
Condensed Matter Physics, 2013, Vol. 16, No 2, 23002: 1–16

DOI: 10.5488/CMP.16.23002

http://www.icmp.lviv.ua/journal

Self-consistent approach for Bose-condensed atoms

in optical lattices

V.I. Yukalov

Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Received December 7, 2012, in final form March 6, 2013

Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein

condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is

employed, ensuring a gapless spectrum of collective excitations and the validity of conservation laws. In order

to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as

well as in the Wannier representations. Both these ways result in similar expressions that are compared for the

self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction

of atoms in an optical lattice is derived.

Key words: Bose-Einstein condensate, representative ensemble, optical lattices, Bloch representation,

Wannier representation, superfluidity

PACS: 03.75.Hh, 03.75.Nt, 05.30.Ch, 05.30.Jp, 05.70.Ce

1. Introduction

Systems with Bose-Einstein condensate are interesting objects from both theoretical and experimen-

tal points of view. That is why they have been intensively studied in recent years. Vast literature on this

problem can be found in the books [1–4] and review articles [5–15]. Creation of optical lattices has made it

possible to achieve a new dimension in the physics of cold atoms, providing an opportunity for numerous

novel applications and for modeling many effects typical of condensed matter [16–19].

The occurrence of Bose-Einstein condensate is intimately related to the global gauge symmetry break-

ing [2, 11] that is a necessary and sufficient condition for Bose-Einstein condensation. In the theory of

Bose-condensed systems, there exists an old problem, formulated by Hohenberg and Martin [20], who

showed that, as soon as gauge symmetry is broken, the description of such a system suffers from one of

the defects, either yielding unphysical spectrum of collective excitations or resulting in broken conser-

vation laws and incorrect thermodynamics. Any of these deficiencies implies that the description is not

self-consistent, corresponding to an unstable system. This problem has been solved by employing repre-

sentative statistical ensembles [21–23] to systems with a broken gauge symmetry [24–27]. This approach

was shown to be completely self-consistent and gapless, with the Hartree-Fock-Bogolubov (HFB) approx-

imation [28, 29] providing an accurate description for uniform Bose systems [27, 30–32], as well as for

these systems in random external potentials [33, 34].

In the present paper, this self-consistent approach is applied to Bose-condensed atoms in optical lat-

tices. Sections 2 and 3, contain the main definitions related to optical lattices and Bose-condensed atoms,

respectively. In section 4, the Bloch representation is used, which can be more suitable for weak binding,

while in section 5, the Wannier representation is employed, which is more convenient for tight binding.

Both these cases are treated in the HFB approximation leading to similar results. However, the Wannier

representation, yielding the Hubbard Hamiltonian, is a bit simpler. Some thermodynamic characteristics

are considered in section 6, where a general and convenient formula for superfluid fraction is derived.

Section 7 concludes.
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Throughout the paper, the system of units is used, where the Planck and Boltzmann constants are set

to be one.

2. Optical lattices

Optical lattices are created by laser beams forming standing waves, which corresponds to the forma-

tion of a periodic lattice potential

VL(r+a) =VL(r) , (2.1)

with a being a lattice vector with the components aα = λα/2, where λα is a laser wavelength and

α = 1,2, . . . ,d enumerates spatial components in a d -dimensional space. The standard form of the lat-

tice potential is

VL(r)=
d
∑

α=1

Vα sin2(kα
0 rα) , (2.2)

with the laser wave vector

k0 =
{

kα
0 =

2π

λα
=

π

aα

}

. (2.3)

The lattice depth is defined by the parameter

V0 ≡
1

d

d
∑

α=1

Vα . (2.4)

Another important quantity, characterizing an optical lattice, is the recoil energy

ER ≡
k2

0

2m
, k2

0 ≡
d
∑

α=1

(kα
0 )2 , (2.5)

where m is atomic mass. The ratio ER/V0 characterizes the relative lattice depth.

3. Bose atoms

The lattice is loaded with Bose atoms, whose interactions are measured by means of the scattering

length as entering the effective interaction strength

Φ0 ≡ 4π
as

m
. (3.1)

The energy operator is given by the Hamiltonian

Ĥ =
∫

ψ̂†(r)

(

−
∇2

2m
+U +VL

)

ψ̂(r)dr +
1

2
Φ0

∫

ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)dr , (3.2)

in which U = U (r) is a trapping potential, if any, and VL = VL(r) is a lattice potential. The atom field

operators ψ̂(r) satisfy the Bose commutation relations.

