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1. Introduction

It is well known [1-4] that a complete physical theory, both relativistic and non-relativistic, can be de-
scribed entirely in terms of current algebra operators, such as current densities, rather than in terms of
canonical field operators, which is motivated by the fact that the current densities are physically observ-
able quantities contrary to the canonical non-observable field operators. Moreover, the current algebra
approach appeared to be also very effective in studying both quantum and classical statistical problems of
many-particle systems by means of the Bogolubov generating functional, whose mathematical structure
became a fruitful source of many approximation methods in modern statistical physics. Amongst them it
is necessary to mention a very powerful collective variables transform suggested firstly by D. Bohm [5]
and deeply developed by N. Bogolubov [6], D. Zubarev [7] and I. Yukhnovskii [8]. This transform has been
reanalyzed in terms of the current algebra approach for classical many-particle systems in [9-{11], where
there was constructed a corresponding Bogolubov generating functional of distributions as a mathemat-
ical expectation of an infinite hierarchy of the non-interacting many-particle systems embedded into an
external oscillatory potential field, with respect to a suitably defined infinite divisible Gauss type mea-
sure.

Based on these results and making use of some additional properties of the corresponding functional
equations for the Bogolubov generating functional of many-particle distribution functions we have con-
structed, for the case of classical statistical mechanics, a new operator representation for an effective
Hamiltonian operator defined in a suitable Hilbert space, whose ground state energy peculiarities make
it possible to conceive the physical nature of the related phase transitions and to describe the behavior of
multi-particle distribution functions.

* Authors devote this work to their friend and colleague, a smart phase transitions researcher Professor Mykhailo Kozlovskii on
the occasion of his 60-years anniversary.
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2. Non-relativistic quantum and statistical mechanics: the current alge-
bra approach

We assume a non-relativistic spinless many particle system of density p € R, to be described by means
of the non-relativistic quantum Hamiltonian operator

h? 1
Hi=— f dx(Vy™ (x), Vi (0) + 3 f dx f Eyw e vt @yt vy 2.1)
R3 R3 R3

acting in a suitable Fock space ®, here we have denoted by (-,-) the standard scalar product in the
Euclidean space R®, W : R® x R®> — R is a translation invariant interaction potential, and creation
X)) P—->D,x€ R3 and annihilation operators w(y) : ® — @, y € R3, satisfy the standard canonical
commutation relationships:

[,y ()=8x-y), [ @),v M =0=yx,y))l (2.2)

The current algebra representation of the Hamiltonian operator (Z.I) is based on the following self-
adjoint density operators: particle number density

p(x) =y (Dy(x) 2.3)
and current density
1
J(x):= % [y " () Vi (x) - V' () ()]

at any point x € R3, satisfying the well known classical current Lie algebra commutator relationships:

[p(f1),p(f2)] =0, o), J(@=ip(g, V), U8, (g =1J(lg2, &), 2.4

where we have defined the smeared [3,/12,13] density operators

o(f) = f Exp)f(x), Jg):= f d®x(g(x), J(x)) (2.5)
R3 R3

for any Schwartz functions f € .#(R3;R) and g € #(R3;R%) and [g2, g1] := (g2, V)g1 —(g1,V) g for any
81,8 € JR3RY).

The following proposition characterizes [1, 13, [13, [14] the current Lie algebra from the group
representation theory.

The exponential current operators are as follows:

U(f):=explip(f)], V(p?) := explit/(g)], (2.6)

where d(p‘f (x)/dt:= gO(p‘f (x) and go (pf (x):= g[(pf (x)] for any £ € R and x € R3, satisfy the current group
relationships

UMNURI=Ui+f),  V@QUN)=U({fop)V(p), Vip)oViga)=Vig2op1) 2.7

for the semi-simple product G := . = Diff(R%) and the abelian Schwartz group & (R3;R),where fi, f> and
fe F(R3R), @1,p2and @ € Diff(R3). The latter appeared to be very important in constructing the corre-
sponding group G = .& = Diff(R3®) representations in suitable Hilbert spaces and their physical interpre-
tation as a classical generating Bogolubov functional [6, 11, [13,[14] for the corresponding many-particle
distribution functions.

