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The problem of the functional representation for systems containing groups
of atoms with a non-compensated spin momentum (magnetic clusters) is
discussed. For representation of the functional of partition function a ver-
sion of the collective variables method with the “reference system” as a
zero-order approximation is used. A set of all isolated clusters are choosen
as a reference system. Intracluster interactions are described by exchange
Heisenberg-type Hamiltonian, the form of intercluster interactions depend
on the structure of the system investigated. Due to the use of the recent-
ly introduced generalized transition operators (like well-known Hubbard-
Stasyuk operators) an explicit form of the functional of partition function is
found.
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1. Introduction

Among different kinds of physical systems, in which the processes of structural
elements ordering play an essential role, a cluster system accupies a special place. In
a crystalline (or amorphous) cluster system, due to its internal structure or peculiar-
ities of interparticle interactions, there are physically distinguished groups of parti-
cles. So, the correlations between the particles from different groups are much weak-
er as compared with analogous correlations of the particles belonging to the same
group. One may divide magnetic cluster systems into two classes. To the first class
there belong natural pure compounds, for example [Cr3(CH3COO)6(OH)2]Cl ·8H2O,
[Fe3(CH3COO)6(OH)2]NO3 · 6H2O (three-particle clusters), Cu2(CH3COO)2 · 2H2O
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(two-particle clusters). The second class is formed of artificially prepared specimen,
for example a solid mixture of a magnetic compound MnO in a diamagnetic ma-
trix MgO (large set of isolated ions, two-, three- and more particles clusters) [1].
It should be noted that the cluster structure is a characteristic feature for different
ferroelectric compounds: DMAAS and DMAGaS [2], SASD and SASeD [3] and some
others.

The theoretical investigations of the magnetic cluster systems known at the
present time are devoted only to the description of statistic properties and ther-
modynamic functions of isolated small clusters (two-, three- or four particles) on
the Heisenberg model basis. The intercluster interactions in this descriptions are ne-
glected but they play an essential role in the cluster system behaviour at the phase
transition point neighbourhood.

As far as a magnetic moment in all the mentioned cluster systems is of a spin
nature, the usage of the Heisenberg-type Hamiltonian for exchange interaction de-
scription is quite adequate. But exchange interactions are essential only for the
particles belonging to the same cluster (due to a small distance between particles).
Besides the exchange interaction in magnets, there exist dipole-dipole magnetic in-
terparticle interactions and interactions of magnetic atoms with crystalline lattice
electric field. Due to its relativistic nature, the last two interactions are 1–2 or-
ders weaker than the exchange interactions. But their role is very essential because
they are responsible for the formation of the axes of magnetization and possess a
large radius of action [4]. Therefore, it is nessesary to take into account magnetic
dipole-dipole interactions for a correct description of the intercluster correlations.

The main purpose of this paper is to get a functional representation for a partition
function of the interacting magnetic cluster system. The intracluster interactions are
described by quantum Heisenberg-type Hamiltonian. The intercluster correlations
appear due to taking into account the dipole-dipole pair interactions between par-
ticles. The general approach to the calculation is based on the collective variables
method [5] and on the usage of the generalized transition operators [6]. The obtained
representation will be used for a rigorous description of the ferromagnetic cluster
systems behaviour in the phase transition point neighbourhood.

2. Hamiltonian. Reference system

Three-dimensional crystalline lattice, containing f0 spin particles (atoms with
non-compensated spin momentum, or electrons) at each of the N cells is considered.
In the spin operators representation such a system is described by the following
Hamiltonian:

H = −
N

∑

q=1

f0
∑

f=1

hf (~Rq)S
z
f(

~Rq) − 2
N

∑

q=1

f0
∑

f,f ′=1

Vff ′ ~Sf (~Rq)~Sf ′(~Rq)

− 1

2

∑

α

N
∑

q,q′=1

f0
∑

f,f ′=1

Jαα
ff ′(~Rq, ~R′

q)S
α
f (~Rq)S

α
f ′(~Rq′). (2.1)
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Here Sα
f (~Rq) is the α-component of the f -th spin particle situated in the q cell, Vff ′

is the exchange integral, Jαα
ff ′(~Rq, ~Rq′) is a coefficient of the magnetic dipole-dipole

interaction between α components of spins from different cells, hf (~Rq) is the external
magnetic field.

