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Generalization of the Anderson model to describe the states of electroneg-
ative impurities in liquid-metal alloys is the main aim of the present pa-
per. The effects of the random inner field on the charge impurity states
is accounted for selfconsistently. Qualitative and quantitative estimation of
hamiltonian parameters has been carried out. The limits of the proposed
model applicability to a description of real systems are considered. Espe-
cially, the case of the oxygen impurity in liquid sodium is studied. The mod-
elling of the proper electron-ionic interaction potential is the main goal of
the paper. The parameters of the proposed pseudopotential are analyzed
in detail. The comparison with other model potentials have been carried
out. Resistivity of liquid sodium containing the oxygen impurities is calcu-
lated with utilizing the form-factor of the proposed model potential. Depen-
dence of the resistivity on impurity concentration and on the charge states
is received.
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1. Introduction

The study of the properties of electronegative impurities in condensed matter
has been provided for a long time and it is still actual. The basic results of this topic
are gathered in monographs [1,2].

Let us consider the system of liquid-metal alloy containing electronegative im-
purities of such elements as H, O, Cl, N, C, F. It has practical application to the
problems of corrosion resistance of materials. Liquid metals Li, K, Na, Pb and their
mixtures Li,Pby_,, Li,Na;_,, Na,K;_, are used as the heat-carriers in nuclear re-
actors due to their large thermal capacity, thermal conduction and low melting
temperatures [3-5].The utilization of these metal alloys in thermonuclear reactors is
prospective as well [6].

*This paper is dedicated to Professor Myroslav Holovko on the occasion of his 60th birthday.
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It still remains urgent to solve an important technological problem, caused by
aggressive corrosive effect of liquid-metal phase on structural materials (steels). The
dissolution of the constituent atoms of steel (Fe, Ni, Co, Mo, Cr and other) in a
liquid phase takes place during the direct contact of the heat-carrier with structural
material. It gives rise to violation of stoichiometric constitution of the surface layer
of hard alloys. This predetermines the loss of valuable physical-chemical properties
of this layer and its subsequent destruction. The dissolution of hard alloys in al-
kaline melts is a rather complicated physical and chemical process, which depends
on numerous factors: chemical structure of a structural material and liquid-metal
alloy, temperature, radioactivity, etc. Detailed discussion of experimental data for
processes of structural materials interaction with alkaline metal alloys and their in-
terpretation within the framework of simple kinetic and thermodynamic models can
be found in [3,4].

Solubility kinetics of structural material in a metallic alloy essentially depends
on the availability of electronegative impurities in the structure of the alloy. These
impurities are always present in larger or smaller amounts in alkaline metal alloys.
It was experimentally established that temperature dependence of the equilibrium
solubility of gaseous impurities in liquid metals is approximately described by the
expression InC' = A — BT ™!, where C' is concentration of impurities, A and B are
certain constants, which have experimentally defined values for different alloys and
for different impurities [3-5].

The mechanism of catalytic activity of gaseous impurities in alkaline alloys has
not been fully investigated so far. Thermodynamic research methods in condensed
metallic systems permit to define integrated (macroscopic) characteristics of alloys,
to construct the diagrams of state. However, the microscopic reasons, which deter-
mine the impurity behaviour in alloys in such studies cannot be revealed. Therefore,
the effect of different gaseous impurities on the properties of metals and their alloys
cannot be predicted. Thus, from a technological point of view, undesirable effects
cannot be deliberately excluded when liquid metals and structural materials are
contacted.

Detailed research of the impurity behaviour at a microscopic level is important
for a deeper understanding of interaction mechanisms of liquid-metal phase with
structural alloys and for explaining the corrosive phenomena on a medium interface.

A computation of the following physical quantities is important in order to un-
derstand the microscopic processes:

- chemical potential or the coefficient of the activity of the impurities;
- maximum solubility of the impurities in liquid metals;
- charge impurity state;

- spin-polarized (magnetic) state;

structure of the neighbouring environment of the impurity

and some others.
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Let us consider a monocomponent metallic alloy of alkaline metal, in which
gaseous impurities are included. The microscopic approach to the description of
liquid alkaline metals Li, K or Na is identical. The only quantitative difference is
due to microscopic parameters, which characterize these metals.

Let us give a qualitative estimate of impurity states in liquid alkaline metals.
The experiments testify that the oxygen is the most dangerous in liquid sodium or
in sodium based liquid alloys.