The Hamiltonian operator permits the following current algebra representation

2
H::_m f d3x<K+(x),P_1(x)K(x)>+%f dgxf EyWxy):pxpy):, 2.8)
R3 R3 R3
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where, by definition,
K(x) :=Vp(x)+2i](x) (2.9)

forany x € R3 and the normal ordering [15,[16] acts as

n Jj-1
tp(x)p(x2) ... p(xn) =[] [p(x)) = Y 6(xj— xk) (2.10)
j=1 k=1

for arbitrary x; €R3, j=1,n,ne Z,.
The current group G = .% > Diff(R%), as is well known, possesses many different irreducible unitary
representations in suitable Hilbert spaces. In particular, in the standard N-particle Hilbert space SN =

L™ @3N;C) for an arbitrary but fixed N € Z,, the particle density operator acts as
N
p(o=]3 flpo 2.11)
=1
and the current density operator acts as
1 N
J®o= Y (8, V) +(Vj, g(xj)]w (2.12)
j=1

for any f € #([R%R), g € #R%R%) and arbitrary vector w € H™.
In the general case, the current group possesses many different irreducible unitary representa-
tions in suitable Hilbert spaces ./, which can be written down as

@
J‘f:fdp(F)JfF, (2.13)

y/
where p : 27 " = R, is some cylindrical measure on the generalized space .’ := &' (R3;R), #F are
marked by elements F € %' (R3;R) complex linear spaces, which for many physical applications [3, 4, 13]

are one-dimensional. In the case dim.//r = 1, one obtains from that A =~ Lg‘ ) (&';C). Now, if an
element w(F) € A is taken arbitrarily, from one easily follows that

U(f)w(F)

expli(F NHlw(F),

« o | dpl@™ F)
Xo(Flo(p™F) [7(1”(1:)

1/2
) (2.14)

Vip)w(F)

where, by definition, (¢p*F, f) := (F, f o), du(p* F)/du(F) is the standard Radon-Nykodym derivative of
the measure p(¢* F) with respect to the measure p(¢p*F) and y, (F) is a complex-valued factor of a unit
norm, referred to as the co-cycle, satisfying the relationship

X (F) X1 (03 F) = X100, (F) (2.15)

for any ¢1,¢2 € Diff(R3) and arbitrary point F € ' (R3;R).
Now, based on the expression (2.14), one can define the following functional

ZL(f) = (Q,explip(f1Q) (2.16)

for the physical ground state vector Q) € .#¢ of the suitably renormalized [1,/11,!13,/14] Hamiltonian oper-
ator (2.8):
(w,Hw)

Q:=arg in .
we)||lw||=1 (w, Nw)

(2.17)

This, in particular, means that the Hilbert space representation of the current group G = . = Diff(R?) is
chosen in such a way that the corresponding Hamiltonian operator (2.8) is bounded from below, thereby
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realizing a respectively stable physical many-particle system. Taking this into account one can put, with-
out loss of generality, that the Hamiltonian operator and its ground state vector (2.17) satisfy the
equivalent conditions

HQ=0, (QpxQ)=75>0. (2.18)

Now, we can interpret the functional (2.16) as a generating functional of the current group G = .% >
Diff(R3) irreducible representations [9,[13,/14] in the physically proper Hilbert space .. This is based on
the following theorem [1] owing to H. Araki.

Theorem 2.1. A functional & : G — C generates a unitary representation of the group G if and only if
there exists a unitary continuous representation n : G — Aut € with a cyclic vector Q € A satisfying the
condition

Z(a)=(Q,n(a)Q)), JC =span{aQ e A :ac G} (2.19)
forany a€G.

Having applied theorem 2.J]to the functional (Z.16), we derive that by means of constructing suitable
generating functionals subject to the given Hamiltonian operator one can find the corresponding
operator representations of the current group G =.& = Diff(R%) and vice versa.

3. The current algebra representations and the Hamiltonian operator
reconstruction

Based on the relationships (Z.14) and the generating functional expression (Z.16), one can easily cal-
culate that

£ =feXp{i(F,f)}d,u(F) (3.1
y/

for some suitably determined quasi-invariant measure p : 27 R4, that is an ergodic measure with
respect to the diffeomorphism group Diff(R®): for any Diff(R%)-invariant set Q c .%'(R3;R) either p(Q) = 0
or u(#\Q) = 0. As a result of (3.I) one finds, as an example, that the standard quantum mechanical N-
particle representation of the current group G = . = Diff(R%) is described [1, 9, [13] by the generalized
singular measure

