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The choice of appropriate interaction models is among the major disadvantages of conventional methods such
as molecular dynamics and Monte Carlo simulations. On the other hand, the so-called reverse Monte Carlo
(RMC) method, based on experimental data, can be applied without any interatomic and/or intermolecular
interactions. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an
extension of the RMC algorithm, which introduces an energy penalty term into the acceptance criteria. This
method is referred to as the hybrid reverse Monte Carlo (HRMC) method. The idea of this paper is to test the
validity of a combined potential model of coulomb and Lennard-Jones in a fluoride glass system BaMnMF;
(M = Fe)V) using HRMC method. The results show a good agreement between experimental and calculated
characteristics, as well as a meaningful improvement in partial pair distribution functions. We suggest that
this model should be used in calculating the structural properties and in describing the average correlations
between components of fluoride glass or a similar system. We also suggest that HRMC could be useful as a tool
for testing the interaction potential models, as well as for conventional applications.

Key words: RMC simulation, unrealistic features, hybrid RMC simulation, Lennard-Jones potential, fluoride
glass
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1. Introduction

Several simulation methods have been applied to the study of different types of ordered and disor-
dered system (liquids, glass, polymers, crystals and magnetic materials) [1-3]. For example, molecular
dynamics (MD) and Monte Carlo (MC) simulations are frequently used to investigate the physical phe-
nomena that are not easily accessible via experiment [4]. The fundamental input to such simulations is
a potential model, which can describe the interactions between atoms or molecules and calculate the en-
ergy of the system [5]. The development of an adequate potential for a classical application poses a major
problem.

On the other hand, another method of modelling called a reverse Monte Carlo (RMC), based on the
experimental data, has an advantage of being applied without any interaction potential model [6]. This
method completes the experiment by computing the pair distribution functions (PDFs) between each two
different components of a system. The RMC simulation results still display some physically unrealistic
aspects, such as the appearance of artifacts in PDFs. This can be due to a limited set of experimental
data and/or due to the non-unique RMC models [7]. In order to solve this problem, we apply a modified
simulation protocol based on RMC algorithm, whose physical or chemical constraint is introduced based
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on the understanding of the material being modelled [8]. Thus, we refer to it as the hybrid reverse Monte
Carlo (HRMCQ). The latter combines the features of MC and RMC methods [9].

In the present work, two types of potentials, which take the long and short range interaction into ac-
count, are combined to build the interaction potential model, namely Coulomb plus Lennard-Jones model.
This potential can be applied at the atomic scale, and at several states of materials. In this sense, we have
chosen it as a physical constraint applied at a glassy state.

Fluoride glass BaMnMF; (M = Fe,V, assuming isomorphous replacement) is a system in which our
energetic constraint is applied. The neutron data for both BaMnFeF; and BaMnVF glasses were recorded
at ILL (Grenoble) [10]. The estimated isomorphous replacement between Fe3* and V37 is well supported
by the crystal chemistry in fluoride compounds. This substitution in fluoride materials appears to be
quite interesting for carrying out a neutron scattering experiment [10].

The purpose of this article is to test the effect and to investigate the validity of the added potential
using the HRMC simulation [11], with the aim of adapting this potential to fluoride glasses or similar
system studied by conventional methods.

2. Simulation details

2.1. Reverse Monte Carlo method

Since the RMC method has already been described in detail [12-14], we will only give its brief sum-
mary. Its aim is to construct large, three-dimensional structural models that are consistent with total
scattering structure factors S(Q) obtained from diffraction experiments within fixed standard deviation.

A modification of the Metropolis Monte Carlo (MMC) method is used in [15]. Instead of minimizing
the potential term like in the classical methods of MD and MC, the difference XZ between the calculated
and the experimental partial distribution functions G(r;) is the quantity to be minimized via random
movements of particles. The partial distribution function G(r;) is written as:

r=——s——, 2.1

where p is the atomic number density and Nrvc(r) is the number of atoms at a distance between r and
r+dr from a central atom, averaged over all atoms as centers.

