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The review of the theoretical study of the critical phonon scattering and
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1. Introduction

The heat conductivity coefficient (HCC) λ(T ) of ferroelectric crystals shows a
sufficient change near the phase transition temperature Tc [1–3]. On the curve λ(T )
may be observed:

(a) a broad minimum-negative peak,

(b) broken or cusp-like negative (positive) anomalies,

(c) step-like anomalies (jumps),

(d) a positive (negative) more or less symmetrical peak and

(e) a point gap of the second order at T → Tc ± 0.

In the theory [4–8] usually (a), (b) and (c)-type anomalies are connected with the
inelastic scattering of acoustic phonons by the critical ones (soft-TO-phonon mode)
or with the quasi-elastic scattering of thermal acoustic phonons by the central peak,
which reveals itself in the spectra of scattering light and critical neutron scattering
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at T → Tc [9,10]. On the whole four mechanisms are known for the critical phonon
scattering: (1) the inelastic scattering for Γ0 � ω (where Γ0 is the critical damping
of the soft mode) [6]; (2) the relaxation mechanism actual for ω 6 Γ0 [21,22]; (3) the
quasi-elastic scattering by the central peak (ω → 0) [7]; (4) the interaction of the
critical fluctuations with defects [23,14]. In this paper the general theory of the most
actual mechanism (inelastic and quasi-elastic) of critical phonon scattering and the
peculiarities of lattice thermal conductivity for T → Tc is developed. The results of
the numerical model calculations are compared with the corresponding experimental
data.

The phonon Green functions of the ferroelectric crystals with hydrogen bonds
or in the ferroelectric ferromagnetics and in the crystal with paramagnet impurities
are described in Kobayashi’s model for the pseudospin and phonon systems of the
crystal [11–14]. The retarded Green function can be found in the hydrodynamics
approximation (ωτ � 1) and the heat conductivity is calculated in Kubo formalism
near the structural phase transition temperature Tc.

The goal of this work is to show the possible approach to the explanation of the
pointed variety of the HCC temperature dependences near Tc taking into account
the most realistic mechanisms of the phonon scattering.

2. The thermal conductivity of crystals

The general expression for the thermal conductivity λ(T ) in cubic crystal may
be written as Laplace integer [15,16] from heat current correlator

λ(T ) =
1

3V kBT 2
lim

γ→+0

∞
∫

0

e−γt · 〈j(t) · j(0)〉dt, (1)

here kB is the Boltzmann constant. It is shown in [16,17] that in the one-particle
approximation the thermal conductivity coefficient λ(T ) may be expressed by the

dynamical Green function Gν(ω), ν = (k, s), k ≡ ~k is the wave vector, and s is the
branch index of the phonon with the frequencies ω.

The density heat current j (r, t) determined from the equation

∂H(r, t)

∂t
+ div j(r, t) = 0, (2)

where local density energy (r = ~r )

H(r) =
∑

l

H(l)δ(Rl − r) =
1√
V

∑

q

H(q)e−iqr, (3)

V = V0 N is the volume of the crystal (V0 = a3), l is a numbers of the unit cells

(l = 1, 2...N), Rl = ~R(l), q is the quasi-momentum of the phonons. Taking into

770



The critical phonon scattering

account a Heisenberg movement equation for H(q, t) the heat current operator can
be obtained as

∑

α

qαjα(q) =
1

~
[H(q, t), H], (4)

where α is the Cartesian components,
∑

r H(r) is the Hamiltonian of the system.
Taking into account (1)–(4) and the fact that Im Gν(ω) has a maximum in the
vicinity of ω2 = ω2

ν, we obtain the usual gas formula or τ -approximation (when the
transport relaxation time τT for two-phonon excitement can be approximated by
one-phonon relaxation time τ) [17]

λ(T ) =
1

3V

∑

ν

(~ων)
2

kBT 2
(∇kων)

2 nν(nν + 1)

Γν(ων)
, (5)

where nν is the phonon numbers occupation, nν(nν + 1)~2ω2/kBT 2 = C(ων) is the
single mode specific heat, and Γν(ω) = τ−1(ω) is an inverse one phonon relaxation
time, ∇kων is the group velocity of phonons.

3. The critical inelastic and quasi-elastic scattering

3.1. The critical inelastic scattering

The inverse relaxation time of acoustic phonons in a crystal with a weak cubic
anharmonicity Φ (ν, 1, 2) can be written as [16]

Γν(ω) =
π~

2

∑

1,2

|Φ (ν, 1, 2)|2ρ2(ω − ω1) ·
∆ · (k − 2 − 1)

ωω1

· n(ω − ω1)

n(ω)
, (6)

where πρν(ω) = Im Gν(ω), Gν(ω) is the Green function of the crystal, 1 ≡ ν1 =
(k1, s1), 2 = ν2, nν ≡ n(ων) = [exp(~βων) − 1]−1, β = 1/kBT.