At least eight experiments provided by authors [7] show that oxygen exists in ion-
ized form in liquid sodium due to its high electronegativity. The following chemical
elements H, O, CI, N, C, F belong to the class of electronegatives. Electronegativity
is characterized by the capability of the atoms, which are included into the struc-
ture of a molecule and other compounds or a solvent, to join electrons. The electron
affinity energy (Ep) is an important parameter of electronegativity.

An electronic structure of oxygen (1s%2s?2p*) shows that a free atom can be in
the state O?~ with two electrons additionally localized on the p-shell . However,
the effective atomic charge state of oxygen in a condensed metallic medium can
be changed from neutral to O?~, taking any intermediate values, depending on the
parameters of a system.

For the sake of simplicity we shall model atomic charge state of oxygen as local-
ization process of electron from conductivity band to non-degenerate local s-level.
The basic supposition in explaining the formation mechanism of a negative oxygen
ion is the electron localization under the action of an effective one-particle potential.
Twofold filling of a local level corresponds to the charge state O?~. The formation of
an effective charge of oxygen impurity in liquid metal can be presented as a process
of hybridization of local level with the states from conductivity band. This quali-
tative interpretation of the formation of an effective impurity charge is explained
within the framework of Anderson model [8].

The paper is organized as follows. In section 2 we generalize the Anderson model
to describe the states of electronegative impurities in liquid-metal alloys. In sec-
tion 3 we perform the analysis of the proposed effective pseudopotential of electron
— negative ion interaction. The best method for testing the applicability of model
pseudopotential in a real system is to calculate some material characteristics and
compare them with the experimental data. Section 4 is devoted to the calculation of
the change of impurity resistivity of liquid sodium containing the oxygen impurities.

2. Microscopic model of the system “metallic alloy — gaseous
impurity”

Let us consider the separate gaseous impurity dissolved in liquid alkaline metal.
The liquid-metal phase will be described within the framework of electron-ionic
model, which for such metals gives satisfactory computational results of electronic
and structural properties.

Let R4, ..., Ry be the coordinates of atoms of metallic alloy, which accept ar-
bitrary values in volume V. The impurity has a coordinate Ry. We selected the
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following full model Hamiltonian in coordinate representation:
ﬁ = Hg + [:Ielfi + [A{elfel . (21>

Energy operator of electron-ion interaction is written as follows:

A== S a+ S S v(n-Ri D+ Y Vel(lni—Rol). (22)

2m
1<GEN 1SN 1N 1<<N,

In this formula ry,...,ry are electron coordinates of a metallic subsystem, the
amount of which coincides with the number of metal atoms due to one-valence of
alkaline elements. It is assumed that the electrons of valence impurity shell remain
localized on the impurity.

Pseudopotentials V (|r; — R;|) and V5(|r; — Ry|) describe electron scattering on
the ions of metal and impurity, accordingly. The first term in formula (2.2) is the
operator of a kinetic energy of a free electron subsystem.

The last term in (2.1) describes the energy of the pair electron-electron interac-

tion
2

N 1 1 e
He—o = 5 Y (v )= ) >, —— (2.3)

I‘. — r :
1<i# <N 1<z‘¢j<N| i =1 |

Non-operator part H, describes the energy of classical ion-ionic interaction.
In order to represent the secondary quantization, as a base we shall use flat waves
to decompose the field electronic operators

1 :
wk(r) = 7 exp (ikr) (2.4)

and s-shell localized on the impurity
1 r— R
Yo(r) = —— exp (—M) (2.5)

Wave vector k in (2.4) goes through the specified values in impulse quasi-continuous
space A:

A= {k: k = Z 2rVY3.eq, na € Z, (ea,eg)zéag}.

1<a<3

Let us remark that 1y(r) is not orthogonal to flat waves (2.4). Apart from this, its
inclusion into the basis causes overfilling of the last. However, the errors introduced
by such an approximate procedure will not affect the regularity of a qualitative
picture. In the representation of the secondary quantization operator (2.1) with
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allowance for only a certain class of Coulomb electron-electron interactions we have
the following:

H = HCI+ZZ Ekaf{gaka‘FZEodaLgdoo

keA o==£1 o==+1
- + A A

+3 30 (Vaad, akq0+ Vog 0y akq.0) + D Usfosio, o

keA qeA o==1 o==+1

- £ 7+ - 5

+ E E (Wk ay, doo + Wy dg, ako) + E E E Py ay, ax—q o Mo

keA o==£1 keA q€A o,0/==%1

N + * 7+ N

+ E E (Uk Nt Ay, d070 + Uk dO,U ko TLU/) . (26)

keA o#o’!

