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Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein
condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is
employed, ensuring a gapless spectrum of collective excitations and the validity of conservation laws. In order
to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as
well as in the Wannier representations. Both these ways result in similar expressions that are compared for the
self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction
of atoms in an optical lattice is derived.
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1. Introduction

Systems with Bose-Einstein condensate are interesting objects from both theoretical and experimen-
tal points of view. That is why they have been intensively studied in recent years. Vast literature on this
problem can be found in the books [1-4] and review articles [5-15]. Creation of optical lattices has made it
possible to achieve a new dimension in the physics of cold atoms, providing an opportunity for numerous
novel applications and for modeling many effects typical of condensed matter [16-19].

The occurrence of Bose-Einstein condensate is intimately related to the global gauge symmetry break-
ing [2,[11] that is a necessary and sufficient condition for Bose-Einstein condensation. In the theory of
Bose-condensed systems, there exists an old problem, formulated by Hohenberg and Martin [20], who
showed that, as soon as gauge symmetry is broken, the description of such a system suffers from one of
the defects, either yielding unphysical spectrum of collective excitations or resulting in broken conser-
vation laws and incorrect thermodynamics. Any of these deficiencies implies that the description is not
self-consistent, corresponding to an unstable system. This problem has been solved by employing repre-
sentative statistical ensembles [21-23] to systems with a broken gauge symmetry [24-27]. This approach
was shown to be completely self-consistent and gapless, with the Hartree-Fock-Bogolubov (HFB) approx-
imation [28,129] providing an accurate description for uniform Bose systems [27, |30-32], as well as for
these systems in random external potentials [33,/34].

In the present paper, this self-consistent approach is applied to Bose-condensed atoms in optical lat-
tices. Sections 2 and 3, contain the main definitions related to optical lattices and Bose-condensed atoms,
respectively. In section 4, the Bloch representation is used, which can be more suitable for weak binding,
while in section 5, the Wannier representation is employed, which is more convenient for tight binding.
Both these cases are treated in the HFB approximation leading to similar results. However, the Wannier
representation, yielding the Hubbard Hamiltonian, is a bit simpler. Some thermodynamic characteristics
are considered in section 6, where a general and convenient formula for superfluid fraction is derived.
Section 7 concludes.
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Throughout the paper, the system of units is used, where the Planck and Boltzmann constants are set
to be one.

2. Optical lattices

Optical lattices are created by laser beams forming standing waves, which corresponds to the forma-
tion of a periodic lattice potential

Vi(r+a) =V (r), (2.1)

with a being a lattice vector with the components a, = 1,/2, where A4 is a laser wavelength and
a =1,2,...,d enumerates spatial components in a d-dimensional space. The standard form of the lat-
tice potential is

d
VL) = Y Vysin®(k§ra), (2.2)
a=1
with the laser wave vector
2 7w
Ko = ka:_:_}. 2.3
0 { 0 Aa  Gq @3
The lattice depth is defined by the parameter
1 4
Vo== Y Va. 2.4
d a=1

Another important quantity, characterizing an optical lattice, is the recoil energy

2

d
— _0 2 _ a2
=2 k :E k9?2, 2.5
R 2 0 azl( 0) ( )

where m is atomic mass. The ratio Er/Vp characterizes the relative lattice depth.

3. Bose atoms

The lattice is loaded with Bose atoms, whose interactions are measured by means of the scattering
length as entering the effective interaction strength

as
Oy =4mr —. 3.1
m

The energy operator is given by the Hamiltonian

. . & . 1 o
A= f Aty (— S+ U+ VL) P dr+ P f ¥ 09 @y@ydr, 3.2)

in which U = U(r) is a trapping potential, if any, and Vi, = Vi,(r) is a lattice potential. The atom field
operators ¥ (r) satisfy the Bose commutation relations.