N
du(F)=Q*Q[] d’x;6
j=1

N
F- Za(x—xk)), 3.2)
k=1

whose support supp = {Fe %' (R%R): F = Zlkvzl O(x—xp)}.
Consider now the generating functional and observe that the following quantities

Fo(x1,%2,...,x) = (Q,:p(x1)p(x2)...0(xpn) : Q) (3.3)

i f(x) i0f(x) TS f(xn) f=0

for arbitrary n € Z, represent the n-particle distribution functions of the quantum mechanical many-
particle system with the Hamiltonian (2.8), or equivalently, the functional is respectively, the Bo-
golubov generating functional of many-particle distribution functions. Since the essence of the Bogol-
ubov generating functional is held in the correspondingly derived [6] functional equation, we proceed
now to determine its exact analytical form taking into account the structure of the related current group
G = & = Diff(R3) representation in a suitable Hilbert space 7.

Following the standard operator construction, suggested in [13,14], one can define a selfadjoint oper-
ator A(x; p) : /£ — A, x € R3, by means of the relationships

K(g)Q=A(g;0)Q, (3.4)
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satisfied for any g € . (R3;R3), where we put, by definition,

K(g):= f Exigx),Kx),  Algp):= f dx(g(x), Alx; p)). (3.5)
R3 R3

To proceed further we need an important proposition concerning the matrix elements of the operators
J(g) and H: # — 7 for any g € % (R3;R3).

Proposition 3.1. Let {f =explip(f)IQ € #: f € #[R3;R)} be the set of vectors dense in the Hilbert space
J€ owing to the Araki’s theorem[2.1] Then, the following scalar product expressions

GEID)
(fi,Hf)

(f,0(g, Vi + N ),

[ - . -
%(fl,,l)((Vflnyz))fz) (3.6)

hold for all fi, > € & (R%;R).

Based now on simple enough but slightly cumbersome calculations, one can derive the following
renormalized Hamiltonian operator expression:

. K _ _
H=c— f (K (x;0), 07 (0K (x; ), 3.7)
m[R3
where, by definition, the operator
K(x;p) := K(x) — A(x; p) (3.8)
satisfies the condition
K(x;0)Q=0 (3.9

for all x € R3. Now, making use of (3.6), we can rewrite the defining condition @9 in the following
functional equation form:

162L(f) _, .
[Vi=Vf(x] i of0 A(x;0)£(f), (3.10)
where we put for any x € R3
A(x;6) := A(x;p)lp:;%. (3.11)

Similarly, one can calculate the matrix element values for the renormalized Hamiltonian operator B3.7)
subject to the irreducible cyclic representation of the current group G = .% > Diff(R?):

2

I e L
(fi,Hf2) = %(ﬁ,p((vfbvfz))fz) = (i, Hf2) (3.12)

for all fi,f> € & (R%R), meaning that two current algebra operator representations and of
the initial Hamiltonian operator (Z.I), defined in the canonical Fock space, are physically completely
equivalent.

4. The generating Bogolubov functional equation for the temperature
equilibrium states

Assume that a classical many-particle system is at a bounded inverse temperature § € R, and its
Gibbs statistical operator
_ exp(-fH)
" trexp(—fH)’
where “tr” means the standard trace-operation well determined on the ideal of nuclear operators in a
Hilbert space ./, in which the corresponding irreducible unitary representation of the current group

4.1)
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G = . = Diff(R3) is realized. To determine it analytically, we define the Bogolubov generating functional
of many-particle distribution functions as

ZL(f) :=tr{Pexplip(H} 4.2)

for any f € & (R%;R). having imposed on the functional the Araki’s conditions of theorem we
can easily derive that there exists [1,13,4,/11,[14] an effective normalized cyclic vector Qﬁ € Jfﬁ, naturally
corresponding to the effective Hamilton operator

_ n? - -
Hp:= %fdfix(Kg(x;p),p_l(x)Kﬁ(X;P)% (4.3)
RS

such that
Z(f) = Qp,explip(f)1Qp), (4.4)

where we have put, by definition,
Kﬁ(x;p) = K(x) — Ag(x; ), K(x)Qp = Ag(x;0)Qp 4.5)

for any x € R3. As a result of the definition and relationships (4.5), one easily finds [9], as the Planck

constant 7 — 0, that
exp[-BW (8] %L (f)

exp[-BW ()] Lo (Nl =0’

where % (f), fe S (R3;R), is the generating functional for the noninteracting equilibrium many-particle
system and, by definition, we put

Z(f) =

(4.6)