Here, ax,(ay,) and do ,(dg ,) are the annihilation (creation) Fermi-type operators

for electrons in the states {k, o} and {Ry, o}, where 0 = +1 is quantum spin
number, which accepts two values according with two possible orientations of an
electronic spin relatively to the quantization axis. Ey = h*k?/2m is energy spectrum
of the electrons in the states @k (r), and Ejy is the energy of the localized electronic
state 1o(r). n, = d} d, is the spin-dependent occupation number operator for the
localized state.

The matrix elements V,, and Vj , characterize the processes of elastic scattering
of electrons on the ions of metal and impurity. Their explicit analytical forms are as
follows: )

‘/;1 = N Z e_iqu U(Q)v ‘/O,q = e_iqRO UO(Q)‘ (27)

1N

Formfactors of scattering pseudopotentials

o) = [Vihe ™ w) =g [Volhe a2

v

depend only on the module of momentum transfer q due to the locality of pseu-
dopotentials V(|r|) and Vy(|r|).

The processes of nonelastic scattering of electrons caused by their transition from
the state localized on the impurity into conduction band and on the contrary, are
characterized by a matrix element

1 . h2 Ay
W, = - /e_lkr <_ 5 + VLF(r)) o (r) dr. (2.9)
v
Here,
Vie(r) = > V(e =Ry|) + Vi(|r - Ry|) (2.10)
1SN

is the potential of a local field of metal ions and the impurity, which acts on the
electron at a point r € V.
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The term ) _Ujn,n_, in Hamiltonian (2.6) descends from the operator of
Coulombic electron interaction and describes Hubbard repulsion of electrons lo-
calized on the impurity, with the intensity Uj.

2 2
Uo :/drl/dl“2|l/)0(1“1)|2|67|@/)0(1“2)|2 = §e_’ (2.11)

rl—r2| 87“p

that for the atom of oxygen can be approximately about 1-5 eV.
The process of elastic scattering of electrons on the charged impurity is described
by a matrix element

P, = / e (1) dr. (2.12)

Here, the value

B(r) = [ Bl = v (e (213)
1%
has the sense of potential energy of the electron in a field, which is generated by the
electron localized on the shell 9y(r).
Matrix elements can be written down in the other form, structural multipliers
being separated explicitly

Wi =e *Row(k),  U,=e Royk), P, =e ™ Ropk). (2.14)
Coefficients

1 : R2A

w(k?) = T = e_lkr (— - + VLF(F)) wo(r) dI‘,
1% V/ 2m

uh) = = [ e B v

%

plk) = %/ e H(r) dr (2.15)

1%
\kl’c) (50 (k,00  RO)

(ko) (ko)

(3,0 (R,O)

Figure 1. Feynman diagrams
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do not depend here on the nodal index and are considered in the coordinate system
related to the impurity.

Hamiltonian (2.6) does not take into account all processes with participation of
two electrons. Specifically, processes represented by Feynman diagrams (figure 1)
are neglected.

On the diagrams, as usually, the line, which exits from the top accords with
the electron creation processes in the states indicated in the diagram, while the
lines, which enter the top accord with annihilation processes, respectively. A double
dashed line denotes the matrix element of Coulomb electron interaction operator.
Actually, in Hamiltonian (2.6) only the electrostatic effects including two electrons
are taken into account and the processes of exchange character are not considered.

3. The structure of the effective electron-ionic interaction
potential

It is still an extremely difficult problem to calculate the total effective electron-
ion interaction from the first principles with any degree of precision. Consequently;,
the potential is generally presented in a model form which includes in a simple
parametric way all the features dictated by the physics of the situation. Ashcroft,
Heine-Abarenkov, Cohen, Animalu model potentials are widely applicable in liquid
metal physics. Parameters of these potentials have been investigated and approved
completely enough ([11-13,20]). We have evaluated in chapter 5 the resistivity of
the liquid sodium with Ashcroft’s potential (including screening by the conduction
electrons) [11].

0, T T,
v(r) = { —Ze*r, r> .. (3.1)
where r, is core radius.

The Fourier transform of the potential (3.1) is

A 7 e?