The existence of Bose-Einstein condensate necessarily requires that global gauge symmetry should
be broken [2, [11]. The most straightforward way of the gauge symmetry breaking is by means of the
Bogolubov shift of the field operator

@) =1+ @. (3.3)

Here, the first term is the condensate wave function normalized to the number of condensed atoms

Nozfln(r)lzdr. (3.4)
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The second term is the field operator of uncondensed atoms, whose number is given by the statistical
average

N =Ny, = f vl @y ) dr (3.5)

of the number-of-particle operator ;.
The uncondensed atoms are normal in the sense that the average of their field operator is zero,

(1) =0. (3.6)

To avoid double counting of the degrees of freedom, the orthogonality condition

fn*(r)wl(r) dr=0 3.7

is required. This condition is a direct consequence of orthogonality of wave functions serving as a basis
for the expansion of the field operator ¥ (r) [28,129].
The number of atoms per lattice site is called a filling factor that is defined as the ratio

N d
V=—=pa (N=Ny+ Nyp), (3.8)
N

in which a is a mean interatomic distance and p is the average atomic density,

as=s N , p_V. .

The representative ensemble for a system with a broken gauge symmetry is characterized [24-27] by
the grand Hamiltonian

HZI:I—/J()N()—/,QNI—]\, (3.10)

where po and p; are the Lagrange multipliers ensuring the validity of normalizations (3.4) and (3.5),
while the term A is defined so that the terms linear in the operators 1, are cancelled in the Hamiltonian,
which ensures the condition (3.6).

It is worth stressing that the introduction of two Lagrange multipliers, yo and p; is necessary due to
the presence of two independent variables in the Bogolubov shift (3.3) and the related two normaliza-
tion conditions (3.4) and (3.5). It is a general mathematical fact that the number of Lagrange multipliers
should be equal to the number of imposed constraints, such as the normalization conditions. The theory
can become non-self-consistent if the number of Lagrange multipliers is smaller than that of the imposed
constraints. Introducing two Lagrange multipliers does not exclude that in particular cases, these multi-
pliers could become equal, as it happens in the Bogolubov approximation [28,29]. The physical meaning
of using two Lagrange multipliers has been thoroughly explained in the previous papers [11,[14,[19, 23—
27,130-33].

4. Bloch representation

One usually considers optical lattices by reducing the problem to a Hubbard Hamiltonian by means
of the Wannier representation which is convenient in the case of a tight binding. Here, we show that it is
equivalently possible to employ the Bloch representation that can be more appropriate for weak binding
and leads to the results similar to those in the Wannier representation to be considered in the following
section. Below, we assume that there is no trapping potential, so that the system is ideally periodic.

Let {¢,(r)} be the basis of Bloch functions labeled by the zone index n and quasi-momentum multi-
index k. Then, the field operators of uncondensed atoms can be expanded over this basis,

Y1) =) ank@nr ). 4.1)
nk
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The basis should be chosen so that the Bloch functions are natural orbitals [35], that is, the eigenfunctions
of the density matrix

p1(r,r) =yl )y (). (4.2)
Then, the density matrix enjoys a diagonal expansion
p1r) =) (ah ) Puc @) (). 4.3)
nk

In other words, the use of natural orbitals simplifies the consideration due to the following properties
<“Lk“mp> =6mn6kp<a2kank), (AnkAmp) = O mnd _kp{ankanp) . 4.4
Substituting expansion (4.1) into the grand Hamiltonian (3.10) gives the sum
H=H"+H®+H® + HY . (4.5)

Here, the first term

V2 1
HO = fn* ) (— SV —,Uo) nwdr + ‘Dof In@)|*dr (4.6)

contains only a condensate wave function, but no field operators of uncondensed atoms. The term, linear
in v, is canceled by the Lagrange term A. In the following expressions, the pair {n, k}, for brevity, will
be denoted as k, while the set {n, -k}, as —k. Then, the term, containing the products of two operators of
uncondensed atoms, reads as

H® = Z f(pk(r)(—%+VL—p1+2¢’o|ﬂ(r)|2)(Pp(r)dr azap
kp
1 ot o
+22 Piparay,+Pp,apag) @.7)
kp

where
Dpp = q>0f<p;‘;(r)<p;(r)n2(r) dr.
The term of third order, with respect to the products of the field operators of uncondensed atoms, is
HY =Y (fq)kpqa;a;aq+d),’;pqa2apak , (4.8)
kpq
with
D pg E(I)()f(p;‘;(r)(p;(r)(pq(r)n(r) dr.
And the fourth-order term is
1
HY == % d)kpqla;a;aqal, (4.9)
2 ipal
where

D@ pgi Eq)ofw,t(r)w;(r)wq(r)wz(r) dr.