Two first terms in (2.1) belong to the particles situated at the same cell (in the

cluster) and Vff ′ � Jαα
ff ′(~Rq, ~Rq′). It is natural to consider such groups of particles

in (2.1) as a reference system. Putting Vff ′ = V (topologically it corresponds to the

clusters of 2,3 or 4 particles only) and hf(~Rq) = h (a uniform external field), one
obtains the expression for reference system Hamiltonian:

H0 = −h
N

∑

q=1

f0
∑

f=1

Sz
f (

~Rq) − 2V
N

∑

q=1

f0
∑

f,f ′=1

~Sf (~Rq)~Sf ′(~Rq). (2.2)

Taking into account the relation for a finite sum of spin operators products:

−2

f0
∑

f<f ′=1

~Sf
~Sf ′ =

f0
∑

f=1

~S2
f − (~S ′)2, (2.3)

where ~S is a total spin of f0 spin particles, one can easily get a formula for an energy
spectrum of f0-particles cluster, which is described by the Hamiltonian (2.2):

E = V [f0S(S + 1) − S ′(S ′ + 1)] − M ′h, (2.4)

S ′ = 0, 1, 2, 3, . . . , f0S when f0 is even,

S ′ =
1

2
,
3

2
,
5

2
, . . . , f0S when f0 is odd,

M ′ = −S ′,−S ′ + 1,−S ′ + 2, . . . , S ′ − 2, S ′ − 1, S ′,

are possible eigenvalues of the total spin and its projection on the z-axis for S = 1
2
.

Therefore, for clusters:

f0 = 2
E1

N
=

3

2
V,

E2

N
= −1

2
V + h,

E3

N
= −1

2
V,

E4

N
= −1

2
V − h;

f0 = 3
E1

N
=

3

2
V +

1

2
h,

E2

N
=

3

2
V − 1

2
h,

E3

N
= −3

2
V +

3

2
h,

E4

N
= −3

2
V +

1

2
h,

E5

N
= −3

2
V − 1

2
h,

E6

N
= −3

2
V − 3

2
h;

f0 = 4
E1

N
= 3V,

E2

N
= V + h,

E3

N
= V,

E4

N
= V − h,

E5

N
= −3V + 2h,

E6

N
= −3V + h,

E7

N
= −3V,

E8

N
= −3V − h,

E9

N
= −3V − 2h.

(2.5)

So, the formula (2.4) gives exact values for energy levels of the cluster. But some
levels remain degenerate (starting from f0 = 3), because the total number of states
is equal to

n = 2f0.
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The problem of complete determination of quantum states and corresponding energy
levels may be solved using a clusterization method by means of the generalized
transition operators. This enables one to calculate the partition function of the
reference system. The main purpose of the method of clusterization developed in [6,7]
was to obtain a diagonal and symmetrized form for de Gennes-type Hamiltonian.
This becomes possible due to the use of the generalized transition operators

Yλ(~Rq) =
∑

i,j

Uλij
X ij(~Rq), (2.6)

where Hubbard-Stasyuk operators X ij(~Rq) [8,9] were constructed on the operators of
z-component of a total spin of cluster, so, for H0 Hamiltonian the next representation
took place

H0 =

N
∑

q=1

2f0
∑

i=1

aiX
ii(~Rq) (2.7)

(ai are energy levels of the cluster).

In the present paper X ij(~Rq) operators must be built on the complete set of x,

y and z-components of ~S. The general form of (2.6) remains unchanged.

For f0 particle cluster, the reference system Hamiltonian (2.2) is defined in the
2f0-component quasispinor basis. The generalized Pauli matrices in this case may
be introduced as follows [7]:

σα
1 = Sα × I × I × . . . × I, σα

2 = I × Sα × I × . . . × I,
...

σα
f0−1 = I × I × . . . × Sα × I, σα

f0
= I × I × . . . × I × Sα, (2.8)

where I is a 2 × 2 unit matrix and × is a tensor product symbol.