G™C(r) is the inverse Fourier transform of the structure factor S"MC(Q) depending on the wave
vector Q and expressed as:

(e 9]

SRMC () = 1+pf47rr2 [GRMC(r) -1] SmQrdr. 2.2)
0
The quantity to be minimized is written as:
RMC EXP 2
2 [G*™ME(ry) = G**F (rp)]

= . 2.3
X X,:{ ©2(r7) @3)

For any couples of partial distribution functions, G™C(r;) is obtained by RMC configurations, and
G®XP(r,) is the experimental result. y? is calculated by using a statistical measure error estimated by
a standard deviation g(r;) which is supposed to be uniform and independent of distance r;. RMC sim-
ulation starts with an appropriate initial configuration of atoms. When modelling crystalline materials,
this configuration will have atoms in their average crystallographic positions, and will contain several
unit cells. While modelling the non-crystalline materials, an initial algorithm will be required to generate
a random distribution of atoms without unreasonably short inter-atomic distances. Atoms are selected
and moved randomly to obtain a new configuration after each move. The G(r;) of a new configuration as
well as the y? are calculated. If y2,, is less than )(il 4 the agreement between the experimental and the
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current configuration is improved by a move. Thus, the move is accepted and another move is made. If
X%ew increases, it is not rejected outright but accepted with a probability P,cc given by:

(2.4)

X%ew X i]d
—2 .

Pyec =exp (—

The process is then repeated until XZ fluctuates around an equilibrium value.

The resulting configuration should be a three-dimensional structure compatible with the experimen-
tal partial function. Simulation parameters such as the number of atoms, the density, and the length of
the simulation box are given in table Il The cut-offs (geometric constraint) between pairs of atoms are
presented in table[2

Table 1. N; indicates the number of atoms of species i (i = Ba, Fe, Mn, F), p is the total atomic density and
L is the length of the simulation box.

[ Noa [ Nee [Nun | Ne | N [ p | L |
| 500 [ 500 | 500 | 3500 | 5000 | 0.0710 | 20.647 |

When satisfactory agreement between experimental and theoretical data sets is obtained, detailed
structural data such as coordination number, bond angle distribution functions, and PDFs can be calcu-
lated from atomic networks, being averaged over many MC configurations that are consistent with the
experimental data.

Table 2. S;; cut-offs between atomic pairs.

| atomic pairs | BaBa | BaFe | BaMn | BaF | FeFe | FeMn | FeF | MnMn | MnF | FF |
| Si;jAd ] 350 ]300 300 |200]270 | 270 [ 050 | 265 | 1.20 | 0.40 |

2.2. Hybrid reverse Monte Carlo method

The RMC method may be used in studying the disordered crystalline materials at an atomistic level
[16]. The lack of a potential has the disadvantage of RMC models having no thermodynamic consistency
[12]. The RMC simulation results still display some artificial satellite peaks at the level of PDFs. This can be
due to the set of experimental data restricted to only total distribution functions and/or to the nonunique-
ness problem. To remedy this problem, we refer to it as the HRMC simulation [2,(9,11,/12,/17,(18]. In the
HRMC method, we introduce an energy constraint as a combined potential in addition to the common
geometrical constraints derived from the experimental data. The agreement factor )(2 becomes:

(™) -G |  wU
P2 () kpT'

=3

i

(2.5)

Herein, U denotes the total potential energy. w is a weighting parameter. In our RMC code, w is between
0 and 1. Thus, the acceptance criteria expressed by the conditional probability is now given as:

exp( AU ) . (2.6)

(X%lew_ X?)ld) AU
kgT

2

Pacc = exp

It is assumed that AU = Upew — Ugiq is the energy penalty term, Upew and Uyq are the energies of the new
and old configurations, respectively.
The potential energy function between the i and the j® particles takes the following general form:

o 12 o 6
21
rij rij
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where g; and g; are the charges of individual ions i and j, r;; is the atomic distance, &o is the permittivity
of free space, € is a parameter characterizing the depth of the potential well and o is the minimal distance
between the interacting particles at which the potential of Lennard-Jones is zero [19].

The interaction potential U;; is composed of two terms. The first one is the Coulomb interaction po-
tential which takes the long-range interactions into account [20]. The second term is the Lennard-Jones
potential. It takes the short-range interactions into account. In statistical physics, the Lennard-Jones po-
tential is frequently used to model liquids and glasses. Our combined potential can be used at the atomic
scale, and at several states of materials. Note that a disordered system at a glassy state shows a better
structural organization compared to the liquid state. Hence, we propose to apply this potential in a fluo-
ride glass system.

First, we should determine the potential parameters. Concerning Coulomb potential parameters, we
only need charge fractions of all atomic species. On the other hand, the expressions of € and o of Lennard-
Jones potential parameters for the similar interactions such as barium-barium, manganese-manganese,
iron-iron, and fluor-fluor, are presented in table[3l As concerns the eight remaining interactions, we try
to use the Lorentz-Berthelot mixing rule equation as follows [21]:

(0aa+0BB)
OB = %y (2.8)
EAB = VEAAEBB- 2.9)

Table 3. Lennard-Jones potential parameters for similar interactions.