Near the structural phase transition temperature TC the soft mode (for q ≡
k) ωq(T ) → ω0(T0) and the spectral density ρ2(ω) for the critical (soft) branch
of vibration 2 = ν2 = (q, s) determined from a transport equation [8,17], can be
approximated as

πρq(ω) =
ωΓ0(T )

[ω2
q(T ) − ω2]2 + ω2Γ2

0(T )
+

1

ω2
c (q)

· ωγ0(q)

ω2 + γ2(q)
, (7)

Here ω2
c(q) = ω2

q(T ) − δ2(T ), γ(q) = γ0ω
2
c/δ

2
0, δ0 = δ(TC), ωc(q = 0,

T = TC) = 0, T0 6= TC, γ(q) is the line width of the central peak, and γ−1
o is

the average lifetime of thermal phonons. Substituting (7) into (6) we get

τ−1
ν (ω, T ) = τ−1

in (ω, T ) + τ−1
c (ω, T ), (8)

where τ−1
in is conditioned by inelastic, and τ−1

c by quasi-elastic phonon scattering.
Inelastic scattering is more actual in the region of ω � ω0 = ω0(T ) and plays

an important role when the critical branch approaches the acoustic one and the
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degeneration of branches takes place. In this case ~q1 − ~q2 = ~q and assuming that
ω1 = ω0(q1), ω2 = ω0(q2) = ω0(q1− q) and considering the fact that ων � ω0 � kBT
we obtain

ω0(q1 − q) − ω0(q1) ≈ rων cos Θ,

where r = υ0/υ is the ratio of the mean velocities for critical and acoustic phonon
with ων = υq and Θ is the angle between ~q1 and ~q2.

If we neglect the damping of the soft mode (Γ0 � ω), then in accordance with
(8)–(6)

τ−1

in
(ω) =

πqB

β
· ω

ω0

, (9)

where B is a numerical coefficient.
In the case Γ0 � ω for τ−1

in one obtains the relaxation formula

τ−1

in
(ω) =

πAω

βω0

· ωτ0

1 + (ωτ0)2
, (10)

The critical damping of the soft mode Γ0 = τ−1
0 = Γ0(τ) was calculated in

microscopy theory [18] and was obtained in scaling form Γ0(τ) ∼ τ−λ, where τ =
|1−T/TC| and λ = ν = 1/2 is the critical index of the correlation length ξ(τ) ∼ τ−1/2.

3.2. Quasi-elastic phonon scattering

At T → TC and q → 0, ωc(0, TC) = 0, ω = ων ≈ ω2 and quasi-elastic scattering
becomes actual in (7). In the vicinity of q = 0 the dispersion of the soft branch
may be expressed in the form ωq(T ) = D(q2

0 + q2), where D is a temperature-
independent constant, whereas q0 depends on temperature and vanishes at T = T0.
Let ω1 = ω(q−q2) and ων belongs to some acoustic branch (s1 = s). Then, expressing
the coupling coefficient |Φ(ν, 1, 2)|2 in the form Φ2ω4

ν, after some calculations we find

τ−1
c (ω) =

a3Φ2

8βπ2γ2
· ω2γ0

ω0δ0

· π

2µ
· ln

(

1 +
q2
m

k2

)

∼= πA

β
· ω2γ0

δ2
0µ

· ln ξ(τ), (11)

where µ = 2Dγ0/υδ0, qm = π/a, A = a3Φ2/16π2υ2, ξ(τ) = k−1 is the correlation
length k2 = cτ , τ = |1 − T/TC|, c is the constant connected with the dispersion
parameter D.

Then we find from (10) and (9) that τin/τc ∼ ln(τ) and it is seen that the
quasi-elastic scattering becomes dominant at T → TC.

The expressions (10), (11) for inverse relaxation time will be used for numerical
calculations of the temperature dependence of the thermal conductivity coefficient
λ(T ) for some types of ferroelectric crystals. Therefore, it is possible in principle to
compare this theory with the appropriate experimental data.

4. Some applications and discussion

It is well known that even approximate solution of the problem (the one-particle
τ -approximation of transport relaxation time) is rather complicated. For quantita-
tive analysis one can use the simple model of the crystal with the Debye-like spectral
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density ρ(ω2) = 3ω2/ω3
D, ωD = kBΘ/~, Θ is the Debye temperature. Let us consider,

for example, the most simple model of a crystal with a structural phase transition
and with only acoustic, hard optical and soft optical vibrational branches. One can
consider the heat flow as a sum of the heat flows carried by each separate mode.
Therefore the expression for λ(T ) according to (5) may be written as

λ(T ) =
1

a3
0

∫

dω2C(ω)υ2(ω)τ(ω)ρ(ω2), (12)

where

C(ω) =
~

2ω2

kBT 2
n(ω)[n(ω) + 1], n(ω) = n(ων), ∇kων = υ(ω), τ−1(ω) =

∑

i

τ−1
i (ω)

(13)
Here τi is a single-phonon relaxation time related to i-th mechanism of the phonon
scattering [8,14], ∇kων is the velocity of the acoustic phonons.

