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A model of quantum particles performing D -dimensional anharmonic os-
cillations around their equilibrium positions which form the d -dimensional
simple cubic lattice Z

d is considered. The model undergoes a structural
phase transition when the fluctuations of displacements of particles be-
come macroscopic. This phenomenon is described by susceptibilities de-
pending on Matsubara frequencies ωn , n ∈ Z . We prove two theorems
concerning the thermodynamic limits of these susceptibilities. The first the-
orem states that the susceptibilities with nonzero ωn remain bounded at all
temperatures, which means that the macroscopic fluctuations in the model
are always non-quantum. The second theorem gives a sufficient condition
for the static susceptibility (i.e. corresponding to ωn = 0 ) to be bounded
at all temperatures. This condition involves the particle mass, the anhar-
monicity parameters and the interaction intensity. The physical meaning of
this result is that, for all D and all values of the temperature, strong quan-
tum effects suppress critical points and the long range order. The proof
is performed in the approach where the susceptibilities are represented as
functional integrals. A brief description of the main features of this approach
is delivered.
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1. Introduction

We consider the following model of anharmonic crystal. To each point l of the
d-dimensional simple cubic lattice Zd there is attached a quantum particle of mass m
performing isotropic D-dimensional anharmonic oscillations in the crystalline field.
The Hamiltonian of our model has the form

H =
1

2

∑

l,l′∈Zd

dll′(ql,ql′) +
∑

l∈Zd

Hl , (1)

Hl =
1

2m
(pl,pl) +

k

2
(ql,ql) + V ((ql,ql)), k > 0,
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where (. . . , . . .) stands for the scalar product in RD and dll′ is a dynamical matrix
of the model. We shall suppose that dll′ is:

• invariant under translations on Zd;

• ferroelectric, which means dll′ 6 0;

• such that
∑

l∈Zd |dll′| <∞.

These assumptions imply that there exists a function φ : R+ → R+
def
= [0,+∞),

such that
dll′ = −φ(|l − l′|), (2)

where |l− l′| =
√

(l1 − l′1)
2 + . . .+ (ld − l′d)

2 is the Euclidean distance on the lattice.
The anharmonicity potential V is supposed to be of the following form

V (ξ) = aξ + b2ξ
2 + . . .+ bpξ

p, a ∈ R, b2, . . . , bp−1 > 0, bp > 0. (3)

The simplest case of such a potential is where p = 2 [18,27,34]. If the parameter
a is negative and its absolute value is big enough, the equilibria at ql = 0, l ∈ Zd

become unstable (a double-well profile for D = 1) and macroscopic displacements of
particles from these unstable positions may occur. Such objects have been studied for
many years as quite realistic models of crystalline substance undergoing structural
phase transitions [14–16,26,27,34,38]. They, and similar models, are also employed
as parts of the models describing strong electron-electron correlations caused by the
interaction of electrons with vibrating ions [18,35,36].

Starting from the pioneering paper [31], many efforts were made to show that
“the more quantum is the model, the less possible is the phase transition”. To confirm
this physical common wisdom, different methods and approaches were applied. The
first fully rigorous proof of the suppression of the long range order in models of
this type with one-dimensional oscillations was done in [40]. This effect was also
demonstrated on certain exactly solvable models of anharmonic crystals [29,39].

In [4] it was shown (also for the scalar case) that not only the long range or-
der but any critical anomaly is suppressed if the model is strongly quantum. Later
in [22–24] his result was obtained for the vector case with arbitrary D ∈ N. The
present paper gives an extended and complete presentation of the results announced
in the latter papers. In section 2 below we formulate two theorems. The physical
meaning of the first theorem is that the large fluctuations of displacements of parti-
cles, which appear at the critical point, are always non-quantum. This means that
the only static susceptibility may diverge. The second theorem states that also the
static susceptibility is bounded (i.e. non-quantum large fluctuations are suppressed
as well) at all temperatures if the model is strongly quantum. This occurs if either
the particles are light and/or the energy levels of the one-particle Hamiltonian of the
corresponding scalar model (see below) are sufficiently separated from each other.
Both these mechanisms are observed experimentally as isotopic effects (light par-
ticles) [1,38] and external hydrostatic pressure effects (big separation) [13,37]. The
proof of the second theorem is performed in the approach which employs functional

602



Quantum effects in an anharmonic crystal

integrals, briefly described in section 3. This approach, initiated in [2], now is well
elaborated in [3,8–11,20,25]. A complete description of this approach in application
to the model considered in the present paper and an extended related bibliography
are given in the review article [6]. In section 4 we discuss some consequences of our
theorems.