Applying a unitary transformation W (W−1σα
f W = σ̃α

f ) one can reduce (2.2)

into a diagonal form. Then it is convenient to expand σ̃α
f in a finite series in 2f0-

component Hubbard-Stasyuk operators Xµ [6]

σ̃α
f (~Rq) =

22f0
∑

µ=1

A(f,α)
µ Xµ(Rq). (2.9)

Here A
(f,α)
µ are matrix elements of σ̃α

f operators in the (2.8) representation, µ enu-

merates the transitions between i-th and j-th cluster states, µ = 2f0(i − 1) + j
(i, j = 1, 2, . . . 2f0). The U matrix may be found as a solution of the following set of
secular equations:

22f0
∑

µ,µ′=1

{

f0
∑

f,f ′=1

∑

α

Jαα
ff ′(~Rq, ~Rq′)A

(f,α)
µ A

(f ′,α)
µ′ UµλUµ′λ′

}

= Φλ(~Rq, ~Rq′)δλλ′ . (2.10)
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As a result, in the generalized transition operators (2.6) representation, one gets
a total cluster system Hamiltonian (2.1) in the diagonal in λ form:

H =

22f0
∑

λ=1

{

N
∑

q=1

ΛλYλ(~Rq) −
1

2

N
∑

q,q′=1

Φλ(~Rq, ~Rq′)Yλ(~Rq)Yλ(~Rq′)

}

. (2.11)

Here

Λλ =
2f0
∑

i=1

aiUiiλ

is the energy of the λ-th state of the cluster (nominally transformed levels ai),

Φλ(~R1, ~Rq′) is the λ-th eigenvalue of the intercluster interaction matrix.
Generalized transition operators (2.6) satisfy the commutation relation:

[

Yλ(~Rq), Yλ′(~Rq′)
]

=
∑

µ

W µ
λλ′Yλ(~Rq)δqq′,

W µ
λλ′ =

∑

r,s,t

{UrsλUstλ′ − UstλUrsλ′}Urtµ, (2.12)

r, s, t are ordinary indices and λ, µ are double indices.
As it was mentioned in the Introduction, in the present paper two types of

long ranging interparticle potentials will be regarded. The first one is the Ising-type
potential:

Jαβ
ff ′(~Rq, ~Rq′) =

{

Jαα
ff ′(~Rq, ~Rq′), α = z,

0, α = x, y;
(2.13)

and the second one is the Heisenberg-type potential:

Jαβ
ff ′(~Rq, ~Rq′) = Jαα

ff ′(~Rq, ~Rq′), α = x, y, z. (2.14)

The herein proposed method of clusterization of the (2.1) Hamiltonian into the

form (2.11) can be easily applied also to the potentials Jαβ
ff ′(~Rq, ~Rq′) with other pos-

sible relations between their α, β components. The central point in such a procedure
is the problem of (2.10) secular equations solution.

One can be easily convinced in the fact, that for a usual Heisenberg model (only
one spin in a cell, i.e. f0 = 1, V = 0) the representation (2.2) is equivalent to (2.11)
where:

Y1 =
1√
2

(

X11 + X22
)

=
1√
2
, Y2 =

1√
2

(

X12 + X21
)

=
√

2Sx,

Y3 =
1√
2

(

X12 + X21
)

= i
√

2Sy, Y4 =
1√
2

(

X11 + X22
)

=
√

2Sz, (2.15)

and besides

(Sx)2 + (S4)2 + (Sz)2 =
3

4
,

X11 + X22 = 1, (Y1)
2 + (Y2)

2 + (Y3)
2 + (Y4)

2 = 1. (2.16)
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The advantages of Yλ operators representation will be demonstared when using them
for nontrivial clusters (f0 > 2). As a real cluster system, a complete investigation of
which will be performed in future, we shall regard a system with f0 = 2, that is the
one adequate to the Cu2(CH3COO)4 ·2H2O crystal. Φλ(~R, ~R′) matrices for Ising and
Heisenberg types of interactions in the two-particle cluster system are presented in
appendix A. Corresponding U matrices are presented in appendix B. The nonzero
coefficients of (2.11) Hamiltonian are:

Λ1 = − V√
2
, Λ6 =

3V

2
, Λ11 = −V

2
, Λ16 = −

√
2h,

Φ7 = J11 − J12, Φ16 = J11 + J12 (2.17)

for long-range interaction of the Ising type and

Λ1 = − V√
2
, Λ2 = −

√
2h, Λ14 =

3

2
V, Λ15 = −V

2
,

Φ2 = Φ5 = −Φ11 = J11 + J12,

Φ4 = Φ7 = −Φ10 = J11 − J12 (2.18)

for long range interaction of the Heisenberg type.
The algorithm of clusterization procedure does not depend on the size of clusters,

so it can be also performed for the systems with f0 = 3, 4, . . . in a similar way. Our
future task is to investigate the thermodynamic properties of the reference system
and to build the functional of partition function for the total system. The latter is
necessary for the calculation of thermodynamic functions in the neighbourhood of
the phase transition point.

3. Thermodynamics of the reference two-particle system

One can see, that Hamiltonian in the form of the reference system, presented by
the first term of (2.11)

H0 =
N

∑

q=1

16
∑

λ=1

ΛλYλ(~Rq) (3.1)

is not a diagonal one. The reason is that only combinations of Λλ ((2.17) or (2.18))
are true levels of cluster energy. Really, the diagonal is the Hamiltonian:

H0 =

N
∑

q=1

{Λ1 + Λ16

2

(

Y1(~Rq) + Y16(~Rq)
)

+ Λ6Y6(~Rq) + Λ11Y11(~Rq)

+
Λ1 − Λ16

2

(

Y1(~Rq) − Y16(~Rq)
)}

, (3.2)

where Λλ are taken from (2.17) (for (2.18) case a simple substitution: Λ1 → Λ1,
Λ6 → Λ14, Λ11 → Λ15, Λ16 → Λ2 must be made).
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The partition function Z0 = Tr{e−βH} is equal to

Z0 = ZN
01 ,

Z01 = 2e
−β

Λ1√
2 cosh

βΛ16√
2

+ e−βΛ6 + e−βΛ11

= 2eβ V
2 cosh βh + e−

3

2
βV + e

βV

2 . (3.3)

It is easy now to calculate the average values of Y1, Y6, Y11, Y16 operators, using
(3.3).

〈Yλ〉0 = − ∂

∂βΛλ

lnZ01 ,

〈Y1〉0 =

√
2e

−βΛ1√
2 cosh βΛ16√

2

Z01

, 〈Y6〉0 =
e−βΛ6

Z01

,

〈Y11〉0 =
e−βΛ11

Z01
, 〈Y16〉0 = −

√
2e

−βΛ1√
2 sinh βΛ16√

2

Z01
. (3.4)

Here β = 1/kT , k is the Boltzmann constant, T is the absolute temperature.
Thermodynamic functions of the reference system are calculated based on the

free energy:

F0 = − 1

β
lnZ0 = −N

β
ln

{

e−
3βV

2 + e
βV

2 (1 + 2 cosh βh)
}

. (3.5)

For entropy (S), internal energy (U), heat capacity (Cv), magnetic moment (M)
and magnetic susceptibility (χ) per one cell, one can obtain the following formulae:

S = −
(

∂F0

∂T

)

h

= Nk ln
{

e−
−3βV

2 + e
βV

2 (1 + 2 cosh βh)
}

+ N
3βV − βV e2βV (1 + 2 coshβh) − 4βhe2βV sinh βh

2[1 + e2βV (1 + 2 cosh βh)]
,

U = F0 + TS = N
3V − V e2βV (1 + 2 cosh βh) − 4h sinh βh

2[1 + e2βV (1 + 2 coshβh)]
,

Cv =

(

∂u

∂T

)

v

= Nkβ2e2βV

{

V 2(1 + 2 cosh βh) + 5hV sinh βh + 2h2 sinh βh

1 + e2βV (1 + 2 coshβh)

+
[3V − V (1 + 2 cosh βh)e2βV − 4he2βV sinh βh][V (1 + 2 cosh βh) − h sinh βh]

[1 + e2βh(1 + 2 coshβV )]2

}

,

M = − 1

N

(

∂F0

∂h

)

T

=
2e2βV sinh βh

1 + e2βV (1 + 2 cosh βh)
,

χ =
1

N

(

∂2F0

∂h2

)

T

= β

{

2e2βV cosh βh

1 + e2βV (1 + 2 cosh βh)
−

[

2e2βV sinh βh

1 + e2βV (1 + 2 cosh βh)

]2
}

.