0F cos(qre). (3.2)

v(g) = —
Parameters for liquid sodium are rY* = 1.66 a.u. = 0.0878 nm, Q = 270 a.u. —
atomic volume of liquid Na at 100°C.
Screened function by the conduction electrons in Heldart-Vosko approximation
is as follows [11]:

B An/ 2 1 q
e(g) = 1+Qq2(3EF) A(%F)[l f(@)],
1 1—29? 1+y
= — |
1/24¢*

2 + 2kp /(1 +0.01574(Q/2)1/3)’
where kp = (372Z/Q)"/% = 0.4786 a.u.”".
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Now let us consider the interaction between the electron and the negative ion.
Besides Coulomb interaction —(Z/r) there appears the term —a/r* (« is ion polar-
izability). At large distances the pseudopotential has an asymptotic form at r — oo
2]

U(r) =~ —a/rt. (3.4)

Such an asymptotic behaviour of the potential is allowed to adsorb the effects
of polarization since they affect the attraction electron and its localization at the
impurity.

The potential of polarizative electron-ion interaction is selected in [14] as follows:

U(r) = —a/2(r + Tp)4, (3.5)

where parameter r,, is the cutting radius, found for hydrogen r, = 0.74ap, polariz-
ability o = 9/2a3.

The effective potential chosen in [15] includes the observed polarizability in the
following way:

ae?

2(r2 +1r2)%’

where V(r) is the central potential, parameter 7, is taken, somewhat arbitrary, to
be the average distance from the nucleus of the outer electrons of the neutral atom.
« serves as an eigenvalue once the binding energy Fj is specified. The values of «
reasonably agree with experimental values for ions O~, C7, F~.

Similar form of the potential is adopted in [16]:

Ulr)y=V(r)— (3.6)

2(1 —e7 /) a1l — e/

r B (r? —I—rg)2

U(r) = Ugs(r) + ; (3.7)

where Vig is the Hartree-Fock-Slater potential for the neutral atom. The parameter
rp Was arbitrarily chosen to be 1.5ag, 2.5ag, 3.5ag, 4.5ag, respectively, for all atoms
in each of the successive rows of the periodic table. The atomic polarizability « is
chosen as the best possible from the experimental and theoretical literature.
Theoretically, the value of ion polarizability can be found from the following

formula Zon
2 Oon
o= 2e Z m,
n#0
Z is the operator of electron dipole moment, n characterizes the system state, F, is
the energy of this state. Ej is electron energy of affinity. Short distance interaction
permits to apply the zeroth radius potential method widely used in atomic physics.
Wave function in the coupled s-state in d-potential ¢(r) = B+/v/2mexp(—~yr) /7.
Then, polarizability o = B?/2y*. Parameters B, v are in [10]. Assuming all the
above mentioned, we will be modelling the potential of the interaction between the
electrons and the negative ions. But following [15], we must note that the method
of model potential has the following disadvantages. The semiempirical parameters «
and r, do not arise naturally from the formalism. Thus, the only criterium we have
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for the accuracy of the method is its agreement with experimental results. So, we
use the values of a [16] and r,, [15], taken from the experiment.

We shall discuss herein the form of the electron wave function in the negative
ion. Since the electron binding energy in the negative ion is considerably smaller
than the electron binding energy in the atom, the size of negative ion is greater than
the atomic size. The attraction of outer electrons takes place in the valence electron
region. Thus, we can use one-electron approximation for a weakly bounding electron
out of the atom. Radial electron wave function at large distances is as follows:

hi(r) = %KZHQ(W”),

where [ is the orbital electron moment, K is Macdonald’s function. Wave function
in such a form is used for these characteristics of a negative ion, which is deter-
mined by a weakly bounding electron. Other model wave functions one can find in
a monograph [2].

We have to take the s-state wave function as:

1 —r/r
r)=—=e /P, 3.8
p
rp is taken to be the average distance from the nucleus of the outer nl-electrons of
the neutral atom.

3.1. Electron-neutral impurity interaction potential. The potential
parameters

We shall select the effective potential of the interaction of electrons with neutral
impurities as follows:

B Ae "/ a

r2 (r2 + 7“12))27

Va(r) (3.9)

A >0, a, 7, > 0 are potential parameters. The Fourier transform of the potential

(3.9)
vo(q) = /VO('I“) e dr

\%

can be written as follows:

4t Ae? a?e?

arctg(qry) —

vo(q) e 7P, (3.10)

p
The first term of expression (3.9) is some analytical approximation of repulsive
interaction between electrons and neutral impurity.