2. The results

The description of the Gibbs states of lattice models is performed with the help
of local Gibbs states, which are constructed by means of local Hamiltonians (see
[8,9,19,20]). For our purposes, it is enough to consider periodic states only. Let Λ
stand for a finite subset of the lattice Zd, which we may choose as a cubic box of
finite length. For such a box, we define the periodic dynamical matrix

dΛ

ll′
= −φ(|l − l′|Λ), (4)

where the function φ is the same as in (2) and the periodic distance |l− l′|Λ is taken
on the torus which one obtains identifying the opposite walls of the cube Λ. The local
Hamiltonian HΛ corresponding to the periodic boundary conditions is constructed
according to (1) and has the following form

HΛ =
∑

l,l′∈Λ

dΛ

ll′
(ql,ql′) +

∑

l∈Λ

Hl . (5)

This Hamiltonian defines a density matrix

%β,Λ = exp (−βHΛ) /Zβ,Λ , Zβ,Λ = trace exp (−βHΛ) , (6)

where β−1 is the temperature. For the Hamiltonian (5), a general theory of the
Schrödinger operators [12] implies that the latter trace exists. The local periodic
Gibbs state γβ,Λ in the box Λ is defined as

γβ,Λ(A) = trace {A%β,Λ} , (7)

where A is an observable, which is a self-adjoint operator representing a certain
physical quantity. The state γβ,Λ maps the set of such observables into the real
numbers.

The physical properties of the system in Λ are described by Matsubara functions,
which, for the observables A1, . . . , An and τ1, . . . , τn ∈ [0, β], are defined as follows

Γ β,Λ
A1,...,An

(τ1, . . . , τn) = γβ,Λ

{
Tτh

Λ

τ1(A1) . . . h
Λ

τn
(An)

}
, (8)

where
hΛ

τk
(Ak) = exp (−τkHΛ)Ak exp (τkHΛ) , k = 1, 2, . . . , n. (9)

is the Heisenberg representation of the operator Ak taken at the imaginary time
tk = iτk and Tτ stands for the τ -ordering. By (8), each Matsubara function has the
property

Γ β,Λ
A1,...,An

(τ1 + θ, . . . , τn + θ) = Γ β,Λ
A1,...,An

(τ1, . . . , τn), θ ∈ [0, β], (10)
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where addition is understood to be of modulo β. A significant role in the Euclidean
approach is played by multiplication operators. Let |Λ| be the number of lattice
points in the box Λ. By xΛ we denote the vector xΛ = (xl)l∈Λ, which has |Λ| com-
ponents xl, each of which is a D-dimensional vector. For a wave function ψ = ψ(xΛ)
and for a continuous complex valued function A(xΛ), the corresponding multiplica-
tion operator, denoted also as A, acts

(Aψ)(xΛ) = A(xΛ)ψ(xΛ). (11)

Since such multiplication operators commute, the Matsubara functions constructed
with them are continuous as functions of τ1, . . . , τn on the whole cube [0, β]n.

In the model considered the phase transition is connected with the appearance
of the macroscopic displacements of particles breaking O(D)-symmetry, thus the
operator describing fluctuations of these displacements will play an important role
in our consideration. This operator is

Q
(α)
Λ

=
1√
|Λ|

∑

l∈Λ

q
(α)
l
, α = 1, 2, . . . , D. (12)

It is a multiplication operator. The Matsubara function (8) constructed with n = 2

and A1 = A2 = Q
(α)
Λ

will be in the center of our study. To simplify notations we set

G
(α)
β,Λ(τ, τ ′)

def
= Γ β,Λ

Q
(α)
Λ

,Q
(α)
Λ

(τ, τ ′), α = 1, 2, . . . , D. (13)