In the Hartree-Fock-Bogolubov (HFB) approximation, the third-order term H® yields expressions
linear in 11, which should be canceled by the Lagrange canceler A. The fourth-order part takes the form

1

@ _ T Tt * *

H = 5;} (4<1>qupnqakap+<1>kpqqaqakap+¢lkpqqaqapak)
pq

1
=5 2 (2Pxpprnicny + Prrppoop) 4.10)
kp
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in which the notations for the so-called normal

ni = (alar), 4.11)
and anomalous

o =(axa-g) (4.12)
averages are used. The normal average (4.11) is the distribution of atoms, while the absolute value |o |

of the anomalous average (4.12) is the distribution of the correlated atomic pairs [19,[25,[29].
Let us introduce the notation

V2
Wkp = f(p,t(r) (— o + VL+2(I)0|17|2 @p)dr + qu)qupnq - bkp (4.13)
q
and
Akp=Drp+ Y Pipgq0g- (4.14)
q
Then, the grand Hamiltonian (4.5) in the HFB approximation can be written as
1 *
H:EHFB+Zwkpazap + 2 Z(Akpaia;+Akpapak), (4.15)
kp kp
where the first term is the nonoperator quantity

1 *
Enrp = H? — 5 > @Dppknknp + Pripp0iTp). (4.16)
kp

The quadratic Hamiltonian (4.15) can be diagonalized and all observables calculated. However, the
resulting expressions are rather complicated. In order to simplify the calculations, it is possible to assume
that the main contribution in the above formulas comes from diagonal terms, since the Bloch functions
are mutually orthogonal. This can be referred to as the diagonal approximation, when expressions (4.13)
and (4.14) take the form

Wkp = Okpwi, Agp =06 _kplk, 4.17)
in which
Wi = ftp}i(r) (— % + Vi + 200 (®)1” | @i () dr + Z;dnquknq - (4.18)
and
Ag = q>_kk+;q>_kqua,,. (4.19)

The use of the diagonal approximation is not compulsory and it is possible to diagonalize the
quadratic form (4.15) without it. This approximation, however, essentially simplifies the formulas. Justifi-
cation of this approximation is based on the fact that the expansion functions ¢ are mutually orthogonal,
which makes it reasonable to assume that the matrix elements over these functions are such that their
diagonal elements are larger than off-diagonal.

In the diagonal approximation, Hamiltonian (4.15) reduces to

1
H = Eyrp +Zwkazak + EZ(Aka;aik+AZa_kak) ) (4.20)
k 3

This form is much simpler to diagonalize using the Bogolubov canonical transformation [28,29].
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Following a standard procedure by diagonalizing Hamiltonian (4.20), we find the Bogolubov spectrum

of elementary excitations
£ = \/wi—A‘i. 4.21)

The condition of condensate existence [14,19] requires that the spectrum should be gapless,

]lcin(l)gkzo, € =0. 4.22)

This condition is equivalent to the Hugenholtz-Pines theorem [36]. Hence, we get

1 . &
1 = ﬁofn (r){_%+VL(I')'HDO[PO(I‘)+2,01(1‘)]}77(1‘)d1‘
)
-2 | o1 m)13dr, (4.23)
Ny

where the notations are used for the condensate density

po(®) = [N, (4.24)
density of uncondensed atoms
p1(x) Ezk:”k“l’k(r”z, (4.25)
and the anomalous average
01(r) s%akq)k(rw_k(r). (4.26)

The equation for the condensate wave function, in the case of an equilibrium system, is defined by
the variational condition

< o0H >20, (.27
on*(r)
which yields the equation
VZ
{_ 57+ VL) + Dolpo () + 201 ()] } 1) + o1 (1) (1) = pon(x). (4.28)

The latter gives the condensate chemical potential

1 . V2
Mo = ﬁofn (r){_%'FVL(l')"'(DO[PO(r)+2,01(1')]}77(1')d1'
+%f01(r) [n*(¥))?dr. (4.29)
No

Comparing expressions (4.23) and (4.29), we see that they are connected by the relation

20
po = p1 + == fal(r) [n* (®))*dr. (4.30)
Np

Evidently, the Lagrange multipliers po and p; do not coincide. The system chemical potential is de-
fined through the equation

(Hy=(H)-uN, (4.31)

which yields

1 .
p= N(<H>_<H>)' (4.32)
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This leads to the expression
U= Uong + Hiny, (4.33)

in which the condensate fraction 7y and the fraction of uncondensed atoms, 7;, are introduced,