The parameter A can be defined from physical reasons. It is a well known fact that
the bound states spectrum of potential falling more rapidly than Coulomb potential,
consists of finite number of energy levels or cannot contain them whatsoever. The
energy of ground state level is supposed to coincide with the affinity energy. Then,
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r(a.u.)

Figure 2. Pseudopotential of interaction between electrons and neutral impurities
O, C, F, ClL

the value of parameter A is chosen such that the resulting potential will support an
s-state with the binding energy of the negative ion.

E0:47T/7"2

0

ua (ddi) + %(rwé(m] ar

2m

The equation for the parameter A is obtained as follows:

h? 4Ae% dale?

EO = + 5
2m7“g 37’1:2) rg
where .
2
xz —2x _
I:\/dl‘me ) l'—T/Tp.

0

We have provided all calculations in the atomic system of units: 1 a.u. of energy =
1 Ry = ¢?/2ag = 13.6 eV, 1 a.u. of length = 0.0529 nm = ag, Ai=m =¢ = 1.
Then, the potential (3.9) in the atomic system of units transforms into

B 2Ae~"/m 2«

Vo(r) 2 2+ 22
p

where A = 3/8r2Ey + 3al/r? —3/8.
The pseudopotential of interaction between electrons and neutral impurities O,
C, F, Cl is plotted in figure 2. All potential parameters are given in table 1.
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Table 1. Parameters of model potential Vj(r) of interaction between electrons

and neutral impurities O, C, F, Cl. Experimental values are taken from [16] (*)
and [17] (**).

Elements | r, (ag) [16] | —Eo (Ry) | a (a3) | A (ap)
O 1.2 0.1077 5.19*% | 0.278
C 1.71 0.09188 14.2* | 0.527
F 1.16 0.2534 4.05% | 0.249
Cl 2.046 0.2656 23.5%* | 0.968

3.2. Potential of interaction between electrons and charged impurity

We now turn to the matrix element (2.12). We calculate the effective pseudopo-
tential of interaction between electrons and charged impurity in the Hartree-Fock
approximation (see [18])

%(T)Z%(T)HM/<I’(|r—r’|)|¢o(r’)l2dr', (3.11)

\%4

where (n) is the spin-dependent occupation number operator for localized state. This
value must be evaluated self-consistently. The system of equations for self-consistent
calculation of charge impurity state is obtained in [18]. We can take here 0 < (n) < 2
(according to the Pauli principle).

Now, the expression E)(r) can be written as follows:

~ 4mre? 1

d(r) = —e'Tp(q),
(1) = G 30 )
q
here, we denote electron density Fourier coefficient
1 ’ s q4
J(q) = — [ drie&/meriar’ — __ 10 __ =2/rp.
el = | v
v
Then,
. qé4)€2 e eiqrdq
¢(r) = ———Im / PO ETITE
mr q(¢* + q5)
Finally, we obtain
5 e? 2 T2
D(r)=— |1 —e 2/ — —e7 2/ |
r Tp

The effective pseudopotential of interaction between electrons and charged im-
purity (3.11) becomes as follows:

[

(3.12)

%(7") = ‘/0(7"> + <ﬁ>€7 |:1 — efzr/rp _ LeQT/T‘p:| .

Tp
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1,0 +—
0,5+

0,0

0,54
1,04
154

2,04

-2,5
0,0

r(a.u.)

Figure 3. The pseudopotential of interaction between electrons and charged oxy-
gen impurity at 0 < (n) < 2.

The pseudopotential of interaction between electrons and oxygen impurity at
0 < (n) < 2is plotted in figure 3. The contribution from the Hartree-Fock potential
increases when local level is occupied by one electron. It concerns the charge state
O~. When (n) = 1.5, the bound state of the electron with the ion is absent.

The form-factor of the effective impurity pseudopotential

Tula) = vola) + Pafi) = [ dre (Vi) + (i) [ av'un(e)Pe(le - v

contains the Hartree-Fock potential caused by the charge of impurities.