By (10), this function depends on the distance |τ−τ ′|β
def
= min{|τ−τ ′|, β−|τ−τ ′|},

which makes it possible to write its Fourier transformation in the following form

G
(α)
β,Λ(τ, τ ′) =

1

β

+∞∑

n=−∞

eiωn(τ−τ ′)Ĝ
(α)
β,Λ(ωn), (14)

Ĝ
(α)
β,Λ(ωn) =

∫ β

0

G
(α)
β,Λ(τ, τ ′)eiωn(τ−τ ′)dτ ′,

where ωn = (2π/β)n, n ∈ Z are Matsubara’s frequencies. The Fourier coefficients

Ĝ
(α)
β,Λ(ωn) have direct physical meaning – they are susceptibilities of the system in

the box Λ at the temperature β−1. For every box Λ and every β, these quantities
are well defined. Let {Λl}l∈N be a sequence of boxes such that, for every l ∈ N,
Λl ⊂ Λl+1 and ⋃

l∈N

Λl = Zd.

In the sequel we deal with such sequences of boxes only, thus we shall assume that
every sequence {Λl}l∈N has the above properties.

The phase transition in the model considered may be detected as follows. If, for a
given β and an arbitrary sequence of boxes {Λl}l∈N, all the sequences {Ĝ

(α)
β,Λl

(ωn)}l∈N,
n ∈ Z are bounded, then there is no symmetry breaking at this β. One can show
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(see below) that all G
(α)
Λ

(τ, τ ′) and all Ĝ
(α)
β,Λ(ωn) are nonnegative, thus by (14), one

has
Ĝ

(α)
β,Λ(ωn) 6 Ĝ

(α)
β,Λ(0), (15)

for all ωn. This yields that all the sequences {Ĝ
(α)
β,Λl

(ωn)}l∈N, n ∈ Z are bounded if

{Ĝ
(α)
β,Λl

(0)}l∈N is bounded. In this case one says that the fluctuations of displacements
of particles are normal. The abnormal fluctuations appear at the critical point of
the model or below it (with respect to the temperature, for more details see [39]),
they occur if some of the above sequences of susceptibilities become unbounded
(divergent). By (15), in all such cases the sequence {Ĝ

(α)
β,Λl

(0)}l∈N should diverge.
Such divergent sequences may be made bounded by multiplying by elements of an
infinitely small sequence of numbers, e.g. by λl = |Λl|

−δ/2, δ > 0. Suppose that, for

a divergent sequence {Ĝ
(α)
β,Λl

(ωn)}l∈N, n ∈ N, one finds δn > 0 and l0 ∈ N such that

{|Λl|
−δ/2Ĝ

(α)
β,Λl

(ωn)}l>l0 ⊂ [a, b], (16)

with certain 0 < a < b <∞. Then the exponent δn > 0 gives the rate of divergence
of the sequence {Ĝ

(α)
β,Λl

(ωn)}l∈N, and may be considered as a critical exponent. One
can show that the largest value of all such exponents is δ = 1. If δ0 = 1, the
spontaneous O(D)-symmetry breaking occurs at this β and the long range order
appears. The smallest limiting point of the sequence (16) with ωn = 0 is treated
as an order parameter. A detailed discussion of phase transitions, order parameters
etc, in quantum spin models may be found in [17]. If, for a given β, (16) holds with
n = 0 and a certain δ0 ∈ (0, 1), the fluctuations are not strong enough to destroy the
symmetry but, being abnormal, they correspond to the critical point of the model
and such β is the critical inverse temperature for this model. Thus, to prove that
the model considered undergoes a phase transition, connected with the appearance
of macroscopic displacements of particles, one has to show that (16) holds true (for
sufficiently large β) with n = 0 and δ0 = 1. This was done, for models of the type
of (1), in a number of papers [10,11,16,21,27]. Here one has to remark that, for the
isotropic ferromagnetic Heisenberg model, the appearance of a long range order has
not been proven so far. Another remark is that the existence of the long range order
((16) with ωn = 0 and δ0 = 1) does not mean the existence of the critical point ((16)
with a certain ωn and δn ∈ (0, 1)).