No N
ng=—, n=—.
TN TN
Invoking equation (4.30), we get
2(I)O * 2
W=+ Tfal(r) (n" (0]“dr. (4.34)

Sometimes, one requires that p should be equal to pp and p;, which forces us to assume that the
anomalous average o should be zero. Such a requirement has no physical reason. In addition, it can be
shown by direct calculations [14,[19,137] that the anomalous average is always comparable with or larger
than either the density of uncondensed atoms or that of condensed atoms. Therefore, there is no such
a region of parameters, where it could be admissible to neglect the anomalous average, but to keep the
normal density and the density of condensed atoms. The sole possibility could be at temperatures close
to zero and asymptotically weak interactions, when, though the anomalous average is three times larger
than the normal density, both of them are much smaller than the condensate density. Then, it could be
possible to omit both the anomalous average and the normal density, keeping only the condensate density.
But neglecting one of them, though keeping another one, is mathematically wrong. Moreover, neglecting
the anomalous average is not merely mathematically incorrect, but it is qualitatively deficient, making
thermodynamics non-self-consistent, disturbing the condensate transition to the first order, and resulting
in unphysical divergences of compressibility and structure factor [38].

Since this section is based on the Bloch representation, it is necessary to briefly describe how the
Bloch functions could be defined. Formally, as has been mentioned above, the basis of Bloch functions
should be chosen as a set of natural orbitals [35], since this gives a diagonal expansion for the density
matrix (4.3). However, the problem is that the density matrix is not known explicitly. Hence, it is
impossible to find its exact eigenfunctions representing the natural orbitals. A standard way is to define
the Bloch functions as solutions to the equation

vZ
[_ % + VL(®) | @i (®) = Epr@ni(x). (4.35)

It is also possible to define Bloch functions as eigenfunctions of the nonlinear Schrédinger equation
[19], including the interaction term into equation (Z.35). Then, calculations become essentially more com-
plicated. In addition, there arises a problem of nonorthogonality of eigenfunctions of the nonlinear equa-
tion. Thus, the simplest way is to use the solutions to the linear equation as a basis, complimenting
it by conservation conditions (4.4).

5. Wannier representation
The field operator of atoms can be expanded over the basis of Wannier functions,

) =) tnjwnlr—a)), G.1)
nj

where the index n=1,2,... labels bands and j =1,2,..., N, enumerates the lattice sites. Substituting this
into Hamiltonian (3.2), considering just a single lowest band, and taking into account only the nearest-
neighbor interactions, one comes to the Hubbard model

. U
_ AT Atata o KN
H——](izj)cicj+?;cjcjcjcj+h0;cjcj, (5.2)
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here, the operators ¢; satisfy the Bose commutation relations.

The parameters entering the Hubbard Hamiltonian can be calculated in the tight-binding ap-
proximation. A detailed demonstration of this calculation can be found in reference [19]. For a three-
dimensional space in this approximation, we find the expressions

3 2 Y/ 8 AV 3/4
“2 2 u-= \/—kodsER(—O) ,
4 ERr b4 ERr
[V
ho=3Er 1/ =  (d=3). (5.3)
Er

The explanation of the notations for Vj, Eg, and kj are given in section 2.

The single-band Hamiltonian is called the boson Hubbard model. It is possible to generalize this
model by taking into account two or more bands [39, 40]. Here, we consider the single-band case, when
the system displays Bose-Einstein condensation, though.

Employing the Bogolubov shift (3.3), we have the condensate wave function

N = vng ) wr-aj), (5.4)
J

]:%(n2—4) Vo exp

with ng = Ny/ N, and the operator of uncondensed atoms

w1(r) :chw(r—aj). (5.5)
j

In terms of the operators c;, the Bogolubov shift reads as follows:

¢j=vng+c;j. (5.6)
Condition leads to the requirement
(cj)=0. G.7)

And from the orthogonality condition (3.7), it follows that
Y ¢j=0. (5.8)
J
The grand Hamiltonian (G.10), with
A= Z(/ljc} +/1}“-cj) ,
J

takes the form (4.5). The constant /iy can be incorporated into the chemical potentials y and y;. The
zero-order term is