4mre? q27"2 4
P [1 _ p <1 )} 3.13
q e (4+ Q27’I2)) + 4+ q27€ ( )

It can be rewritten in the atomic system of units as follows:

~ 8TA 4arm?
vo(q) = WT arctan(qry) — jﬁw e I
p
8 ¢’ 4
¢ 2 1 N p (1 >} ’
+ (1) 7 A+ 2r2) - At g2

In the limit ¢ — 0, the form-factor vg(q) is as follows:

w(@) = w(0)+pBa+pe’,  ¢—0,
v(0) = (87Ar, —4r?a)/ry, B =dar? p=—2ar’r,/2. (3.14)

The form-factor v§(q) = vo(q)/vo(0), ¢ = qap of the oxygen impurity is plotted
in figure 4.
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vl(g) 7

0,0 . }

Figure 4. The form-factor vj(g) of the oxygen impurity.

The proposed pseudopotential will be helpful in calculating the charge and spin-
polarized oxygen impurity states in liquid sodium. The system of equations for
self-consistent calculation of charge impurity state is obtained in [18].

Calculating some material characteristics and comparing them with the exper-
imental data is the best method for testing the applicability of model potential
in a real system. We have to calculate the resistivity of liquid sodium with small
concentration of the oxygen impurities in the next section.

4. Resistivity of liquid sodium containing the oxygen
impurities

Liquid-metal resistivity is caused by the scattering of electron waves on the atom-
ic thermal oscillations (i.e., phonon scattering). This is a thermal part of resistivity
pr. Besides this, an electron scattering on the impurities took place. This part is
sometimes called the impurity or the residual resistivity Apc.

p=pr+Apc,

where Apc ~ AC. The latter relation is used in the case of small concentration of
impurities C' [21].

Let us first discuss the pure liquid metal. In the liquid state all scattering is
supposed to be confined to a spherical Fermi-energy shell. In the relaxation time
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approximation the solution of the Boltzmann equation for the relaxation time yields

™

/e = 27mvp/d0 sinf(1 — cos@)o(qr, 0),

0

where o (g, 0) is the differential scattering cross section per scattering center and v
is the carrier velocity at the Fermi surface. Born approximation is used to determine
o. This, in turn, requires the square of the matrix element of the model potential
that scatters the electrons |v(q)|*:

1 m, 9
7(ae.0) = 5 (3 1o (@)
Since the scattering occurs on the spherical Fermi surface, we have ¢ = 2¢g sin 0/2,
and hence ) 2
1 m* Q F
/o = ———= 2S(q)q¢dq.
fr=geea | @PS@dg
S(q) is liquid structure factor for the model of hard spheres. The theoretical structure
factor is compared with the experimental data of Gingrich and Heaton [19] for the
alkali metals by authors of [20]. It is apparent that up to and including the major

diffraction peak, the structure factor is well reproduced by the model fluid.

S(g) ={1-nC(a)}", (4.1)
where the direct correlation function in momentum space is given by

1
C(q) = —4rd® / 32%@[ + Bs + vs?)ds. (4.2)
qs
0

The parameters «, (3, are functions of a packing-density parameter n:

n = (n/6)nd’,

a = (1429)*/(1—-n),

B = —6n(1+n/2)*/1—-n)",
v o= (1721 +2n)%/(1 —n)".

For a long wavelength (i.e., small momentum transfer) the limit for the structure
factor is known thermodynamically: S(0) = nkTyr, where yr is the isothermal
compressibility. For sodium nkTxt = 0.024 at 100°C. The theoretical hard-sphere
value is S(0) = 1/a = (1—n)*/(1+2n)% For n = 0.45, which is our fit to the sodium
data, S(0) = 0.025.

The resistivity pr may now be calculated from

mupf) 1
Ze? TF.

PT = (4.3)
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Table 2. Comparison of liquid-metal resistivities for liquid Na, K at 100°C.

Metal | pexp | pr—a [20] | pa [11] | pa
Na | 9.6 9.5 6.0 |9.64
K 13 16.2 9.4 13.2

The resistivity for liquid metals is evaluated in [20] with Heine-Abarenkov poten-
tials and the Animalu-Heine modification of this potential. The results are close to
the experiment. We have calculated the sodium resistivity with Ashcroft’s potential
(3.1) (including screened function in Heldart-Vosko approximation (3.3)). In [11] the
screened function has been used in Hartree approximation (without including elec-
tron exchange and correlation effects). The experimental value is pex, = 9.6 pf2cm
(see table 2).

So, we are convinced of the fact that the resulting value of resistivity is sensitive
to the screened function and to small changes in the potential.

Now let us discuss the effect of the impurities on resistivity. When adding the
impurity, the resistivity of liquid metal increases. The increment of resistivity is
given as follows (the relation is obtained for crystals)

Ap  mop

_— 0’

AC e2 7’
where o is total scattering cross section of conductivity electrons per impurity, AC
is atomic part of the impurities.