In this article we are going to show that, for the models considered: (a) (16)
never holds for ωn 6= 0 (quantum fluctuations are always normal); (b) (16) does not
hold for any β, if the model is “strongly quantum”. To make the latter condition
more precise we have to introduce the scalar version of the model (1). Namely, let

H̃ =
1

2

∑

l,l′∈Zd

dll′qlql′ +
∑

l∈Zd

H̃l , (17)

H̃l =
1

2
p2
l
+
k

2
q2
l

+ V (q2
l
),

and the anharmonicity potential V is given by (3). The one-particle Hamiltonian H̃l

has a pure point spectrum, each element of which εs, s ∈ N is its non-degenerate
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eigenvalue (see e.g. [12]). We set

∆ = min{εs+1 − εs | s ∈ N}. (18)

One can expect that, for the double-well potentials, the above ∆ is just the frequency
of the tunnelling motion between the wells. Since the model (17) in an evident way
is connected with the model (1), the parameter ∆ determines the properties of the
latter. In what follows, we will say that the model (1) is strongly quantum if the
following condition is satisfied

m∆2 > −
∑

l′∈Zd

dll′ =
∑

l∈Zd

φ(|l|)
def
= J. (19)

Its physical interpretation could be as follows: the total force acting on a given
quantum particle from all other particles is less than the energy of its quantum zero
oscillations (we use the units with ~ = 1).

Now we are at a position to formulate our results.

Theorem 1 For the model considered, the sequences {Ĝ
(α)
β,Λl

(ωn)}l∈N with ωn 6= 0
are bounded at all temperatures.

Theorem 2 For the model considered, let the condition (19) be satisfied. Then, for

all d,D ∈ N, for any β > 0, the sequence {Ĝ
(α)
β,Λl

(0)}l∈N is bounded, which means
that the model has no critical points and no symmetry breaking at all temperatures.

The proof of the first theorem is quite simple and we give it right now. The proof of
the second one will be performed in the framework of the Euclidean approach based
on the representation of the Matsubara functions (8) as functional integrals.

Proof of theorem 1. In fact we are going to prove that, for an arbitrary box
Λ and for any β,

0 6 Ĝ
(α)
β,Λ(ωn) 6

1

mω2
n

, ωn 6= 0, (20)

where m is the particle mass. One can show that also the Hamiltonian (9) has a
pure point spectrum, but this time the eigenvalues Es, s ∈ N are degenerate due
to the O(D)-symmetry (and the corresponding parameter ∆ would be zero in this
case). Let Ψs, s ∈ N be the corresponding eigenfunctions of HΛ. We set

Qss′ = 〈Ψs|Q
(α)
Λ

|Ψs′〉. (21)

Then by (8), (12)–(14), one has

Ĝ
(α)
β,Λ(ωn) =

1

Zβ,Λ

∑

s,s′∈N

Q2
ss′

Es − Es′

(Es − Es′)2 + ω2
n

[exp(−βEs′) − exp(−βEs)] .

This immediately yields Ĝ
(α)
β,Λ(ωn) > 0. Further, one may estimate the denominator

in the above expression
(Es − Es′)2 + ω2

n > ω2
n > 0,
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and obtain

Ĝ
(α)
β,Λ(ωn) 6

1

ω2
nZβ,Λ

∑

s,s′∈N

Q2
ss′ (Es − Es′)

× [exp(−βEs′) − exp(−βEs)]

=
1

ω2
n

γβ,Λ

{[
Q

(α)
Λ
,
[
HΛ, Q

(α)
Λ

]]}
=

1

mω2
n

,

where [. . . , . . .] stands for commutator.