The existence of Bose-Einstein condensate necessarily requires that global gauge symmetry should

be broken [2, 11]. The most straightforward way of the gauge symmetry breaking is by means of the

Bogolubov shift of the field operator

ψ̂(r) = η(r)+ψ1(r) . (3.3)

Here, the first term is the condensate wave function normalized to the number of condensed atoms

N0 =
∫

|η(r)|2dr . (3.4)
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The second term is the field operator of uncondensed atoms, whose number is given by the statistical

average

N1 = 〈N̂1〉 , N̂1 ≡
∫

ψ†
1(r)ψ1(r)dr (3.5)

of the number-of-particle operator N̂1.

The uncondensed atoms are normal in the sense that the average of their field operator is zero,

〈ψ1〉 = 0. (3.6)

To avoid double counting of the degrees of freedom, the orthogonality condition

∫

η∗(r)ψ1(r)dr= 0 (3.7)

is required. This condition is a direct consequence of orthogonality of wave functions serving as a basis

for the expansion of the field operator ψ̂(r) [28, 29].

The number of atoms per lattice site is called a filling factor that is defined as the ratio

ν≡
N

NL
= ρad (N = N0 +N1) , (3.8)

in which a is a mean interatomic distance and ρ is the average atomic density,

a ≡
(

V

NL

)1/d

, ρ ≡
N

V
. (3.9)

The representative ensemble for a system with a broken gauge symmetry is characterized [24–27] by

the grand Hamiltonian

H = Ĥ −µ0N0 −µ1N̂1 − Λ̂ , (3.10)

where µ0 and µ1 are the Lagrange multipliers ensuring the validity of normalizations (3.4) and (3.5),

while the term Λ̂ is defined so that the terms linear in the operatorsψ1 are cancelled in the Hamiltonian,

which ensures the condition (3.6).

It is worth stressing that the introduction of two Lagrange multipliers, µ0 and µ1 is necessary due to

the presence of two independent variables in the Bogolubov shift (3.3) and the related two normaliza-

tion conditions (3.4) and (3.5). It is a general mathematical fact that the number of Lagrange multipliers

should be equal to the number of imposed constraints, such as the normalization conditions. The theory

can become non-self-consistent if the number of Lagrange multipliers is smaller than that of the imposed

constraints. Introducing two Lagrange multipliers does not exclude that in particular cases, these multi-

pliers could become equal, as it happens in the Bogolubov approximation [28, 29]. The physical meaning

of using two Lagrange multipliers has been thoroughly explained in the previous papers [11, 14, 19, 23–

27, 30–33].

4. Bloch representation

One usually considers optical lattices by reducing the problem to a Hubbard Hamiltonian by means

of the Wannier representation which is convenient in the case of a tight binding. Here, we show that it is

equivalently possible to employ the Bloch representation that can be more appropriate for weak binding

and leads to the results similar to those in the Wannier representation to be considered in the following

section. Below, we assume that there is no trapping potential, so that the system is ideally periodic.

Let {ϕnk (r)} be the basis of Bloch functions labeled by the zone index n and quasi-momentum multi-

index k. Then, the field operators of uncondensed atoms can be expanded over this basis,

ψ1(r)=
∑

nk

ankϕnk (r) . (4.1)
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The basis should be chosen so that the Bloch functions are natural orbitals [35], that is, the eigenfunctions

of the density matrix

ρ1(r,r′) ≡ 〈ψ†
1(r′)ψ1(r)〉 . (4.2)

Then, the density matrix enjoys a diagonal expansion

ρ1(r,r′) =
∑

nk

〈a†
nk

ank〉ϕnk (r)ϕ∗
nk(r′) . (4.3)

In other words, the use of natural orbitals simplifies the consideration due to the following properties

〈a†
nk

amp〉 = δmnδkp〈a†
nk

ank〉 , 〈ank amp〉 = δmnδ−kp〈ank anp 〉 . (4.4)