(3.6)
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The total magnetic moment of one cluster, from another point of view, is deter-
mined by the average value of z-component of both spins. In accordance with (2.7)
and with appendix B.1, one can get:

M(~Rq) = 〈σz
1(

~Rq) + σz
2(

~Rq)〉 =
√

2〈Y16(~Rq)〉. (3.7)

Thus, only one component of generalized transition operators, namely Y16, is respon-
sible for the formation of the total magnetic moment of the cluster. This component
may be called the “active” one is the phase transition process. A similar defini-
tion was first introduced in [7]. If 〈Y16(~Rq)〉 did not depend on the number of a
cell q, then(3.7) describes a uniform order in crystal, i.e. a ferromagnetic state. All
other possible arrangements of clusters (antiferromagnetic, ferrimagnetic, spiral, in-
commensurate and so on) are completely determined by the spatial distribution of

〈Y16(~Rq)〉. It must be noted, that after averaging in (3.7) with the H0 Hamiltonian,

the obtained M(~R) coinsides with M from (3.6).

Taking into account that at low temperature region the internal effective field
proportional to magnetization appears, so h → h̃

h̃ = h +
Φ16(0)

2
M, (3.8)

and the expression for M (3.6) transforms into equation

M =
2 sinh β

(

h + Φ16(0)
2

M
)

1 + e−2βV + 2 cosh β
(

h + Φ16(0)
2

M
) , (3.9)

one may find the asymptotic behaviour of thermodynamic functions:

lim
T→0

S = 0, lim
T→0

Cv = 0, lim
T→0

χ = 0, (3.10)

lim
T→0

M = 1, (V > 0), lim
T→0

M ' 1 (V < 0).

It may be tested that the first line of the expressions (3.10) did not depend on
the sign of V (attractive, or repulsive interaction between particles in the cluster).
So, the thermodynamic stability of the investigated cluster reference system is not
violated.

For a consistent solution of the problem of thermodynamics of the total cluster
system (2.11) it is necessary to use the methods, which are effective in the phase
transition point neighbourhood. In the present paper a modified method of collec-
tive variables, which takes into account a structural peculiarity and interparticle
interaction potential properties of the investigated system, is used. The first step in
this way is the construction of the functional of the partition function.
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4. Functional of the partition function

The general approach to the construction of the functional of the partition func-
tion for cluster systems was developed in [6,7]. Since those systems possess quantum
properties, to calculate the statistical operator e−βH it was necessary to use the inter-
action representation with respect to a reference system Hamiltonian. So, collective
variables and all coefficients of the functional became dependent on Matsubara’s
frequecies.

Because the physical system considered in the present paper is described by a
quantum Heisenberg-like Hamiltonian, the main features of its functional of the
partition function are similar to the ones obtained in [7,10]. The principal difference
in the form of functional coefficients is determined by the properties of the reference
system. The latter one determines the values of cumulant averages of generalized
transition operators products which form the above mentioned coefficients. The
calculation of those cumulants is now a central point of consideration.

In the collective variables representation, the total functional of partition func-
tion of the interacting cluster system is [10, 11]:

Z = Z0

∫

(dρλ(~k, ν))N
∏

λ

∏

k6B

∏

ν

J(ρλ, (~k, ν))

× exp

{

β

2

∑

λ

∑

k6B

∑

ν

Φλ(~k)ρλ(~k, ν)ρλ(−~k,−ν)

}

. (4.1)

Here ρλ(~k, ν) is a collective variable corresponding to the generalized transition
operator (operator of a cluster state) in the frequency-momentum representation:

ρ̂λ(~k, ν) =
1√
β

∫ β

0

dβ ′e−iβ′ν

N
∑

q=1

e−β′H0Yλ(~Rq)e
β′H0ei~k ~Rq , (4.2)

Φλ(~k) =
∑

q

Φλ(~Rq)e
i~kRq (4.3)

is a Fourier transform of the λ-th eigenvalue of the intercluster interaction potential,
ν is the Matsubara’s frequency.