W(6) := W(p)|p:%% . @7

Similarly to the above reasonings one also finds that the generating functional satisfies [6,19] the
Bogolubov type functional equation
162(f)

[Vx—vf(x)];m:Aﬁ(x§5)$(f), 4.8)

where the corresponding operator Ag(x;p) : #p — Hp for any x € R3 linearly depends on the binary
interparticle interaction potential W : R3 x R® — R.
Hence, one easily infers that the generating functional %y (f), f € & (R3;R) for the unitary represen-
tation of the current group G = & = Diff(R3) satisfies the reduced functional equation
164 (f)

[Vx—Vf(x)]Y 50 =0, 4.9)

whose general non-normalized solution equals the integral

Zo(f) =fduﬁ(z) exp(zfdgx{exp[if(x)]—l}) (4.10)
R RS

with respect to some Radon measure (4 : 2% — R on the real axis R. Thus, submitting @I0) into @), we
obtain from (4.8) that for any x € R

Ag(x; p) = —ﬁfdsnyW(x, »N:px)py): (4.11)
R3
and, respectively,
oD [ 1618
[Vx Vf(x)]i 5f ) ,BRS d’yVWi(x,y): 5f®15F0) ZL(f). (4.12)
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The functional equation (Z.12), being well known long ago owing to the classical results of Bogolubov
[6], makes it possible, using the current algebra approach, to interpret it as an equation for the generat-
ing functional of irreducible current group G = . < Diff(R%) representations in a suitable Hilbert space
#p with a cyclic vector Qg € A being the ground state vector for a respectively renormalized “effec-
tive” positive definite Hamiltonian operator (4.3) and satisfying the conditions (Z.5). This gives rise to the
following canonical current algebra representation of the Hamiltonian operator (4.3):

_ n?
fy = %f &2k (0,07 (WK ()
+ fd3x1 fdst fd3xW(n)(x1yJC2, HXn) 1 p(x)p(x2)...p(x0) 1, (4.13)
n— 2€Z+ R3 R3

where the effective inter-particle potentials ng”) DX R3 — R, n—2€ Z,, non-locally depend on the initial
]_

interparticle potential W : R3 x R® — R and on the inverse temperature parameter S € R..
The Hamiltonian operator (4.13) can be respectively transformed to the canonical form

hZ
iy = 5 f & x(Vyr (0, Vi ()

+ fdgxlfdng fds W(n)(xl,xz, .y Xn)
n— 2€Z+ R3

iyt (xl)w(xl)w (xz)w(xz)...w EMIIEDE (4.14)

acting in the standard Fock space ®. The latter can be used for determining the related canonical N-
particle representation of the Hamiltonian (4.14) by means of the following defining relationship:

ﬁﬁ fd3x1fd3xz fd Xfn(X1, X250, Xp) 1 1X1, X2, X)) | =
n€Z 3 R3
fdsxlfdst fdg Jf( D fa(X1, X2, 00, X0) X1, X200 X, (4.15)
m—:Z
R3

where f; € Lésym) (R3"%;C), n € Z, and we put, by definition,
n
X1, X2,... Xn) := [ 9" (x))10) (4.16)
j=1

the independent orthogonal states in the Fock space ®, generated by a cyclic vacuum vector |0) € O,
satisfying the annihilation condition (x)|0) = 0 for all x € R3.
Having constructed the corresponding N-particle translational-invariant Hamiltonian operators

Jfém : L(Zsym) (R3N:C) — L(Zsym) (R3N;C) for arbitrary N € Z, particles in a volume A c R3, one can study

its a priori positive spectrum U(Jflém) c R, and its peculiarities as a function of the density

162(f)
6f(x) Ir=o

p=t{Ppx)} = “.17)

and the inverse temperature parameter § € R.. In particular, the condition (Z.17) allows one to determine
the above introduced measure dug, entering the functional @.10).

Now, it is important to recall that an equilibrium many-particle statistical system is stable [17, 18], if
its generating functional satisfies the well Kubo-Martin-Schwinger analycity condition. This condition, in
particular, imposes a strong analytical dependence on the inverse temperature parameter 8 € Ry of the
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spectrum O’(Jf;im) c R4 as N — ooin such a way that the density p =lim N/A € R persists to be constant.

One obtains another inference from the important fact that the number operator Ng:= fRs d3xp(x) is a
conserved quantity, that is

(Hp,Ngl =0 (4.18)

for those parameters f € R;, for which the equilibrium many-particle system is stable and does not pass
a phase transition.