Substituting expansion (4.1) into the grand Hamiltonian (3.10) gives the sum

H = H (0) +H (2) +H (3) +H (4) . (4.5)

Here, the first term

H (0) =
∫

η∗(r)

(

−
∇2

2m
+VL −µ0

)

η(r)dr +
1

2
Φ0

∫

|η(r)|4dr (4.6)

contains only a condensate wave function, but no field operators of uncondensed atoms. The term, linear

in ψ1, is canceled by the Lagrange term Λ̂. In the following expressions, the pair {n,k}, for brevity, will

be denoted as k , while the set {n,−k}, as −k. Then, the term, containing the products of two operators of

uncondensed atoms, reads as

H (2) =
∑

kp

[∫

ϕ∗
k (r)

(

−
∇2

2m
+VL −µ1 +2Φ0|η(r)|2

)

ϕp (r)dr

]

a†
k

ap

+
1

2

∑

kp

(

Φkp a†
k

a†
p +Φ

∗
kp ap ak

)

, (4.7)

where

Φkp ≡Φ0

∫

ϕ∗
k (r)ϕ∗

p (r)η2(r)dr .

The term of third order, with respect to the products of the field operators of uncondensed atoms, is

H (3) =
∑

kpq

(∫

Φkpq a†
k

a†
p aq +Φ

∗
kpq a†

q ap ak

)

, (4.8)

with

Φkpq ≡Φ0

∫

ϕ∗
k (r)ϕ∗

p (r)ϕq (r)η(r)dr .

And the fourth-order term is

H (4) =
1

2

∑

kpql

Φkpql a†
k

a†
p aq al , (4.9)

where

Φkpql ≡Φ0

∫

ϕ∗
k (r)ϕ∗

p (r)ϕq(r)ϕl (r)dr .

In the Hartree-Fock-Bogolubov (HFB) approximation, the third-order term H (3) yields expressions

linear inψ1, which should be canceled by the Lagrange canceler Λ̂. The fourth-order part takes the form

H (4) =
1

2

∑

kpq

(

4Φkqqp nq a†
k

ap +Φkpqqσq a†
k

a†
p +Φ

∗
kpqqσ

∗
q ap ak

)

−
1

2

∑

kp

(

2Φkppk nk np +Φkkppσ
∗
kσp

)

, (4.10)
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in which the notations for the so-called normal

nk ≡ 〈a†
k

ak〉 , (4.11)

and anomalous

σk ≡ 〈ak a−k〉 (4.12)

averages are used. The normal average (4.11) is the distribution of atoms, while the absolute value |σk |
of the anomalous average (4.12) is the distribution of the correlated atomic pairs [19, 25, 29].

Let us introduce the notation

ωkp ≡
∫

ϕ∗
k (r)

(

−
∇2

2m
+VL +2Φ0|η|2

)

ϕp (r)dr + 2
∑

q

Φkqqp nq − µ1δkp (4.13)

and

∆kp ≡Φkp +
∑

q

Φkpqqσq . (4.14)

Then, the grand Hamiltonian (4.5) in the HFB approximation can be written as

H = EHFB +
∑

kp

ωkp a†
k

ap +
1

2

∑

kp

(

∆kp a†
k

a†
p +∆

∗
kp ap ak

)

, (4.15)

where the first term is the nonoperator quantity

EHFB = H (0) −
1

2

∑

kp

(2Φkppk nk np +Φkkppσ
∗
kσp ) . (4.16)

The quadratic Hamiltonian (4.15) can be diagonalized and all observables calculated. However, the

resulting expressions are rather complicated. In order to simplify the calculations, it is possible to assume

that the main contribution in the above formulas comes from diagonal terms, since the Bloch functions

are mutually orthogonal. This can be referred to as the diagonal approximation, when expressions (4.13)

and (4.14) take the form

ωkp = δkpωk , ∆kp = δ−kp∆k , (4.17)

in which

ωk =
∫

ϕ∗
k (r)

(

−
∇2

2m
+VL +2Φ0|η(r)|2

)

ϕk (r)dr + 2
∑

q

Φkqqk nq − µ1 (4.18)

and

∆k =Φ−kk +
∑

q

Φ−kkqqσq . (4.19)

The use of the diagonal approximation is not compulsory and it is possible to diagonalize the

quadratic form (4.15) without it. This approximation, however, essentially simplifies the formulas. Justifi-

cation of this approximation is based on the fact that the expansion functionsϕk aremutually orthogonal,

which makes it reasonable to assume that the matrix elements over these functions are such that their

diagonal elements are larger than off-diagonal.