3. Euclidean approach

The proof of our second theorem is not so elementary. To prove the boundedness
stated we have to have instruments for estimating Matsubara functions (8). These
instruments are provided by the Euclidean approach. Its basic element is the repre-
sentation of the functions (8) constructed with multiplication operators as functional
integrals. We begin the description of these integrals with introducing the sets of
functions on which we define them. Let Wβ stand for the set of continuous functions
w = w(τ) = (w(1)(τ), . . . , w(D)(τ)) defined on [0, β], taking values in RD and such
that w(0) = w(β). These functions are called periodic paths. The set of all vectors
wΛ = (wl)l∈Λ, each component of which is a periodic path at the point l ∈ Λ is
denoted by Wβ,Λ. Now we have to construct the measure on Wβ,Λ which will define
the functional integral. First we introduce the Gaussian measure dχβ which we shall
use as a reference measure. This measure in determined by the first two terms in Hl

(1) and describes a vector harmonic oscillator. Since our integration sets Wβ, Wβ,Λ

are infinite dimensional vector spaces, on which Lebesgue’s measure dw does not
exist, we cannot write our Gaussian measure in the way density × dw, as is usual
for the finite dimensional case. Nevertheless, the Gaussian measure is determined
by its Fourier transformation, which for our measure dχβ reads

∫

Wβ

exp

(
i

∫ β

0

(w(τ),x(τ))dτ

)
dχβ(w) =

= exp

{
−

1

2

∫ β

0

∫ β

0

(S(τ, τ ′)x(τ),x(τ ′))dτdτ ′
}
, (22)

where

(S(τ, τ ′)x(τ),x(τ ′)) =

D∑

α,α′=1

Sαα′

(τ, τ ′)x(α)(τ)x(α′)(τ ′), (23)

Sαα′

(τ, τ ′) = δαα′Ω0
exp[Ω0(β − |τ − τ ′|)] + exp[Ω0|τ − τ ′|]

exp(Ω0β) − 1
, (24)

and Ω0 =
√
k/m is the standard parameter of the harmonic oscillator. All proper-

ties of the measure dχβ are known (see e.g. subsection 2.2 in [6]). By means of it
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we construct the Gaussian measure which describes the system of non-interacting
harmonic oscillators located in Λ:

dχβ,Λ(wΛ) =
∏

l∈Λ

dχβ(wl). (25)

Now we take into account the anharmonicity potential and the interaction between
the particles. It is performed using the Feynman-Kac formula, the detailed descrip-
tion of which the reader may find in [30] and [32]. In what follows, we introduce the
measure

dνβ,Λ(wΛ) =
1

Zβ,Λ
exp

{
−

1

2

∑

l,l′∈Λ

dΛ

ll′

∫ β

0

(wl(τ),wl′(τ))dτ

−
∑

l∈Λ

∫ β

0

V ((wl(τ),wl(τ))dτ

}
dχβ,Λ(wΛ). (26)

This measure is called a periodic local Euclidean Gibbs measure. As usual, the factor
in front of the exp is the normalization constant, which provides that the normal-
ization condition ∫

Wβ,Λ

dνβ,Λ(w) = 1, (27)

is satisfied. On the other hand, Zβ,Λ is the partition function of the system in the
box Λ and has the representation following from (27)

Zβ,Λ =

∫

Wβ,Λ

exp

{
−

1

2

∑

l,l′∈Λ

dΛ

ll′

∫ β

0

(wl(τ),wl′(τ))dτ

−
∑

l∈Λ

∫ β

0

V ((wl(τ),wl(τ))dτ

}
dχβ,Λ(wΛ). (28)

Now we are at a position to write the main formula derived in [2]. It is

Γ β,Λ
A1,...,An

(τ1, . . . , τn) =

∫

Wβ,Λ

A1(wΛ(τ1)) · · ·A1(wΛ(τn))dνβ,Λ(wΛ), (29)

where A1, . . . , An are the multiplication operators by the functions A1(xΛ), . . . ,
An(xΛ) respectively. This representation is employed to obtain information regard-
ing mathematical properties of the Matsubara functions and their sequences. It is
worth noting that representations of this kind may be used (and are used) as a base
in the study of such models by means of computer simulations (see e.g. [33] and the
references therein).