Pair functions | —(K] | o[A]
ks
BaBa 22630 | 3.6820 [22]
FeTe 6026.70 | 2.319 (23]
Mn-Mn | 5907.90 | 2.328 (23]
FT 52.80 | 2.830 (24]

The RMC modelling of BaMn(Fe,V)F7 is taken based on the two experimental structure functions of
BaMnFeF; and BaMnVF; glasses obtained using the neutrons scattering technique. The study of the va-
lidity of our potential model is based upon comparing the experimental and simulation results.

3. Results and discussions

3.1. Total correlation functions

A comparison with experimental data is of primary importance in order to validate the results of
computer simulation methods that use interaction potential models [25]. In this work, the RMC code takes
into account G(r) the inverse Fourier transform of the total scattering structure factors S(Q). Thus, the
quantity used for this purpose is the total distribution function. Note that it is easy to use total correlation
functions equivalent to total distribution functions: H(r) = G(r) — 1 [11,26]. Figure [0l provides the total
correlation functions for two structures of glassy states, i.e., BaMnFeF; in figure [l (a) and BaMnVF; in
figure[Tl(b), and this is compared to the experimental results for RMC and HRMC methods.

We notice that the fluoride glass has preserved its stability after incorporation of interaction potential,
and the system is not disturbed. The results of total correlation functions calculated by RMC and HRMC
are in excellent agreement with the results obtained by experimental neutron diffraction. Thus, there is
no conflict between the used method and the applied constraint. In fact, we can deduce that the present
potential is valid. In order to better highlight this validity, curves of PDFs will be displayed [9, 11, 25-27].
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Figure 1. HRMC, RMC and experimental data: total distribution function G(r) of (a) BaMnFeF7 and (b)
BaMnVF?7 at the glassy state; total correlation functions are represented H(r) = G(r) — 1.

3.2. Pair distribution functions

One could start with the fluoride interactions; figureRlprovides the PDFs for individual atomic species,
namely gpp(r) [figureRl(a)], grer(r) [figureRl(®)], gpar (r) [figureRl(c)] and gyvng(r) [figureZl(d)] calculated
by RMC and HRMC simulation. The fit of the obtained RMC results is effected by the value of the weighting
parameter w. We choose the weighting factor to give the minimum fit while yielding structures that are
physically realistic. Herein, we have chosen (w = 20%).
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Figure 2. RMC and HRMC: partial pair distribution functions of ggr(r) (@), grep(r) (0), gmnr(r) (¢) and
8Bar (1) (d).
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The results obtained for PDFs, show a better accord between the used method and the applied po-
tential, and this appears clearly at the level of grr(r) and grer(r). The coordinations are reproduced well
in each distribution [see arrows in figure [2] (a) and (b)]. This is a consequence of the number of fluor
particles which greatly exceeds the others constituting the fluoride glass. The (O-H) bonding distance in
a water molecule is smaller than 1 A [11,128]. The characteristics below 1 A [see circle in figure[T] (a) and
(b)] are artifacts, resulting from Fourier errors, while transforming the measured data into G(r), as well
as due to a great number of fluor particles; as seen by circle in figure 2] (a); it is the only distribution
which comprises an artifact, at the distance below 1 A. Note that the direct application of RMC, developed
PDFs accompanied by artifacts. The latter appear at the level of gvnr(r) and ggpar(r) [see arrows in fig-
ures[Z(c) and (d)]. Upon comparing with the results obtained by the HRMC simulation, a good smoothing
is observed.
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Figure 3. RMC and HRMC: partial pair distribution functions of ggare () (@), gremn () () and ggamn (1) (0).

One can make the same remarks concerning the other PDFs. As is clearly seen in figure[3] it shows
a meaningful improvement. Many artificial satellite peaks are alleviated in the first coordination of
gBare(r) [see arrows in figure 3] (a)]. We also note that the first coordination of Fe-Mn figure 3] (b) and
Ba-Mn figure[3](c) is well marked by HRMC computation.

The selected energy potential term plays an important role in alleviating the problem of the pres-
ence of unrealistic features. We can say that the energy penalty term is capable of providing a realistic
description of the atomic interaction and helps to make a structural study for such a system.

