, Gaussian FSS was believed to

hold in the FBC case. In this sense, standard FSS was not universal after all, a circumstance which was

“poorly understood” [21, 46].

We have now shown that FSS for FBC’s is the same as for PBC’s at pseudocriticality, rather than at

criticality and this is associated with the universality of the new exponent ϙ. However, the logarithmic

counterpart to ϙ cannot be attributable to dangerous irrelvant variables, since these arise only for d > dc

and non-trivial ϙ̂ necessitates d = dc. The reader is referred to reference [6, 7] for this circumstance.

6. Conclusions

It is well known that standard FSS is universal below the upper critical dimension d = dc when

hyperscaling holds and where the correlation length is comparable to the actual extent L of a system.

Above dc, the breakdown of standard hyperscaling is attributed to dangerous irrelevant variables in the

renormalization-group approach. Although closely related to hyperscaling, FSS was so far believed to

be non-universal in high dimensions, with equation (3.2) holding for FBC’s and (3.3) for PBC’s. Although

this picture appeared to be supported numerically for FBC’s in references [20, 22] and for PBC’s in refer-

ences [21, 23, 24, 26, 30–37], it was unexplained why the dangerous irrelevant variablemechanism should

apply in one case and not in the other.

Here, we have used Lee-Yang zeros to show that the scaling mechanism is self-consistent only if the

correlation length scales as a power of the length above dc. This is the case irrespective of boundary

conditions and leads to the introduction of a new scaling exponent, which we denote by ϙ. Since it is

23601-10
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universal, ϙ has a status similar to the critical exponents α, β, γ, δ, η and ν, in notation standardised

by Fisher in the 1960’s. The introduction of ϙ allows one to extend the dangerous-irrelevant-variable

mechanism to the correlation length through equation (5.6). FSS is then implemented by the substitution

t → L−�/ν, a procedure we term “Q-FSS” to distinguish it from the standard t → L−1/ν valid below dc.

Here, we point out that, for the FBC lattice sizes used in reference [22], the bulk of sites are on the

surface, so that the system is not genuinely five-dimensional. The resulting conclusion that χL obeys

Gaussian FSS is not a 5D one. For this reason, we re-examined FSS for the 5D Ising model. In order to

probe the five-dimensionality of the structure, we remove contributions close to the lattice boundary.

In addition to FSS at the critical temperature, we also examined pseudocriticality. Our numerical results

indicate that, once the lower-dimensional effect of the peripheries is removed, the FBC lattice exhibits the

same scaling as the PBC one at pseudocriticality, namely the one given byQ-FSS. Using the same technique

at the infinite volume critical point, we find no evidence for either Gaussian FSS or for Q-FSS. Since the

rounding is smaller than the shifting, we attribute this to the fact that Tc is too far from TL to come

under the effect of FSS there. This means that the conventional FSS paradigm for FBC lattices above dc is

unsupported, and this is particularly clear at pseudocriticality [20, 22, 38, 39]. It also offers evidence for

the universality of ϙ at pseudocriticality and introduces a new, universal version of hyperscaling through

equation (1.5), which is valid in all dimensions.
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Новий критичний показник � i його логарифмiчне

доповнення �̂
Р. Кенна1, Б. Берш2

1 Центр прикладних математичних дослiджень, Унiверситет Кавентрi, Кавентрi, Англiя

2 Група статистичної фiзики, Iнститут Жана Лямура, UMR CNRS 7198, Унiверситет де Лоррен,

54506 Нансi, Францiя

Вiдомо, що стандартний гiперскейлiнг порушується вище верхньої критичної вимiрностi dc, де критичнi

показники приймають класичнi значення. Тут ми показуємо, що це є тому, що в стандартних формулю-

ваннях у термодинамiчнiй границi вiдстань вимiрюється на масштабах кореляцiйної довжини. Проте,

масштаб кореляцiйної довжини i власний масштаб довжини системи не є однаковi бiля чи вище вищої

критичної вимiрностi. Вище dc вони пов’язанi алгебраїчно через новий критичний показник �, тодi як

бiля dc вони рiзняться на логарифмiчнi поправки, що керуються показником �̂. Врахування належним

чином цих рiзних масштабiв довжини дозволяє розширити гiперскейлiнг до всiх вимiрностей.

Ключовi слова: гiперскейлiнг, критична вимiрнiсть, кореляцiйна довжина, критичнi iндекси,

спiввiдношення скейлiнгу
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