In the diagonal approximation, Hamiltonian (4.15) reduces to

H = EHFB +
∑

k

ωk a†
k

ak +
1

2

∑

k

(

∆k a†
k

a†
−k

+∆
∗
k a−k ak

)

. (4.20)

This form is much simpler to diagonalize using the Bogolubov canonical transformation [28, 29].
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Following a standard procedure by diagonalizing Hamiltonian (4.20), we find the Bogolubov spectrum

of elementary excitations

εk =
√

ω2
k
−∆

2
k

. (4.21)

The condition of condensate existence [14, 19] requires that the spectrum should be gapless,

lim
k→0

εk = 0, εk Ê 0. (4.22)

This condition is equivalent to the Hugenholtz-Pines theorem [36]. Hence, we get

µ1 =
1

N0

∫

η∗(r)

{

−
∇2

2m
+VL(r)+Φ0[ρ0(r)+2ρ1(r)]

}

η(r)dr

−
Φ0

N0

∫

σ1(r)[η∗(r)]2dr , (4.23)

where the notations are used for the condensate density

ρ0(r)≡ |η(r)|2 , (4.24)

density of uncondensed atoms

ρ1(r)≡
∑

k

nk |ϕk (r)|2 , (4.25)

and the anomalous average

σ1(r)≡
∑

k

σkϕk (r)ϕ−k(r) . (4.26)

The equation for the condensate wave function, in the case of an equilibrium system, is defined by

the variational condition
〈

δH

δη∗(r)

〉

= 0, (4.27)

which yields the equation

{

−
∇2

2m
+VL(r)+Φ0[ρ0(r)+2ρ1(r)]

}

η(r)+Φ0σ1(r)η∗(r) =µ0η(r) . (4.28)

The latter gives the condensate chemical potential

µ0 =
1

N0

∫

η∗(r)

{

−
∇2

2m
+VL(r)+Φ0[ρ0(r)+2ρ1(r)]

}

η(r)dr

+
Φ0

N0

∫

σ1(r)[η∗(r)]2dr . (4.29)

Comparing expressions (4.23) and (4.29), we see that they are connected by the relation

µ0 =µ1 +
2Φ0

N0

∫

σ1(r)[η∗(r)]2dr . (4.30)

Evidently, the Lagrange multipliers µ0 and µ1 do not coincide. The system chemical potential is de-

fined through the equation

〈H〉 = 〈Ĥ〉−µN , (4.31)

which yields

µ=
1

N
(〈Ĥ〉−〈H〉) . (4.32)
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This leads to the expression

µ=µ0n0 +µ1n1 , (4.33)

in which the condensate fraction n0 and the fraction of uncondensed atoms, n1, are introduced,

n0 ≡
N0

N
, n1 ≡

N1

N
.

Invoking equation (4.30), we get

µ=µ1 +
2Φ0

N

∫

σ1(r)[η∗(r)]2 dr . (4.34)

Sometimes, one requires that µ should be equal to µ0 and µ1, which forces us to assume that the

anomalous average σ1 should be zero. Such a requirement has no physical reason. In addition, it can be

shown by direct calculations [14, 19, 37] that the anomalous average is always comparable with or larger

than either the density of uncondensed atoms or that of condensed atoms. Therefore, there is no such

a region of parameters, where it could be admissible to neglect the anomalous average, but to keep the

normal density and the density of condensed atoms. The sole possibility could be at temperatures close

to zero and asymptotically weak interactions, when, though the anomalous average is three times larger

than the normal density, both of them are much smaller than the condensate density. Then, it could be

possible to omit both the anomalous average and the normal density, keeping only the condensate density.

But neglecting one of them, though keeping another one, is mathematically wrong. Moreover, neglecting

the anomalous average is not merely mathematically incorrect, but it is qualitatively deficient, making

thermodynamics non-self-consistent, disturbing the condensate transition to the first order, and resulting

in unphysical divergences of compressibility and structure factor [38].