5. The current algebra representation aspects of the collective variables
transform

The collective variables transform [5, |6, 8-10] allows one to consequently take into account and sep-
arate two different impacts of a binary interaction potential W := W® + W®into the many-particle dis-
tribution functions subject to its long distance W and short distance W parts. Since the long distance
interaction potential responds for the so-called “collective” behavior of the many-particle at a bounded
inverse temperature parameter 8 € R, the corresponding Bogolubov generating functional can be
formally rewritten in the operational form as

L) = Z(NHIZ©),
Z(f) = expl-pwO@®1LV(f), (5.1)

where, by definition,
L) = expl-pW B)1 L0 (f). 5.2)

The functional (5.2) can be quite easily calculated by means of the Fourier transform representation of
the long distance interaction potential and the standard quasi-classical limit 7z — 0:

ffﬂ)(f) = limtr{?)’oexp —gfdgkv(h(k):pkp_k: exp[ip(f)]}
h—0 4
= limtr{ %ex —E k| @

A—0 0 eXp 2 P

R3 R3

272
fo(w)exp —fdg By (D(k)wkw k= fd3lc2mwkpk explip(f)] }
[ R3

fD(w)](w)}lzin(l)tr(e@()exp{ip[f—ZHfdgkwkexp{Kk,x)}—Eﬁfdgkvm(k)]})
C IR3 REB

f dpg’(Z) f D)JV(w;2) exp(Z f dgx{ exp[if(x)]—l}g(x;w)), (5.3)
R Coo R3

where we denoted the measure D(w) := [Tj.cg3 %dwk Adw_g, the parameter Z := zexp [ — g Joz v ()],
and the free particle system statistical operator is equal to

exp (— fHo) n? f 3oyt
=————, Hp:=— | d"x(Vy" (2),Vy(x)), (5.4)
trexp(—fBHp) 2m |
the Fourier transform
vO (k) = g f W (x, y) exp(ick, x - y)) (5.5)
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and the measure kernels (“Jacobian”)

2
. [ 43
Jw) exp{ [d kﬁv(l)(k)wkw k+fd kln /Bv(l)(k)}’
R

Vw2 = Jw exp{zfd3xg(l)(x;w)},
R3
g(l)(x;w) = exp{—Znif d3kwkexp(i<k,x))}. (5.6)
R3
The formal series expansion
59712 (93
Pwn = o exp{—% f & kewopo_
(—2mi)" (27)3 n
+ Y Zifdﬁ‘ fd3k2 fd3k,,]‘[wkj5(_z kj)}
nez\{2} a3 g E 1 j=1
218,01 3z
= expy-— d3k(2”) vt @) Z+1]wkw_k+... , 5.7
ﬁv(l)(k)

owing to (5.3) and (5.7), right away gives rise to the approximation of the generating functional by
means of the so called “screened” long distance potential

W,y = fdskwex (i(k, x— )
v |7 14 v0 (k) pz(2m)’ PRty
R
f d® kv (k) exp ik, x — y)) (5.8)
R3

under the external effect of an infinite set of oscillatory potentials:

20 = |d “’(z) D()ex F RN
= Hg p 570 (k) W-ft...
R

x exp (z f d® x{explif (x)] - l}g(l) (x; w)). (5.9)
R?’

Having substituted the functional expression (5.9) into one can easily obtain the corresponding Bo-
golubov generating functional in the Ursell-Mayer type infinite expansion form, based on the following
operator expression:

Z(f) = expl-pwO 1LV
= exp[-pWY9 (&) fd,um(z) exp( fd3x1fd3x2 fdsxn
n€Z+ R3
x H{exphf(x,)] -11gY (xl,xz,...,xn)), (5.10)
j=1

where gs) :R3" — R, n € Z, are so-called n-particle “cluster” distribution functions.
Observe also that the Bogolubov type generating functional (5.3) can be rewritten in the integral Gauss
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type form as

LV = f du(l)(z 0]V (0, z)exp( f d®xtexplif (0] - 11g¥ (x; )
C® xR
= f dag © L5 (36, (5.11)
£eC® xR

where, by definition, ¢ := (w, z,R3) and for any Lebesgue measurable set A <R x C*® x R3, the measure

¥ 0A):= f d® kdpg’ (2 D) W, 2) (5.12)