Obviously, the same construction may be also performed for the scalar Hamilto-
nian (17). This will yield the local Euclidean Gibbs measure dν̃β,Λ(wΛ)

dν̃β,Λ(wΛ) =
1

Z̃β,Λ

exp

{
−

1

2

∑

l,l′∈Λ

dΛ

ll′

∫ β

0

wl(τ)wl′(τ)dτ
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−
∑

l∈Λ

∫ β

0

V (w2
l
(τ))dτ

}
dχ̃β,Λ(wΛ), (30)

where the Gaussian measure dχ̃β,Λ(wΛ) is defined by (25) with dχβ(wl) replaced by
dχ̃β(wl). The latter measure is defined by (22)–(24) with α = α′ = 1. The corre-

sponding space of scalar paths will be denoted W̃β,Λ. Accordingly, the Matsubara

functions given by the integrals (29) with ν replaced by ν̃ will be written Γ̃ .

Let us consider the set of continuous real valued functions F̃Λ defined on the
set R|Λ| = {xΛ = (xl)l∈Λ | xl ∈ R, l ∈ Λ} which have the following properties. A

function A : R|Λ| → R belongs to F̃Λ if: (a) there exist l ∈ Λ such that A depends on
xl only; (b) this dependence is either odd monotone or even positive and monotone
on R+. The basic element of the proof of theorem 2 is the following assertion, proved
in [23], see also [6], section 7.

Proposition 3 [Scalar Domination] Let the continuous functions A1, . . . , An :
RD|Λ| → R have the following property: there exist α ∈ {1, 2, . . . , D} and the func-

tions Ã1, . . . , Ãn ∈ F̃Λ such that Aj(xΛ) = Ãj(x
(α)
Λ

), j = 1, 2, . . . , n. Then for arbi-
trary D ∈ N and for all τ1, . . . , τn ∈ [0, β],

0 6 Γ β,Λ
A1,...,An

(τ1, . . . , τn) 6 Γ̃ β,Λ

Ã1,...,Ãn
(τ1, . . . , τn). (31)

Let us stress that all Aj, j = 1, . . . , n above are supposed to depend on their x
(α)
Λ

with one and the same α. As a corollary of this statement we have

0 6 G
(α)
β,Λ(τ, τ ′) 6 G̃β,Λ(τ, τ ′), (32)

where the function G̃β,Λ(τ, τ ′) is defined by (13) but with Q
(α)
Λ

(12) replaced by

Q̃Λ =
1√
|Λ|

∑

l∈Λ

ql ,

and with the Matsubara function Γ replaced by Γ̃ . Thus, in order to prove the
boundedness of {G

(α)
β,Λl

}l∈N it is enough to prove it for {G̃β,Λl
}l∈N. To this end we

introduce the following local Gibbs measure. For t ∈ [0, 1], we set

dν̃
(t)
β,Λ(wΛ) =

1

Z̃β,Λ(t)
exp

{
−
t

2

∑

l,l′∈Λ

dΛ

ll′

∫ β

0

wl(τ)wl′(τ)dτ

−
∑

l∈Λ

∫ β

0

V (w2
l
(τ))dτ

}
dχ̃β,Λ(wΛ), (33)

where Z̃β,Λ(t) is the corresponding normalization constant defined by (27), which
may be written similarly to (28). By means of this measure we define (see (29), (13),
(12), (9))

G̃β,Λ(τ, τ ′|t) =

∫

W̃β,Λ

(
1√
|Λ|

∑

l∈Λ

wl(τ)

)(
1√
|Λ|

∑

l∈Λ

wl(τ
′)

)
dν̃

(t)
β,Λ(wΛ). (34)
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Clearly
G̃β,Λ(τ, τ ′|1) = G̃β,Λ(τ, τ ′), (35)

and (see (8) and (7))

G̃β,Λ(τ, τ ′|0) =
1

|Λ|

∑

l∈Λ

1

Z̃β,l

trace
{
ql exp

(
−(τ − τ ′)H̃l

)

× ql exp
(
−(β − τ + τ ′)H̃l

)}
def
= U(τ, τ ′). (36)

Here we have taken into account that the traces in the latter formula do not depend
on l due to the translation invariance of the one-particle Hamiltonian (17). We also
set

