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Solution of the mean spherical approximation for multi-component model of
dipolar hard spheres with surface adhesion is obtained using factorization
technique pioneered by Wertheim and Baxter. For the sake of illustration
numerical calculations for the dielectric constant of the two-component ver-
sion of the model are carried out.
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1. Introduction

Mean spherical approximation (MSA) [1] occupies a special place among the
liquid state integral equation theories [2-4] due to the availability of the analytical
solution of the corresponding Ornstein-Zernike (OZ) equation for a number of simple
albeit nontrivial models (see, for example [2-14]).

In the present study we propose the method, which can be used to describe
the properties of the fluid of multicomponent dipolar hard spheres with surface
adhesion. It is based on the analytical solution of the corresponding version of the
MSA with the surface adhesion accounted for following Baxter [15]. In the relevant
publications of Blum and coworkers multi-component sticky hard-sphere ion-dipole
mixture with orientationally dependent stickiness for dipoles of the same size [16] and
one-component hard-sphere system with anisotropic adhesion of arbitrary symmetry
and electric multipoles [17] have been studied.

2. The model

We consider M-component adhesive hard-sphere fluid with the number density
of each species s p; = N,/V, hard-sphere diameter o, and dipolar moment p;.

*This paper is dedicated to Professor Myroslav Holovko on the occasion of his 60th birthday.
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In addition to hard-sphere and dipolar interaction there is the so-called “sticky”
interaction, which is characterized by the adhesion parameter Ay (£212), where 15 =
(Q1,€s), Q is a set of Euler angles that give the orientation of the molecule 1.

For the model at hand MSA consists of the following OZ equation and closure
conditions

M
het(X12) = cu(Xi2) + Zpu/dXiShsu(XlB)cut(XiSQ)a (1)
u=1
1

hst(Xm) = -1 +Ast(Q12)5(7“ - Ust), T2 < Ost = 5(03 ‘f‘Ut), (2)
S1S 381712T12S9T

cst(X12) = —pU«(X12) = —Bpsp . 23 - == 1252 = , T2 > O, (3)
|T12] T12]

where hg(Xi2) = gst(Xi2) — 1 is the pair correlation function, g« (X2) is the pair
distribution function, ¢y (Xi2) is the direct correlation function, U (X12) is the elec-
trostatic pair potential, ris is the distance between the particles, X5 = (X7, Xs),
Xy = (M,), B = 1/kT, 51 = 71/|r1] is the unit vector and &(r) is the Dirac
delta-function.

Solution of the present MSA problem is based on the Wiener-Hopf factorization
technique developed by Wertheim [18] and Baxter [19,20]. In order to consistently
account for the orientation dependencies, the technique developed by Blum and
co-workers [6-8] is utilized. According to this method all orientation dependent
functions are presented in orientational-invariant form

f8t<X12) = Z ;?n1<r12>q)6%n1<917 Q27 th)a (4>

mnl

where the linear symmetry of the dipoles is accounted for and €2,, is a set of Euler
angles, which defined the orientation of the vector 715. This vector connects the
centers of masses of the particles 1 and 2.

[
(I)B%nl(Ql,QQ,Qr) = ((2m+1)(2n+1))1/22 <7;L ]T/L /\ )
2N
< DG (60) D3 () D (42,

mal( ) = (2z+1><(2m+1)(2n+1>>”22(7,7 y i)

x [ aAQadR, Dy (@) D5 (Q2) D (i) ful(X2). (5)
Here a standard notation is used for the 3-7 Wigner symbols and for generalized

spherical functions.

In terms of the rotational invariant expansion, the coefficients closure conditions
(2) and (3) are as follows:

hgtoo(r) = -1+ A2t005(7“ —04)s r < og, (6)
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BEOr) = A6 (r = 03), 7 < o, (7)
B (r) = A26(r = 03), 7 <o, (8)
A0y =0, r>oq, (9)

AOr) =0, 7> 0w, (10)

cl2(r) = (10/3)? Bpaper™®, 7 > 0. (11)

Relations (6)—(8) impose dipole symmetry on the adhesion parameter.
In terms of the rotational-invariants coefficients the set of the OZ equations (1)
will have the form similar to that presented in [7]

1

HE (k) = CRv(k) = 30 3 (= 1)¥puHL (R) Oyt (R), (12)

u=11=0

where

st,x

k) = 2/drcos(k7")f$nl(r),
0

Fpn(r) = 2w<—1>x;<’jj | l)f e () 7o)

—x 0
Fgf;(k) = ﬁfgg’;(k) or é:;;(k),
f:ﬁ;(r) = Jbrtm;(r) or S&ﬁ’;(r),
a(r) = hE"(r) or ci"(r) (13)

for the model at hand the set of equations (12) will be reduced to the set of three
independent sets of equations