Since this section is based on the Bloch representation, it is necessary to briefly describe how the

Bloch functions could be defined. Formally, as has been mentioned above, the basis of Bloch functions

should be chosen as a set of natural orbitals [35], since this gives a diagonal expansion for the density

matrix (4.3). However, the problem is that the density matrix (4.2) is not known explicitly. Hence, it is

impossible to find its exact eigenfunctions representing the natural orbitals. A standard way is to define

the Bloch functions as solutions to the equation

[

−
∇2

2m
+VL(r)

]

ϕnk (r)= Enkϕnk (r) . (4.35)

It is also possible to define Bloch functions as eigenfunctions of the nonlinear Schrödinger equation

[19], including the interaction term into equation (4.35). Then, calculations become essentially more com-

plicated. In addition, there arises a problem of nonorthogonality of eigenfunctions of the nonlinear equa-

tion. Thus, the simplest way is to use the solutions to the linear equation (4.35) as a basis, complimenting

it by conservation conditions (4.4).

5. Wannier representation

The field operator of atoms can be expanded over the basis of Wannier functions,

ψ̂(r)=
∑

n j

ĉn j wn(r−a j ) , (5.1)

where the index n = 1,2, . . . labels bands and j = 1,2, . . . , NL enumerates the lattice sites. Substituting this

into Hamiltonian (3.2), considering just a single lowest band, and taking into account only the nearest-

neighbor interactions, one comes to the Hubbard model

Ĥ =−J
∑

〈i j 〉
ĉ†

i
ĉ j +

U

2

∑

j

ĉ†
j
ĉ†

j
ĉ j ĉ j + h0

∑

j

ĉ†
j
ĉ j , (5.2)
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here, the operators ĉ j satisfy the Bose commutation relations.

The parameters entering the Hubbard Hamiltonian (5.2) can be calculated in the tight-binding ap-

proximation. A detailed demonstration of this calculation can be found in reference [19]. For a three-

dimensional space in this approximation, we find the expressions

J =
3

4

(

π2 −4
)

V0 exp

(

−
3π2

4

√

V0

ER

)

, U =
√

8

π
k0asER

(

V0

ER

)3/4

,

h0 = 3ER

√

V0

ER
(d = 3) . (5.3)

The explanation of the notations for V0, ER, and k0 are given in section 2.

The single-band Hamiltonian (5.2) is called the boson Hubbard model. It is possible to generalize this

model by taking into account two or more bands [39, 40]. Here, we consider the single-band case, when

the system displays Bose-Einstein condensation, though.

Employing the Bogolubov shift (3.3), we have the condensate wave function

η(r)=
p
νn0

∑

j

w(r−a j ) , (5.4)

with n0 = N0/N , and the operator of uncondensed atoms

ψ1(r)=
∑

j

c j w(r−a j ) . (5.5)

In terms of the operators c j , the Bogolubov shift reads as follows:

ĉ j =
p
νn0 +c j . (5.6)

Condition (3.6) leads to the requirement

〈c j 〉 = 0. (5.7)

And from the orthogonality condition (3.7), it follows that

∑

j

c j = 0. (5.8)

The grand Hamiltonian (3.10), with

Λ̂=
∑

j

(

λ j c†
j
+λ∗

j c j

)

,

takes the form (4.5). The constant h0 can be incorporated into the chemical potentials µ0 and µ1. The

zero-order term is

H (0) =−J z0n0N +
U

2
νn2

0 N −µ0n0N , (5.9)

where the number of the nearest neighbors is denoted as

z0 ≡
1

N

∑

〈i j 〉
1. (5.10)

The first-order term is canceled by the linear canceler Λ̂. The second-order term is

H (2) =−J
∑

〈i j 〉
c†

i
c j + (2Uνn0 −µ1)

∑

j

c†
j
c j +

U

2
νn0

∑

j

(

c†
j
c†

j
+c j c j

)

. (5.11)

The third-order term reads as follows:

H (3) =U
p
νn0

∑

j

(

c†
j
c†

j
c j +c†

j
c j c j

)

. (5.12)
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The fourth-order terms is

H (4) =
U

2

∑

j

c†
j
c†

j
c j c j . (5.13)