AcRxC® xR3

with a reduced generating functional .fféh (f;0,%2,k),(0,z,k) € C®° xR x R3, satisfying [13] the following
functional equation:

6 I
e —— LV (f;0,2,k) = 2wk exp(ick, a2 —— 2V (0,2, 0. (5.13)
~Vi@lTs f( ) Vg k €XPp 15700 VB
Hence, one can obtain the effective partial renormalized long distance Hamiltonian operator
. h? _ _
A ,2,k) := — | xR (x,0,2 k), 0 (0K (x, 0,2, k), (5.14)
p 8m B B
R3

where we put, by definition,
Kg“(x,w, Z,k) := K(x) — 2mkwp(x) exp(i(k, x)) (5.15)

for all x € R3 and (w, 2, k) € C*° xR x R3. As a result of (5.14), one finds [13] that the effective external long
distance oscillatory potential

2nwik?

W (xw,z k) =
5 ( ) 2m

exp(iCk, x))[1 + nwikexp(i(k, x))] (5.16)

yields the following partial canonical Hamiltonian operator expression:

Hp(w, 2, k) = —fd3x<vw (x), Vw(x))+fd3xW(D 0,2 Dyt Oy ), (5.17)
R3
whose generating functional of the current group G = .#~Diff(R>) equals the expression (5.11). Moreover,

taking into account the representation (5.10), one can construct the full effective long distance Hamilto-
nian operator

_ K2 _ -
(O 3 D+, -1 0.
Hﬁ = Smfd x<Kﬁ (x;0),p (x)Kﬁ (x;0)), (5.18)
3
where, by definition, we put
RP*cp) = K@- Y f &x f .. f &P
nez, (n _1)'
R3
xVxlngn (x1,%2,...x5) : p(x1)p(x2) ... p(xp) = . (5.19)

As a simple corollary from the expression (5.18), one obtains that the effective long-distance Hamilto-
nian operator contains an infinite hierarchy of multinary potential energy terms, which should be in
due course taken into account when studying the peculiarities of the corresponding many-particle dis-
tribution functions. In particular, the energy spectrum of the N-particle canonical representation of the
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Hamiltonian operator (5.18) possesses an important information on the many-particle system stability at
a special inverse temperature parameter S € R,.

As an example demonstrating the effective Hamiltonian operator construction, we will consider a
one-dimensional many-particle system of density p € Ry on an axis R at a finite inverse temperature
B € R;, described by the following operator expression in the canonical Fock space ®:

hZ
Hzﬁfdxwuﬁ(x),vwx))—xlfdxfdylnlx—Y|W+(X)W+(Y)W(J’)W(x)r (5.20)
R R R

where A € R, is a positive parameter. The corresponding Bogolubov generating functional £(f), f €
Z(R;R), satisfies, owing to (4.12), the following functional equation:

162(f) 1.6 156

Vy—iV - =2A8 | dyV,l -y|: - Z(f). 5.21
ViV 001 s p [ dyvainx-y] 571570 (5.21)
R
Taking now into account that the expression
Alx;p) = ZAﬁfdnyln|x—y| px)py): (5.22)
R
one can easily construct the effective renormalized Hamiltonian operator
R _ _
Hp:=om f dx(K (x;0), 07" (0K (x; p)), (5.23)
R

acting in a suitable Hilbert space #, realizing a non-reducible representation of the basic current group
G = . «Diff(R). It is quite easy to calculate the resulting effective Hamiltonian operator expression
in the canonical Fock space ©:

ABAL-1)

+ +
—yE ¥ Vv, G2

ﬁ—h—zfd (V™" (x),V ())+h—2fd fd
= om XV 0, Ve om) Y
R R R

describing an infinite set of particles on the axis R, binarily interacting to each other by means of the
inverse square potential

_REABAAB-1)

Wp(x,y) := (5.25)

2m|x - yl?
where x # y € R and A, 8 € R; are suitable positive parameters. Here, it is necessary to mention that
the effective Hamiltonian operator (5.24) realizes a nonreducible representation of the current group
G = ¥ = Diff(R) in the Hilbert space 7, generated by its ground cyclic eigenstate Qg € #, satisfying
the determining condition Z.I7). It can be shown [11,[13,[14] that

gg:= _in M =A2p*np°16 (5.26)
wep,lwl=1 (w,Nﬁw)

holds, where we denoted by Nﬁ := Jgdxp(x) the corresponding particle number operator in the Hilbert
space . The least average energy per particle analytically depends on the inverse temperature
parameter € R.. The same can also be obtained for the other energy excitations of the Hamiltonian op-
erator (5.24). Thus, we infer that the initial one-dimensional many-particle system with the Hamiltonian
and at the inverse temperature parameter §§ € R, is completely stable and permits no phase tran-
sition. Moreover, at the temperature parameter § = 1/1 € R; the effective Hamiltonian operator
describes a many-particle noninteracting system of the density p € R, and the least average energy per
particle &g = 7%$*/6, depending only on the density.
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6. Conclusion