One can obtain the background (i.e. “normal”) temperature dependence of HCC
λ(T ) including in equations (12) and (13) the main “usual” phonon scattering mech-
anisms [5,8]: τ−1

1 = A1Tω2 exp(−α/T ) is the three-phonon colliding of acoustic
phonons, τ−1

2 = A2ω
4 is the point defect phonon scattering, τ−1

3 = A3 is the bound-
ary phonon scattering. Here A1, A2, A3, α are constants for a corresponding sample
of the crystals [5,8,13]. Therefore, for τ−1(ω) according to (13), (8) we obtain (14)

τ−1(ω) = τ−1
0 (ω) + τ−1

s (ω), (14)

where, τ−1
0 = τ−1

1 + τ−2
2 + τ−1

3 , τ−1
s = τ−1

in + τ−1
c .

The difficulties of calculations using equations (12), (13), even for the simple
model under consideration, are well known [5,8,14].

The results obtained are applied in the numerical analysis of the temperature
behavior of the HCC near the structural phase transition TC for SrTiO3 and KDP-
type crystals (figure 1). The parameters of the soft mode ωq(T ) = D(q2

0 + q2), ω2
0 =

D2q2
0 = r|T − T0| in τ0(A1, A2, A3, α), τc(Φ = Φ1 for T < TC and Φ = Φ2 for

T > TC) are obtained [8] and compared with the experimental data [2,3]. The
numerical values of TC, Θ, Φ (Φ1, Φ2), T0(T

′

0) for SrTiO3 and KDP-type crystals
are given in table 1. Here value T0 is determined according to (7) as ω0(T0) = 0 and
ω0(TC) = δ0, T0 < TC, ω0(T

′

0) = 0 and T
′

0 > TC.

Table 1. The numerical values of TC, Θ, Φ(Φ1,Φ2), T0(T
′

0) for SrTiO3 and KDP-
type crystals.

Crystal TC, K T0, K T ′

0, K Θ, K Φ2
1, MeV Φ2

2, MeV
KH2PO4 122 118 126 325 0.082 0.204
KD2PO4 220 216 224 323 0.096 0.083
KH2AsO4 96 92 100 298 0.162 0.356
SrTiO3 108 103 – 700 – 0.840

773



V.I.Altukhov, B.A.Strukov

40 100 200 300
0.01

0.1

3

2
1

4

T,  K

λ,  W/(cm K)

Figure 1. Temperature dependence of HCC for KH2AsO4 (1), KH2PO4 (2),
KD2PO4 (3) [2] and SrTiO3 [3] crystals. Solid lines are the theory [8]. Pecu-
liarities of the C- and E-type.
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Figure 2. Temperature dependence of HCC for Hg2Cl2 crystal. Inset – the same
in the vicinity of the phase transition point [1]. Peculiarity of the D-type.
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The agreement with experiments can be obtained due to adaptation of parame-
ters A1, A2, A3, α, Φ (figure 1). It is seen, that the results of calculations are in a
good accordance with the experimental data. Therefore, in the cases of SrTiO3 and
KDP-type crystals, the quasi-elastic scattering is dominant.

The D-type anomaly of temperature dependence of HCC is presented at figure 2.
This type of behavior is discussed in [19]. It may be shown that the peculiarities
of this type are connected with the interference effect of different mechanisms of
thermal resistance of a crystal. In the case of resonant mechanism of scattering
we have λ(T ) behavior similar to the phonon-spectrometer in a dielectric crystal
with paramagnetic ions [13]. The difficulties of HCC calculation, even for the simple
model under consideration for

τ−1

eff
=

∑

i

τ−1
i (ω, k),

where τi is a relaxation time of the i-th mechanism of the phonon scattering, are
evident. It is clear, that the comprehensive explanation of the all types of HCC
anomalies near TC is a matter of the future more detailed theoretical study.

5. Concluding remarks

A general formula is obtained for the critical scattering of phonon by soft-phonon
mode and central peak. It is shown that the quasi-elastic scattering becomes domi-
nant over the inelastic scattering at least for temperatures close to TC. On the curve
of the thermal conductivity λ(T ) near TC (a), (b), (c), (d) and (e)-type anoma-
lies may be observed. In figures 1 and 2 the peculiarities (c), (d), and (e)-types in
comparison with the corresponding experiments are presented. The peculiarities of
another type and its classification on the whole, require more accurate consideration.
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