(4.4)

o=2rm /Ow(l — cos(#))o(gr, 0) sin(6)de.

We have calculated the scattering cross section per pseudopotential 7y(q) for a
charged impurity.

Ap  mop (2m\° [1 . 9 3
A—C = ? ﬁ ; |'U(QQFZ)’ z°dz. (45)

Concentration dependencies of the residual resistivity for several values (n) =
0,1,2 are given in figure 5. The dash-dot line accords to experimental data [23].
Experimentally obvious relation is as follows:

p3soec = posso + Ap = 18.9(1 + AC)uf2 cm,

where p3500¢ is full resistivity of liquid Na at temperature 350°C, Ap is the increment
of resistivity caused by oxygen concentration rising, AC' is the change of oxygen
concentration (O in at. %). The description of some experiments on controlling the
oxygen impurity in Na is given in [22,23)].

Dependence of the residual resistivity on the impurities charge states represented
in figure 6 can be useful for impurity identification in liquid-metal heat-carriers.
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Figure 5. Concentration dependencies
of the residual resistivity calculated for
charged impurities (n) =0, 1, 2.
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Figure 6. Dependence of the residual
resistivity on the charge states of the
impurities.

5. Conclusions

We have constructed the generalization of microscopic Anderson model to de-
scribe the states of electronegative impurities in liquid metal alloy. The case of
oxygen impurity has been considered in detail. The proposed potential of interac-
tion between conducting electrons and negative ions has been used in calculating
the increment resistivity of liquid sodium containing oxygen impurities. The results
are close to experimental data. The observed dependence of impurity resistivity on
the concentration of the impurities and the charge states can serve as an effective
method of controlling the impurities in liquid-metal heat-carriers. The form-factor
of the potential will be used for self-consistent calculation of the charge and spin-
polarized states of the oxygen impurity.
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MoaenbHuil noTeHuian B3aEMoAii eN1eKTPOoHIB 3
HeraTUBHUMM iOHaAMM

t0.PynaBscbkuia, ILIMoHeaninok, M.Knanuyk

HauioHanbHuin yHiBepcuTeT “JIbBiBCbka NONITEXHIKA”,
79013 JlbBiB, BYn. C.6aHgepu, 12

OtpumanHo 15 rpyaHa 2002 p.

Y3aranbHIOETBCA MIKPOCKONiYHA Moaenb AHOEpPCOHa 3 METOK Onucy
CTaHiB enekTpOHeraTMBHUX AOMILLOK Yy po3nnaeax pigkmx metanis. Ca-
MOY3roXeHO BPaxOBYETbCH BMJIMB BUMNAAKOBOr0 BHYTPILHBOrO MNOJISA
Ha 3apsaaoBi cTaHy ooMilkuy. [poBeaeHa AkicHa i KinbkicHa oujiHKa napa-
METPIB ramifnbToHiaHa, AOCAIOXKYIOTbCS MEXi 3aCTOCOBHOCTI MiKPOCKO-
niYHOiI Moaeni [0 ONUCY KOHKPETHUX CUCTEM. PO3rnsHYTO KOHKPETHUIA
BMUNAO0K OOMILLKM KMCHIO B PiAKOMY HATPIl. Y Takiin cuctemi BaxneBum €
BMBIp NoTeHLujana B3aeMOL|i eNeKTPOoHIB 3 AoMilkaMn. [leTanbHo npo-
aHanisoBaHo napameTpu 3anponoHOBAHOIo NCeBaonoTeHLiana, npose-
LEHO NOPIBHAHHS 3 iIHWMMW MOAENbHUMUW NCEBAOMNOTEHUianaMmun. Buko-
puctaswn dopm-dakTop 3anponoOHOBAHOrO MNOTEHLjiana, NnopaxoBaHO
MATOMMIA ONip PIAKOro HaTPilD 3 AOMillKaMKn KMCHIO. OTprMaHO 3anex-
HICTb AOMILLKOBOIO NMTOMOIO OMNOpPY Bif, 32pSA0BOro CTaHy AOMILLOK Ta
iX KOHUEeHTpauii.

KniouoBi cnoBa: HeratusHi ioHW, piaki MeTanu, Mogesbs AHAepcoHa

PACS: 71.23.-k, 71.23.An, 72.15.Rn
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