The investigation of statistical properties of classical many-particle systems at a finite inverse tem-
perature € R, and a fixed density p € R, by means of the current algebra representations has two
main reasons: firstly, it provides an interesting reformulation of the initial quantum statistical problem
in terms of physical observables such as the particle number density and the particle flux density, rather
than the corresponding second-quantized field creation and annihilation operators.

The second reason is related to a very rich structure of the current group G = .% = Diff(R>) irreducible
representations, according to the Bogolubov functional equation for the generating many-particle dis-
tribution functional, and whose analytical property subject to the temperature parameter 8 € R, are
responsible for the system stability as it follows from the Kubo-Martin-Schwinger approach, applied to
the classical statistical mechanics.

Moreover, a very rich functional-operator structure of solutions to the related Bogolubov functional
equations allows one to make physically reasonable re-expansions of the general irreducible represen-
tation measure, as it was show for the case of the classical collective variables transform, and whose
generating functional permits an additive Gauss type representation, based on an infinite set of free non-
interacting many-particle systems embedded in an external oscillatory type potential field.

As a dual aspect of irreducible representations of the current group G = .% = Diff(R3), related to the
Bogolubov functional equation, we need to mention the construction of associated effective Hamiltonian
operators subject to the basic ground state cyclic representation of the current group, whose analytical
properties are responsible for the many-particle system stability and possibly, for the phase transition be-
havior. We hope that the approach devised in the work will prove to be helpful in further gaining insight
into the statistical clustering properties of many-particle systems and in developing new more powerful
and specialized analytical techniques for solving other interesting problems in statistical physics.
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Nipxig A0 KNACNYHOI PIBHOBAXKHOI CTaTUCTUYHOI MeXaHiKN Ha
OCHOBI anre6pun cTpymis Ta 1ioro 3aCToCyBaHHSA

M.M. Boronto6os (Mon.f, A.K. Mpukapnatcskniid®

1 MaTtemaTuunuii iHcTUTYT iM. B.A. Cteknosa PAH, MockBa, Pocis
2 Akajewmis ripH1UTBa Ta MeTanyprii, Kpakis, MoabLuya

3 JepxaBHUiA NeaaroriyHnin yHisepcmTeT iM. I. ®paHka, [porobuy, YkpaiHa

AHanisyeTbCs Niaxia 40 BUBYEHHS GYHKLIA po3noginy cuctem 6araTbox YacTMHOK MpW PiBHOBaXHIA Temnepa-
Typi Ta BNACTUBOCTI iX CTabiNbHOCTI, L0 'PYHTYETLCS Ha NpeACTaBAeHHAX HePensTUBICTUYHOI anrebpu cTpyMmiB.
MokasaHo, L0 MeTOZ MOPOAXYHYOro GyHKLi po3noginy knacuyHoro ¢pyHkLioHany borontobosa € Jocuts ede-
KTUBHVM iHCTPYMEHTOM Ans No6YyA0BU He3BiAHUX NpeACTaBieHb anrebpmn CTPyMiB Ta BiANOBIAHNX y3aranbHe-
HWX PO3KAaAIB Mip, BKNOYaKOUN BijOMe NepeTBOPEHHS A0 KONEKTUBHIMX 3MiHHUX. 3anNpOonoHOBaHa KOHCTPYKLLA
edekTBHOro oneparopa laMinbToHa, 06roBOPHOOTHCA 0COBNNBOCTI Oro cnekTpa B 3a/1€XHOCTI Bif CTiliKOCTI
piBHOBary cnuctem baraTbox 4acTUHOK.

KnrouoBi cnoBa: anrebpa cTpymis, Mopogxyroyunii QyHKLioHan borono6osa, npecraBaeHHs KOEKTUBHUX
3MIHHUX, PEKOHCTPYKLiA ornepaTtopa aminbToHa
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