The fraction of uncondensed atoms takes the form

n1 =
1

N

∑

j

〈c†
j
c j 〉 =

1

ν
〈c†

j
c j 〉 , (5.14)

where the lattice ideality is used. For the dimensionless anomalous average, we have

σ=
1

N

∑

j

〈c j c j 〉 =
1

ν
〈c j c j 〉 . (5.15)

The necessary condition of the system stability

〈

∂H

∂N0

〉

= 0 (5.16)

yields

µ0 =−J z0 +νU

[

n0 +2n1 +
1

2
(σ∗+σ)

]

+
U

2
p
νn0

∑

j

〈c†
j
c†

j
c j +c†

j
c j c j 〉 . (5.17)

The operators c j can be expanded over the Fourier basis,

c j =
1

p
NL

∑

k

ak eik·a j , (5.18)

where k runs over the Brillouin zone.

Let us consider a cubic lattice. Then, the second-order term (5.11) becomes

H (2) =
∑

k

[

−2J
d
∑

α=1

cos(kαa)+2Uνn0 −µ1

]

a†
k

ak +
U

2
νn0

∑

k

(

a†
k

a†
−k

+a−k ak

)

. (5.19)

The third-order and fourth-order terms are

H (3) =U

√

νn0

NL

∑

kp

(

a†
k

a†
p ak+p +a†

k+p
ap ak

)

(5.20)

and, respectively,

H (4) =
U

2NL

∑

kpq

a†
k

a†
p ak+p ap−q . (5.21)

In the HFB approximation, the third-order term is zero, due to condition (5.8). And the fourth-order

term in the HFB approximation reads as follows:

H (4) =
ν

2
U

∑

k

(

4n1a†
k

ak +σa†
k

a†
−k

+σ∗a−k ak

)

−
ν

2
U N

(

2n2
1 +|σ|2

)

. (5.22)

Introducing the notations

ωk ≡−2J
d
∑

α=1

cos(kαa)+2νU −µ1 (5.23)

and

∆≡ νU (n0 +σ) (5.24)
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for the grand Hamiltonian (4.5), we obtain

H = EHFB +
∑

k

ωk a†
k

ak +
1

2

∑

k

(

∆a†
k

a†
−k

+∆
∗a−k ak

)

, (5.25)

where

EHFB ≡ H (0) −νN
U

2

(

2n2
1 +|σ|2

)

.

The condensate chemical potential (5.17) in the HFB approximation becomes

µ0 =−z0 J +νU (1+n1 +σ) . (5.26)

Diagonalizing Hamiltonian (5.25), we get the Bogolubov Hamiltonian

HB = EB +
∑

k

εk b†
k

bk , (5.27)

in which

EB = EHFB +
1

2

∑

k

(εk −ωk ) ,

and the Bogolubov spectrum is

εk =
√

ω2
k
−∆2 . (5.28)

The condition of the condensate existence (4.22) yields

µ1 =−z0 J +νU (1+n1 −σ) . (5.29)

Then, equation (5.23) becomes

ωk =∆+4J
d
∑

α=1

sin2

(

kαa

2

)

. (5.30)

And, introducing the notation

ek = 4J
d
∑

α=1

sin2

(

kαa

2

)

(5.31)

for the Bogolubov spectrum (5.28), we get

εk =
√

ek (ek +2∆) . (5.32)

Comparing equations (5.26) and (5.29) yields the relation

µ0 =µ1 +2νUσ . (5.33)

As is seen, µ0 does not coincide with µ1, by analogy with relation (4.30). The anomalous average cannot

be neglected, as is explained in section 4.

For the quasi-momentum atomic distribution and for the quasi-momentum representation of the

anomalous average, respectively, we find

nk ≡ 〈a†
k

ak 〉 =
ωk

2εk
coth

( εk

2T

)

−
1

2
, σk ≡ 〈ak a−k〉 =−

∆

2εk
coth

( εk

2T

)

. (5.34)

This shows that the normal and anomalous averages are connected by the relation

σ2
k = nk (1+nk )−

1

4sinh2(εk /2T )
.
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For the integral quantities (5.14) and (5.15), we have

n1 =
1

ρ

∫

B

nk
dk

(2π)d
, σ=

1

ρ

∫

B

σk
dk

(2π)d
.