(0) u .
HY =—-JzgngN + 5 vigN — ono N, (5.9
where the number of the nearest neighbors is denoted as

20 =

Z 1. (5.10)

1
N @

The first-order term is canceled by the linear canceler A. The second-order term is

U

H® = —]Z c;rcj +Q2Uvng —MI)ZC}Cj ) VﬂoZ (c}cj. + cjcj) ) (5.11)
(ij) j J

The third-order term reads as follows:

H® = U\/Vl’loz((:}c‘j.(,‘j + c;cjcj) . (5.12)
j
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The fourth-order terms is
U
H(‘“:EZCTCTCJ-CJ-. (5.13)
J
The fraction of uncondensed atoms takes the form
n =iZ<c*c->=l<c*c-> (5.14)
1 N ; i Y jeir .
where the lattice ideality is used. For the dimensionless anomalous average, we have
! Y (eje) Liciep (5.15)
o=—) {cjcjy=—{cjcj). .
N4 Jeir =, N0

The necessary condition of the system stability

0H
W = 0 (516)

0

yields
Mo=—-Jzo+vU |no+2n + l (c*+0)| + v Z(cTcch + cT.cjcj). (5.17)
2 2/vng 7 7 J
The operators c; can be expanded over the Fourier basis,
cj= \/lﬁ Y e, (5.18)
L k

where k runs over the Brillouin zone.
Let us consider a cubic lattice. Then, the second-order term (5.11) becomes

d U
H = Xk: -2] Zlcos(kaa) +2Uvng — alak + £l vnOXk: (a;aik + a_kak) . (5.19)
a=
The third-order and fourth-order terms are
VI,
HY=vU /|2y (diﬂ;ﬂmp +al, apak) (5.20)
N, ip p
and, respectively,
U
HY =— % alalar.pap4. (5.21)
2N, kpg

In the HFB approximation, the third-order term is zero, due to condition (5.8). And the fourth-order
term in the HFB approximation reads as follows:

v v
HY = > Uy (4n1 azak +0a£aik +0* a_kak) -5 UN (2nf +ol?). (5.22)
k

Introducing the notations

d
wr=-2] Z cos(kqga)+2vU — 11y (5.23)
a=1
and
A=vU(ny+o0) (5.24)
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for the grand Hamiltonian (4.5), we obtain
1
H=EHFB+Xk:wkﬂ£ﬂk + E%(Aazﬂik‘FA*ﬂ—ka)’ (5.25)
where U
Enrp= H? —vN 5 (2n% +101%).
The condensate chemical potential (5.17) in the HFB approximation becomes
Uo=-20]+vU1+n; +0). (5.26)
Diagonalizing Hamiltonian (5.25), we get the Bogolubov Hamiltonian
Hp :EB+Xk:£kthk, (5.27)
in which
1
Ep = Eypp + 3 Y (er—wp),
k
and the Bogolubov spectrum is

ep= /Wi — A2 (5.28)

The condition of the condensate existence (4.22) yields

w=-zoJ+vU(Q+n;—0). (5.29)
Then, equation (5.23) becomes
d kqa
wk=A+4]Zsin2( - ) (5.30)
a=1 2
And, introducing the notation
d kqa
ex=47 ) sinz( - ) (5.31)
a=1 2

for the Bogolubov spectrum (5.28), we get

£ = Verler+2A). (5.32)
Comparing equations (5.26) and (5.29) yields the relation
po=p1+2vUo. (5.33)

As is seen, o does not coincide with y;, by analogy with relation (£.30). The anomalous average cannot
be neglected, as is explained in section 4.

For the quasi-momentum atomic distribution and for the quasi-momentum representation of the
anomalous average, respectively, we find

Wi

£
ng = <azak> = a coth(—k

1 _ A Ek
ZT)_ > ak=<aka_k)——acoth(—). (5.34)

2T
This shows that the normal and anomalous averages are connected by the relation

1

2
o.=n(l+ny)  ————.
k 4sinh?(e;/27T)
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For the integral quantities (5.14) and (G.15), we have

n lf” dk - lfa dk
1=— k> =- k .
2m)4 2m)4

Pga (27) P@ (27)

The condensate fraction reads as

-
np=1-—
0 20

A

with the integration over the Brillouin zone.