Rβ,Λ
l1l2l3l4

(τ1, τ2, τ3, τ4|t) =

=

∫

W̃β,Λ

wl1(τ1)wl2(τ2)wl3(τ3)wl4(τ4)dν̃
(t)
β,Λ(wΛ)

−

∫

W̃β,Λ

wl1(τ1)wl2(τ2)dν̃
(t)
β,Λ(wΛ) ×

∫

W̃β,Λ

wl3(τ3)wl4(τ4)dν̃
(t)
β,Λ(wΛ)

−

∫

W̃β,Λ

wl1(τ1)wl3(τ3)dν̃
(t)
β,Λ(wΛ) ×

∫

W̃β,Λ

wl2(τ)wl4(τ4)dν̃
(t)
β,Λ(wΛ)

−

∫

W̃β,Λ

wl1(τ1)wl4(τ4)dν̃
(t)
β,Λ(wΛ) ×

∫

W̃β,Λ

wl2(τ2)wl3(τ3)dν̃
(t)
β,Λ(wΛ). (37)

One can show that all G̃β,Λ and Rβ,Λ, as functions of t ∈ [0, 1], are differentiable on
t ∈ (0, 1) and continuous on t ∈ [0, 1]. Furthermore,

Rβ,Λ
l1l2l3l4

(τ1, τ2, τ3, τ4|t) 6 0, (38)

for all values of its arguments. This estimate is known as Lebowitz’ inequality, its
validity for the measure (30) was proved in section 6 of [6]. Differentiating both sides
of (34) with respect to t after some calculations we obtain

∂

∂t
G̃β,Λ(τ1, τ2|t) = −

1

2|Λ|

∑

l1,...,l4∈Λ

dΛ

l1l2

∫ β

0

Rβ,Λ
l1l2l3l4

(τ1, τ2, τ, τ |t)dτ

+

(
−
∑

l∈Λ

dΛ

ll′

)∫ β

0

G̃β,Λ(τ1, τ |t)G̃β,Λ(τ, τ2|t)dτ. (39)

Here we have taken into account the translation invariance of the moments of the
measure (33), which is connected with the invariance of the dynamic matrix dΛ

ll′
. The

above formula may be considered as an integro-differential equation with respect to
G̃β,Λ subject to the initial condition (36). By (15), which holds also for the scalar
model, to prove the boundedness we need it to be sufficient to control the sequences
of the following functions

gβ,Λ(t)
def
=

∫ β

0

G̃β,Λ(τ1, τ2|t)dτ2 =

∫ β

0

G̃β,Λ(0, τ |t)dτ. (40)
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For this function, we obtain from (39) the following equation

∂

∂t
gβ,Λ(t) = −

1

2|Λ|

∑

l1,...,l4∈Λ

dΛ

l1l2

∫ β

0

∫ β

0

Rβ,Λ
l1,l2l3,l4

(τ1, τ2, τ, τ |t)dτdτ1

+

(
−
∑

l∈Λ

dΛ

ll′

)
[gβ,Λ(t)]2 , (41)

subject to the initial condition (see (36))

gβ,Λ(0) = u
def
=

∫ β

0

U(0, τ)dτ. (42)

Taking into account the assumed properties of the dynamical matrix dll′ one con-
cludes that, for every box Λ,

(
−
∑

l∈Λ

dΛ

ll′

)
6

(
−
∑

l∈Zd

dll′

)
= J > 0. (43)

Let us consider the following differential equation

dh(t)

dt
= J [h(t)]2 , t ∈ [0, 1], h(0) = u. (44)

If the condition
uJ < 1, (45)

is satisfied, it has a unique solution on t ∈ [0, 1], which has the form

h(t) =
u

1 − tuJ
. (46)

Now let us compare the equations (44) and (41). By (38), the first term in (41) is
nonpositive since all dΛ

ll′
are nonpositive. Both our equations are subject to the same

initial condition. Applying standard comparison methods of the theory of differential
equations (see e.g. [41]) one obtains

∂

∂t
gβ,Λ(t) 6

dh(t)

dt
,

for all t ∈ (0, 1). This immediately yields gβ,Λ(t) 6 h(t), for t ∈ [0, 1], in particular

∫ β

0

G̃β,Λ(0, τ)dτ = gβ,Λ(1) 6 h(1) =
u

1 − uJ
, (47)

which holds for all boxes Λ. Here we have also taken into account (35).