M
Hgt(,)O(k) - Cgt?o(k) = Z Pqug,o(k)CS?,o(k)a
u=1
~ ~ M ~ ~
Hsltl,O(k) - Csltl,O(k> = Z PuHii,o(k)Cig,o(k%
u=1
~ ~ M ~ ~
Hyy (k) = Ciy (k) = D puHy 1 (k)Copy (). (14)
u=1

Closure conditions for the functions Ji' (r) and SE7% (r) are as follows:

Sin(r) =0, mny = 000,110,111, r > o,

st,x
mn _ -mn,0 -mn,2 2
Jst,x(r) - jst,x +]st,x T, r< Ost,
-00,0 __ 4.00,0 2 -00,2
jst,O - bst,O — MO, jst,O =T,
1/2
110 1 plio _ 1 pli2 112 i pli2
.]st,O - 31/2 st,0 301/2 st,29 jst,O - 10 st,29
1/2
a0 1 10 1 pli2 a2 _ (3 pLiz
jst,l - 31/2 st,0 1201/2 st,2» jst,l - 40 st,2»
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st,p

b = 2(0y) T PARY 4 2 / A (r)r' (15)
3. General solution

All three sets of equations (14) are of the same form. Omitting the indices we
have

M

Hst(k) - Cst(k) = Z puHsu(k)Cut(k)7 (16>
u=1

Js(r) = jsot +js2t,r27 r < Ost, (17)

Sst(r) = 0, r > oy, (18)

where the function Jg(r) has a jump discontinuity at r = oy:

Ja(0d) = Julog) = J::e", (19)
Ha(k) = 2 / drr cos(kr) Ju (), (20)
Cu(k) = 2 / dr cos(kr) Sy (). (21)

Using matrix notation we have

(I+[p"2)- [H(R)] - [0"2]) x (I =[] [C(k)] - [p%]) =1, (22)
where [ is the unit matrix, the symbol “-” denotes matrix multiplication, square
brackets denote matrices of the order M, p;t/ 2 St,ol/ 2 44 is the Kronecker delta.
Using Wiener-Hopf factorization method we have

I=[p"?]-[CR)] - [p?] = [QR)]-[Q(=R)]", (23)
~ ~ ~ -1
[T+ - [HE) - [07] - Q)] = [[R(=k)"] (24)

where the upper index 7" denotes matrix transpose. Wertheim-Baxter factorization
correlation functions are of the following form

Ost

[@(k)]st = 5st - (pspt)l/Q/erst(r)eikTa
Ats

0, r<As = (00 —04)/2,
Qu(r) = (QW(pspt)1/2> f dk ( — Qu )k )) ek Ns < T < Oyt 5
0, r> 0y .
(25)
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After the inverse Fourier transform for the equations (23) and (24) we have

{Usu 0tu +7’}

M

Salr) = Qe+ X p [ AQuQu(t 1), (26)
YU Dt}

Jal) = Qulr +zpu / dt (| = ) Quilt). (27)

tu

where the upper and lower integration limits are represented by the smallest and
largest numbers in braces, respectively. Using the closure conditions (17) and taking
into account the relation (19) from the equation (27) at r < oy we have

Qst(r) = Qg + (T - Ust>bst + 1/2(7‘ - Ust)(r - )\ts)dsh

o -step
st = Jst >

1 217" ,
by = ([[—E[Ptaf’ﬁt]] '[UtjsztDsta

0_1 1 —1 O 1 O—l 0—1
dy = (2 [6 I— 6[0150?]&]] [6 jst] + [6 bst‘| : [6 psasbst‘|

) [;b] ~ [Hp ) | (25)

4. Wertheim-Baxter factorization correlation function

Using the results obtained in the previous section and taking into account the
rotationally-invariant indices m, n and y Wertheim-Baxter factorization correlation
functions can be written as follows:

wh(r) = al + (r—og)bi +1/2(r — og) (r — Ats)d:t“; ,

st,x st,x st,x
00 _ 000
Ast0 = 27TUbtAst )
™
bst,O = ZUt )
2 P or X
dst,O = K + A2 CZO- A Zl PuOulut0
U
2m AT
11 _ 110 112
Agto = — 31/2 UstASt + 301/2 UstAst )
2m 27
11 _ 110 112
a’st,l - 31/2 Ostdgt  — 301/2 Ostigy (29)

where A =1 —7/6(3; ¢, = Z pu(0y)P .