Let us emphasize again that the anomalous average cannot be neglected for the principal reason. As is
evident form the above formulas, the anomalous average can be zero only when there is no condensate,
np = 0. Hence, there is no gauge symmetry breaking. However, as soon as there appears Bose-Einstein
condensate, the gauge symmetry becomes broken, and the anomalous average is never zero. It is always
comparable with or larger than either the density of uncondensed atoms or that of condensed atoms.

dk
@emd’

(5.35)

w
Tk coth(g—k) -1
Ek 2T

6. Thermodynamic characteristics

In the HFB approximation, the grand potential takes the form

dk
_ _ Bk
Q_EB+TVg!1n(1 e )(zn)d’ 6.1)

where the integration is over the Brillouin zone and

Eg=H" - ng(an +0%)+ %f(sk—wk) (;Tl;d :
B
The system chemical potential (£.33) is
p=pono+puiny =-z0J+vU(l+n+o0-2mo). (6.2)
For the ground-state energy
Eo=Eg+uN, (6.3)
we have
0 1 2 9 1 dk
N —zoJ + EVU(1+H1 —o°-2mo)+ Ef(gk_wk) ek (6.4)
B
Atomic fluctuations are characterized by the number-of-atom operator variance
var(V) = (N?) —(\)?, (6.5)
in which
N=No+MN (6.6)

is the operator of the total number of atoms. Since the first term N is a non-operator number, one has

var(N) = var(Vy). (6.7)
In the HFB approximation, we get
(N) NT (6.8)
var = .
! vU (nyg+ o)

23002-11



V.I. Yukalov

The number-of-atom operator variance defines the isothermic compressibility

_ var(N) _ 1

= = . 6.9
Kr pTN pvU(ng + o) 6.9)

The atomic fluctuations are, of course, normal and the compressibility is finite everywhere below T.
The compressibility can diverge only at the critical point T¢.

Bose-Einstein condensation is a second-order phase transition occurring at a temperature T¢, where
np = 0 and o = 0. At this point, the atomic density is

dk

1” th(wk) 1 (6.10)
=— | |coth| — |- . .
=3 2T, 2m)
B
Solving this equation in the Debye approximation, we obtain the critical temperature
d-2 d 2/d
Te=4r——|T'|1+ = V. 6.11
e =it I | (641
This tells us that T¢ is not defined for d = 1 and T, = 0 for d = 2. In three dimensions, we have
T.=5]v (d=3). (6.12)
The general equation for the superfluid fraction [14,/19] can be written in the form
ng=1- 2 (6.13)
Qo
with the classical dissipated heat
d
Q=-=T, (6.14)
2
where d is spatial dimensionality, and
var(P
= ) (6.15)
2mN
is the actual dissipated heat, expressed through the variance of the momentum operator
P= f v 0 (=iV)y @ dr. (6.16)
In an equilibrium system, this variance is
var(P) = (P?). (6.17)

Note that the condensed fraction does not contribute to the operator of momentum (6.16) due to the
lattice periodicity [19].
For a three-dimensional cubic lattice, with a lattice spacing a, we obtain

_p@)? [ Xgsin®(kga) dk

= ) (6.18)
Q 2mp A sinh?(g;/2T) (2m)3
where the expression
p@P = — ex i (6.19)
P 2P 212 '

23002-12



Bose-condensed atoms in optical lattices

is used, derived in the tight-binding approximation. Here, the notation
1 1

Ip= = (6.20)
vmwo  2m(EgVp)l/4
means an effective localization length.
For a three-dimensional cubic lattice, the relations
3n )2
=", k=32 (6.21)
2mER a
are valid, which yield the ratio
2
%
L —3n? 2. 6.22)
I Eg
Then, equation (6.19) can be written as follows:
p@P = e[ 3T [V 6.23)
P =2 P\ "2 V&) '
Comparing this with the tunneling parameter defined in equations (5.3), we have
1 (T
2
Al =—|—| . 6.24
Ip@)| ZHZ(WO) (6.24)
Therefore, the dissipated heat (6.18) is written as follows:
2 )
a sin“(kqga) dk
Q:_( J ) Lasin’ (ke _dk 625
mv \27V, A sinh”(ex/2T) (2m)

In this way, the self-consistent mean-field approximation allows us to calculate any thermodynamic
characteristic.