The condensate fraction reads as

n0 = 1−
1

2ρ

∫

B

[

ωk

εk
coth

( εk

2T

)

−1

]

dk

(2π)d
, (5.35)

with the integration over the Brillouin zone.

Let us emphasize again that the anomalous average cannot be neglected for the principal reason. As is

evident form the above formulas, the anomalous average can be zero only when there is no condensate,

n0 = 0. Hence, there is no gauge symmetry breaking. However, as soon as there appears Bose-Einstein

condensate, the gauge symmetry becomes broken, and the anomalous average is never zero. It is always

comparable with or larger than either the density of uncondensed atoms or that of condensed atoms.

6. Thermodynamic characteristics

In the HFB approximation, the grand potential takes the form

Ω= EB +T V

∫

B

ln
(

1−e−βεk

) dk

(2π)d
, (6.1)

where the integration is over the Brillouin zone and

EB = H (0) −
N

2
νU

(

2n2
1 +σ2

)

+
N

2ρ

∫

B

(εk −ωk )
dk

(2π)d
.

The system chemical potential (4.33) is

µ= µ0n0 +µ1n1 =−z0 J +νU (1+n1 +σ−2n1σ) . (6.2)

For the ground-state energy

E0 ≡ EB +µN , (6.3)

we have

E0

N
=−z0 J +

1

2
νU

(

1+n2
1 −σ2 −2n1σ

)

+
1

2ρ

∫

B

(εk −ωk )
dk

(2π)d
. (6.4)

Atomic fluctuations are characterized by the number-of-atom operator variance

var(N̂) ≡ 〈N̂ 2〉−〈N̂〉2 , (6.5)

in which

N̂ = N0 + N̂1 (6.6)

is the operator of the total number of atoms. Since the first term N0 is a non-operator number, one has

var(N̂) = var(N̂1). (6.7)

In the HFB approximation, we get

var(N̂1) =
N T

νU (n0 +σ)
. (6.8)
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The number-of-atom operator variance defines the isothermic compressibility

κT =
var(N̂)

ρT N
=

1

ρνU (n0 +σ)
. (6.9)

The atomic fluctuations are, of course, normal and the compressibility is finite everywhere below Tc.

The compressibility can diverge only at the critical point Tc.

Bose-Einstein condensation is a second-order phase transition occurring at a temperature Tc, where

n0 = 0 and σ= 0. At this point, the atomic density is

ρ =
1

2

∫

B

[

coth

(

ωk

2Tc

)

−1

]

dk

(2π)d
. (6.10)

Solving this equation in the Debye approximation, we obtain the critical temperature

Tc = 4π
d −2

d

[

Γ

(

1+
d

2

)]2/d

Jν . (6.11)

This tells us that Tc is not defined for d = 1 and Tc = 0 for d = 2. In three dimensions, we have

Tc ≃ 5Jν (d = 3) . (6.12)

The general equation for the superfluid fraction [14, 19] can be written in the form

ns = 1−
Q

Q0
, (6.13)

with the classical dissipated heat

Q0 ≡
d

2
T , (6.14)

where d is spatial dimensionality, and

Q =
var(P̂ )

2mN
(6.15)

is the actual dissipated heat, expressed through the variance of the momentum operator

P̂ ≡
∫

ψ†
1(r)(−i~∇)ψ1(r)dr . (6.16)

In an equilibrium system, this variance is

var(P̂) = 〈P̂2〉 . (6.17)

Note that the condensed fraction does not contribute to the operator of momentum (6.16) due to the

lattice periodicity [19].

For a three-dimensional cubic lattice, with a lattice spacing a, we obtain

Q =
|p(a)|2

2mρ

∫

B

∑

α sin2(kαa)

sinh2(εk /2T )

dk

(2π)3
, (6.18)

where the expression

|p(a)|2 ≡
1

a2
exp

(

−
a2

2l 2
0

)

(6.19)
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is used, derived in the tight-binding approximation. Here, the notation

l0 ≡
1

p
mω0

=
1

p
2m (ERV0)1/4

(6.20)

means an effective localization length.