Coefficients of the Werthelm Baxter factorization function bY',, dil,, by, and
d;t{l follow from the solution of the set of equations

1 M
e = Tz D puo bRl + 03 20l
u=1
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M M
2
11 _ 11 11 11 11 11
dst,O - ;bst,O + Z puaubsu,obut,o -2 Z pubsu,oa’ut,o )
t u=1

u=1
11 1 < 371,112 711 1/2 112
bst,l = _4801/2 Z puaubsu,Qbut,l +0.075 / Utbst,Q )
u=1
2 M M
11 11 11 11 11 11
dst,l = ;tbst,l + Z puaubsu,lbut,l -2 Z pubsu,laut,l : (30)
u=1 u=1

This set of equations have to be supplemented by the additional equation for

the parameter by/3. This equation can be obtained from the closure conditions for

cl2(r)at r > oy

4 ~ ~
5 Opape = =Cilo(k = 0) + Cily (k= 0). (31)
Introducing the quantities

K — / dr 1P Q™™ (1), (32)
)\ts

equation (31) can be written as follows

4T 11,0 11,0 M 11,0 7-11,0
?ﬁpspt = _Kst,O - Kts,O + Z puKsu,OKtu,O
u=1
M
11,0 11,0 11,0 1-11,0
+ Kst,l + Kts,l - Z puKsu,thu,l ) (33>
u=1
where 1 1
11,0 11 2711 3 j11
Kst,x = OsQgg \ — aasbst,x - ggsdst,x : (34)

Thus, we obtain a closed set of equations (30) and (33) for the coefficients of
the Wertheim-Baxter factorization correlation function and for the dipole-dipole

interaction parameter b3 .

5. Dielectric constant. Numerical calculations

The expression for the dielectric constant of the dipolar mixture € was obtained
in [7,21]. For the model at hand we have

;; =Tr ([[ql] ) =1 [la) - e + qu) , (35)
where
1] = (T[] - (KA [072) x (1~ 7] (KA [072))

a2] = (1= [0 [KL) - 1072]) x (1= [0 (KL - 1072) T (36)
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Table 1. Dielectric properties of the two-component dipolar hard-sphere fluid.
Hard spheres of species 1 has a diameter 01 = 1 and hard-spheres size of species
2 is 09 = 21/35. The reduced total density is p* = pm% +p203 = 0.8. The dipole
moment of species 1 and 2 are such that when py = 0 (pure fluid 1) then y = 2.5
and when p; = 0 (pure fluid 2) then y = 1.5, where y = 47/933", psp>. Here
AM s treated as a fitting parameter.

Enisa | Evmc Espns
Xi=p/p| y | [6] (6] A% =0, Aj?=-0.14,
A%%Q = —0.18, A%y = —-0.24
0.0 1.5 11.5 | 13.65 13.66
0.3 1.7 134 174 17.5
0.8 221 19.1 26.0 26.2
1.0 25| 235 37.2 36.9

To calculate the dielectric constant of the system, the solution of the set of equa-
tions (30) and (33) has to be obtained. This is a set of highly nonlinear equations,
which can be solved only using the numerical methods, for example using the New-
ton’s method. To use this method it is important to have a sufficiently accurate
initial guess for the unknowns of the problem. In our study we start from the two-
component version of the model with hard spheres of the same size and dipolar
moment. For such a model, the dipole-dipole interaction parameter bi&% is the same
for both species and can be obtained from the corresponding nonlinear equation.
All the rest of the unknown coefficients can be easily obtained from b}!3. Gradually
changing the ratio of the hard-sphere sizes and dipolar moments one can get solution
of the set of equations (30) and (33) for the two-component system with arbitrary
hard-sphere sizes and dipolar moments.

For the sake of illustration in table 1 we present the dependance of the dielectric
constant of the two-component mixture on the concentration of the first species
X, = p1/& with the value of the adhesion constant AT™ chosen so as to fit the
corresponding MC values. Good agreement between MC and theoretical predictions
in the whole range of concentrations with only one value for A™™ shows that the
model at hand can be used to correlate the experimental data with the dielectric
properties of multi-component polar fluids.
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BaratokoMnoHeHTHa CyMiI.IJ AUNOJIbHUX TBepaux chep
3 NnoBepxHesnm npuwinnaHHam

[.A.MpouykeBny

IHCTUTYT Pi3nkm koHaeHcoBaHMX cucteMm HAH Ykpainm,
79011 JlbBiB, Byn. CBEHLiUbKOrO, 1

OTtpumaHo 8 BepecHs 2003 p.

Ha ocHoBi mMeTomy dakrtopusauii, 3anoyatkoBaHoro BepTtxanmom Ta
BakcTtepom, oTpyMaHmin aHaniTU4HUIA PO3B’A30K CepeaHbOChEPUIHO-
ro HabnMxeHHs st 6araToKOMMOHEHTHOI Mogeni OUMNONbHUX TBEPAMX
chep 3 NOBEPXHEBO NINMKICTIO. 3 METOW iNoCcTpaLi BUKOHaHI Yynce-
JIbHI PO3paxyHKN AIeNeKTPUYHOI CTanoi ABOKOMMOHEHTHOrO BapiaHTy
Mogaeni.

Knio4oBi cnoBa: cepeaHbochepnyHe HabIMXXEHHS, ANMOJbHI TBepai
coepu, agresis, aienekTpudHa rnocTiviHa

PACS: 82.70.Dd, 61.20.-p, 61.20.Gy, 61.20.Ne, 61.20.Qg, 02.30.Rz
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