Proof of theorem 2. By (14), (32) and (47), the sequence {Ĝ
(α)
β,Λl

(0)}l∈N is
bounded provided (45) holds. Thus, to complete the proof one has to show that the
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condition (19) does imply (45). To this end we employ the method already used in
the proof of our first theorem. By (42), (36) and (18), one has

u =
1

Z̃β

∫ β

0

trace
{
qle

−τH̃lqle
−(β−τ)H̃l

}
dτ

=
1

Z̃β

∑

s,s′∈N

[〈ψs|ql|ψs′〉]2
e−βεs − e−βεs′

εs − εs′

6
1

∆2

1

Z̃β

∑

s,s′∈N

[〈ψs|ql|ψs′〉]2
[
e−βεs − e−βεs′

]
[εs − εs′ ]

=
1

∆2
·
trace

([
ql,
[
H̃l, ql

]]
e−βH̃l

)

trace e−βH̃l

=
1

m∆2
. (48)

Here ψs, s ∈ N are the eigenfunctions of H̃l corresponding to the eigenvalues εs.
Above, in the sums

∑
s,s′ the terms with coinciding s, s′ give zero contribution be-

cause of the corresponding matrix elements of ql vanishing. In deriving the above
estimate we have taken into account that the eigenvalues εs are simple, which is not
the case forD > 1. The latter fact gives the reason why we use our scalar domination
arguments.

Since the right-hand side in (47) is a monotone function of u, we apply there the
latter estimate and obtain

Ĝ
(α)
β,Λ(0) 6

∫ β

0

G̃β,Λ(0, τ)dτ 6
1

m∆2 − J
,

which completes the proof.

4. Discussion

First let us turn to the estimate (20). Since ωn = (2π/β)n, n ∈ Z, the series

∑

n∈Z\{0}

Ĝ
(α)
β,Λ(ωn), (49)

converges for any box Λ and for every β > 0. This fact has a deep mathematical
consequence – by Ascoli’s theorem (see e.g. [28], p. 72), the sequences of Matsub-
ara functions {Γ β,Λl

A1,...,An
}l∈N (for all multiplication operators A1, . . . , An, for which

they make sense) converge uniformly on [0, β]n provided the sequence {Ĝ
(α)
β,Λl

(0)}l∈N

is bounded. This convergence of the Matsubara functions imply in turn that the
limiting Gibbs measure, which describes the equilibrium state of the whole anhar-
monic crystal, exists in this case. It is called periodic Euclidean Gibbs measure (see

[9]). The boundedness of the sequence {Ĝ
(α)
β,Λl

(0)}l∈N means the absence of abnor-
mal fluctuations, it may be obtained by satisfying the condition (19), as follows
from theorem 2. The above fact, however, does not imply that there exists the only
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one limiting Gibbs measure (the latter would mean that there exists just one phase
and no phase transitions may occur). In fact, the uniqueness of the limiting Gibbs
measures may be proved based on the more sophisticated methods. Here one has to
mention that such a uniqueness was proved in [5] to hold for D = 1 and for the val-
ues of the particle mass from the interval (0, m∗(β)), where the bound m∗(β) tended
to zero as β → +∞. In a very recent paper [7] it is stated that the uniqueness of the
limiting Gibbs measures (again for D = 1 only) may be guaranteed by a condition
similar to (19), which holds for m ∈ (0, m∗), where m∗ is independent of β. In the
vector case D > 1, no uniqueness results have been obtained so far.

Now, let us say some words about the condition (19). In the harmonic case V = 0,
∆ = Ω0, thus m∆2 = k and this condition means k > J . For the potential V given
by (3), one can show that there exists C > 0 such that m∆2 ∼ Cm−(p−1)/(p+1) as
m→ 0, which means that the condition (19) is satisfied for m ∈ (0, m∗), where the
bound m∗ depends on the parameters J and a, b2, . . . , bp only.
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