4. Conclusion

In the present work, we apply a hybrid reverse Monte Carlo method to the study of an additional en-
ergy constraint as a combined potential model between Coulomb and Lennard-Jones, in a fluoride glass
system. Some drawbacks in RMC simulation were observed, such as the artifacts that appear especially in
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PDFs. This can be due to the limited set of experimental data and/or due to the non-unique models of RMC.
To solve this problem, we propose to incorporate the selected potential as an energy constraint in order to
test its effectiveness. The results obtained by correlation functions show a good agreement between the
method used and the selected interaction model. Some artifacts that appeared in PDFs were eliminated
by HRMC computation. Nevertheless, this study provides some important data used for a structural study
of the BaMnMF?7. As a final idea, it should be noted that the potential model used in this study can play
an important role in describing the interactions between atoms, and in calculating the structural prop-
erties of fluoride glass or similar systems. One could also conclude that the HRMC method represents an
essential tool for testing the interaction potential model, and may be used in conventional methods such
as MD and MC simulation.
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BuBUYEHHS 3aCTOCOBHOCTI 06°€AHAaHOI NOTeHUiaNbHOI Moaeni Ao
cucteMmum GpaIOOPUAOBOro CK/1a 3 BUKOPUCTAHHAM MeToAy
ri6pngHoro pesepcHoro MoHTte Kapno

C.M. Mecnf2, M. ra6wi®, M. Kot6i2, T. xy2

T disnunmii dakynbTeT, yHiBepcuTeT Xaciba beH Byani, Lned 02000, Anxmp

2 diznyHmii dakynbTeT, yHiBepcuTeT A.B. Benkaiga , BP 119 TnemceH 13000, Anxup
3 NigroTosua Lwkona 3 NPUPOAHNYUNX HayK | TexHikK, TaemceH 13000, Anxup

4 IHcTUTYT dismkn, yHiBepcuTeT Mons BepneHa, 57000 MeTy, ®paHuis

Bnbip sopeuHunx mojeneli B3aEMOZIT € Cepej, FONOBHUX TPYAHOLLIB CTaHAAPTHUX METOAIB, Taknx SK MOAeKynsp-
Ha AuHamika (MA) i MoHTe Kapno (MK). 3 iHworo 60oky, Tak 3BaHUiA MeTog peBepcHoro MoHTe Kapno (PMK),
LLIO I'PYHTYETbCS Ha eKCepuUMeHTaabHUX AaHNX, MOXe BYTW 3aCTOCOBaHMIA 6€3 XOAHMNX MiIXXATOMHUX /41 MiX-
MOIeKYNAPHUX B3aEMOiN. PeynbTaT PMK cynpoBOAXKYHOTECA HepeaniCTUYHUMK caTeniTHUMK nikamu. LLo6
YHVIKHYTW L€l npo6aemu, M1 BUKOPUCTOBYEMO po3LumpeHHs PMK anroputmy, ke BBOAUTL A0AaTKOBWA eHep-
reTUYHNiA YneH y kputepii akcenTaHcy. Lieii MeTog Ha3nBaeTbLCA MeTOAOM ribpuaHoro pesepcHoro MoHTe Kap-
no (FPMK). Iaes uiei cTaTTi nonArae y nepesipLi 3aCTOCOBHOCTI 06'€iHaHOT KY/IOHIBCbKOI i IeHHAPA-AXXOHCIBCbKOI
noTeHuianbHoi Mogeni 4o cuctemu Gpatoopugosoro ckna BaMnMF7 (M = Fe,V) 3 BukopuctaHHaM MeTogy MPMK.
Pe3ynbTaTvt NokasyoTe A0Ope y3rofkeHHs MK eKCrepuMeHTabHUMW | 06UNCNeHNMIN XapaKTepucTukamu, a
TaKoX 3Ha4He MokpaLleHHs napuianbHuX NapHUX GyHKLil po3noginy (MPP). Mu nprnyckaemo, Lo LUs Mojenb
NMOBMHHA BUKOPUCTOBYBATMCSA B 06UNCNEHHSAX CTPYKTYPHUX BAACTUBOCTEN i MPU ONUCi cepesHixX KopensLii mMix
KOMMOHeHTaMun GpA0OPUAOBOrO CKAa UM MoaibHoi cnctemn. Mu Takox npunyckaemo, wo MPMK morno 6 6ytn
KOPWCHMM AN TeCTyBaHHA B3aEMOAiOUMX NOTEHLiaIbHUX MOAeNei, a TakoxX AN CTaHAaPTHUX 3acTOCyBaHb.

KnrouoBi cnosa: PMK MogentoBaHHs, HepeanicTuuHi BAacTuBocTi, ribpugHe PMK MogntoBaHHS, moTeHuian
JleHHapAa-/>xoHca, ¢prooprgose ckao
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