7. Conclusion

A self-consistent approach, based on the use of a representative statistical ensemble, developed ear-
lier for uniform Bose-condensed systems, is extended to Bose atoms in optical lattices. The approach
ensures a gapless spectrum of collective excitations, the validity of conservation laws, and self-consistent
thermodynamics. It is shown that the approach can be applied to the lattices with a weak binding as well
as with tight binding. For the former case, the Bloch representation is more appropriate, while for the
latter case, the Wannier representation is more suitable. Both the Bloch and the Wannier representations
lead to a similar description. The results are compared for the self-consistent Hartree-Fock-Bogolubov
approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is
derived.

The HFB approximation, used here, is based on the assumption of the condensate existence, which
is taken into account by means of the Bogolubov shift, explicitly breaking the global gauge symmetry
of the system. This approximation, therefore, is assumed to provide good description, when the Bose
condensate is present, and may be inappropriate when the system passes to an insulating state. This
implies that the HFB approximation for optical lattices can provide an accurate description for spatial
dimensions larger than one (d > 1) and nonzero temperatures below the Bose-Einstein condensation
temperature, 0 < T < T¢.

The case of zero temperature requires a special consideration. Cubic optical lattices at zero tempera-
ture and unity filling factor v = 1 have been extensively studied, mainly from the viewpoint of an insu-
lating state, with the purpose of defining the stability boundary of this state, corresponding to the critical
transition to the superfluid state. The dimensionless parameter

U
zoJ
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has been varied. For a cubic lattice, the number of nearest neighbors is zg = 2d. This zero-temperature
problem has been treated in the Gutzwiller approximation [41,/42], dynamical mean-field approximation
[43], direct numerical diagonalization [44], density-matrix renormalization group [45], strong-coupling
perturbation theory [46, 47], and Monte Carlo simulations [48-50]. The critical values of the above pa-
rameter were found for d =1 as uc = 1.8, for d = 2, as u. = 4.2, and for d = 3, as u. = 4.9. The HFB
approximation underestimates quantum fluctuations at zero temperature. That is why it is applicable
only for nonzero temperatures, when thermal fluctuations become more important.

The advantage of using the developed approach for Bose-condensed atoms in optical lattices at finite
temperatures is its relative simplicity, correct gapless spectrum, the validity of conservation laws, and
self-consistent thermodynamics.
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Camoy3rog>keHuii meTop Ansa atomiB bo3e-KoHAeHcaTy
B ONTUYHUX rpaTKax

B.I. Okanos

JlabopaTopisa TeopeTnyHoi ¢isnkm im. M.M. boronto6osa, O6’'egHaHNIA IHCTUTYT SAEPHUX AOCAIAXKEHD,
141980 fly6Ha, Pocis

Po3rnsgatoTbcst atoMu bo3e B ONTUYHKMX rpaTKax Mpu HA3bKKX TemnepaTypax i c1abkux B3aEMOAiAX, KOW KOH-
JeHcart bose-EliHLITeliHa € yTBOPEHMiA. 3aCTOCOBAHO CaMOY3roAXKeHWA Niaxif, Lo 6a3yeTbcst Ha BUKOPUCTaHHI
pernpe3eHTaTMBHOIO CTaTUCTUYHOIO aHCamb61to | 3abe3neuye 6e3LUINMHHNIA CNeKTP KONeKTUBHUX 36yaXKeHb i
YMHHICTb 3aKOHIB 36epexeHHs. [lna Toro, LLo6 NokasaTy 3aCTOCOBHICTb MiAX0AY A0 060X, CNabKoro i CMALHOro
3B'A3Ky, MpobieMa po3rnajaETbes B NpeAcTaBneHHsx bnoxa i BaHbe. ObuaBa cnocobu NpuBOAATL A0 MNOAIGHUX
BMPa3iB, L0 MOPiBHIOTLCA 3 CAMOY3roAKeHUM HabamkeHHAM XapTpi-Poka-boronto6osa. OTpUMaHO 3pyyHy
3aranbHy Gopmyny Ans HagNAMHHOI GpakLii aTOMiB B ONTUYHIA rpaTui.

KntouoBi cnoBa: koHgeHcat bose-EriluTesiHa, penpe3eHTaTnBHUA aHcamb/lb, ONTUYHI rpaTkv, NPeACTaBAeHHs
bnoxa, npescTaBaeHHA BaHbe, HaAMNHHICTb
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