For a three-dimensional cubic lattice, the relations

a2 =
3π

2mER
, k2

0 = 3
(π

a

)2
(6.21)

are valid, which yield the ratio

a2

l 2
0

= 3π2

√

V0

ER
. (6.22)

Then, equation (6.19) can be written as follows:

|p(a)|2 =
1

a2
exp

(

−
3π2

2

√

V0

ER

)

. (6.23)

Comparing this with the tunneling parameter defined in equations (5.3), we have

|p(a)|2 =
1

2π2

(

J

aV0

)2

. (6.24)

Therefore, the dissipated heat (6.18) is written as follows:

Q =
a

mν

(

J

2πV0

)2 ∫

B

∑

α sin2(kαa)

sinh2(εk /2T )

dk

(2π)3
. (6.25)

In this way, the self-consistent mean-field approximation allows us to calculate any thermodynamic

characteristic.

7. Conclusion

A self-consistent approach, based on the use of a representative statistical ensemble, developed ear-

lier for uniform Bose-condensed systems, is extended to Bose atoms in optical lattices. The approach

ensures a gapless spectrum of collective excitations, the validity of conservation laws, and self-consistent

thermodynamics. It is shown that the approach can be applied to the lattices with a weak binding as well

as with tight binding. For the former case, the Bloch representation is more appropriate, while for the

latter case, the Wannier representation is more suitable. Both the Bloch and theWannier representations

lead to a similar description. The results are compared for the self-consistent Hartree-Fock-Bogolubov

approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is

derived.

The HFB approximation, used here, is based on the assumption of the condensate existence, which

is taken into account by means of the Bogolubov shift, explicitly breaking the global gauge symmetry

of the system. This approximation, therefore, is assumed to provide good description, when the Bose

condensate is present, and may be inappropriate when the system passes to an insulating state. This

implies that the HFB approximation for optical lattices can provide an accurate description for spatial

dimensions larger than one (d > 1) and nonzero temperatures below the Bose-Einstein condensation

temperature, 0 < T < Tc.

The case of zero temperature requires a special consideration. Cubic optical lattices at zero tempera-

ture and unity filling factor ν = 1 have been extensively studied, mainly from the viewpoint of an insu-

lating state, with the purpose of defining the stability boundary of this state, corresponding to the critical

transition to the superfluid state. The dimensionless parameter

u ≡
U

z0 J
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has been varied. For a cubic lattice, the number of nearest neighbors is z0 = 2d . This zero-temperature

problem has been treated in the Gutzwiller approximation [41, 42], dynamical mean-field approximation

[43], direct numerical diagonalization [44], density-matrix renormalization group [45], strong-coupling

perturbation theory [46, 47], and Monte Carlo simulations [48–50]. The critical values of the above pa-

rameter were found for d = 1 as uc = 1.8, for d = 2, as uc = 4.2, and for d = 3, as uc = 4.9. The HFB

approximation underestimates quantum fluctuations at zero temperature. That is why it is applicable

only for nonzero temperatures, when thermal fluctuations become more important.

The advantage of using the developed approach for Bose-condensed atoms in optical lattices at finite

temperatures is its relative simplicity, correct gapless spectrum, the validity of conservation laws, and

self-consistent thermodynamics.
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Самоузгоджений метод для атомiв Бозе-конденсату

в оптичних гратках

В.I. Юкалов

Лабораторiя теоретичної фiзики iм. М.М. Боголюбова, Об’єднаний iнститут ядерних дослiджень,

141980 Дубна, Росiя

Розглядаються атоми Бозе в оптичних гратках при низьких температурах i слабких взаємодiях, коли кон-

денсат Бозе-Ейнштейна є утворений. Застосовано самоузгоджений пiдхiд, що базується на використаннi

репрезентативного статистичного ансамблю i забезпечує безщiлинний спектр колективних збуджень i

чиннiсть законiв збереження. Для того, щоб показати застосовнiсть пiдходу до обох, слабкого i сильного

зв’язку, проблема розглядається в представленнях Блоха i Ваньє. Обидва способи приводять до подiбних

виразiв, що порiвнюються з самоузгодженим наближенням Хартрi-Фока-Боголюбова. Отримано зручну

загальну формулу для надплинної фракцiї атомiв в оптичнiй гратцi.

Ключовi слова: конденсат Бозе-Ейштейна, репрезентативний ансамбль, оптичнi гратки, представлення

Блоха, представлення Ваньє, надплиннiсть
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