The transition Jacobian from the set of generalized transition operators ρ̂λ(~k, ν)

to the collective variables ρλ(~k, ν)

J(ρλ(~k, ν)) = Tr
∏

λ,k,ν

δ(ρλ(~k, ν) − ρ̂λ(~k, ν)), (4.4)

as it usually takes place in the collective variables method [5], we present in the
exponential form:

J(ρλ, (~k, ν)) =

∫

(dωλ(~k, ν))N exp
{

i2π
∑

λ

∑

k6B

∑

ν

ωλ(~k, ν)ρλ(~k, ν)
}
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× exp
{

∞
∑

n=1

(−i2π)n

n!

∑

λ1,k1,ν1

. . .
∑

λn,kn,νn

Mλ1...λn
(~k1, ν1, . . . , ~kn, νn)

× ωλ1
(~k1, ν1) . . . ωλn

(~kn, νn)
}

. (4.5)

Cumulants Mλ1...λn
(~k1, ν1, . . . , ~kn, νn) must be calculated as functional derivations

[11]:

Mλ1...λn
(~k1, ν1, . . . , ~kn, νn) =

=
∂4

∂ωλ1
(~k1, ν1) . . . ∂ωλn

(~kn, νn)
ln

〈

T exp

{

∑

λ

∑

k,ν

ωλ(~k, ν)ρ̂λ(~k, ν)

}〉

0

∣

∣

∣

∣

∣

∣

ω

, (4.6)

where ωλ(~k, ν) is a variable conjugated to ρλ(~k, ν), T is a symbol for “time” arrange-
ment with respect to the inverse temperature β, Z0 is the (3.3) expressions,

〈. . .〉0 = Tr
[

. . . e−βH0

] {

Tr
[

e−βH0

]}−1
, (4.7)

H0 being determined by (3.1).
The functional integrals (4.1) (4.5) contain all powers of collective variables

ρλ(~k, ν). Therefore, it is impossible to integrate (4.1) over ρλ(~k, ν) analitically in
an obvious form. Usually, for analitic or computer calculations, the limit expres-
sions, which include only the second, the fourth or some higher powers of ρλ(~k, ν)
are used. The only requirement must be satisfied: all the expressions obtained after
the integration remain undivergent at any temperature and at arbitrary values of
parameters of the Hamiltonian. Such a distribution is called a basic one. In general,
it has not been proved that the use of more complicated distributions (taking into
account additional higher powers of ρ(k) in the exponent form of (4.5)) leads to a
better mathematical convergence of the obtained physical results. Most probably,
the choise of a concrete form of basic distribution determines a definite statistical
model. As regards the physical system in a phase transition point neighbourhood,
the simplest basic distribution is a quartic distribution. Such functionals are usually
called the Ginzburg-Landau functionals. In the present paper only Ginzburg-Landau
functionals will be regarded. It must be noted that due to the external field h exis-
tence, the quartic basic distribution containes all powers of collective variables (even
and odd ones) to the fourth inclusive. The basic distribution determines the basic
measure density of collective variables near the phase transition point. Cumulants
(4.5) are the coefficients of this measure density form.

It should be also noted that an additional problem, concerning the functional
integrals convergence, is the infinite number of collective variables ρλ(~k, ν) due to ~k
and ν quasi-continuous nature. But taking into account that in the phase transition
point neighbourhood only the variables with small ~k (large distancies of correlations)
and small ν (a finite rather large Tc for real ferromagnets) play an essential role,

from the physical consideration one may suppose the role of large ~k and lange ν to
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be negligibly small. So, for physical models of ferromagnetic phase transitions, the
regarded functional integrals (4.1), (4.2) or (4.4) are finite.

To obtain a cumulant average value of a product of the arbitrary numbers of
generalized transition operators, the expressions (2.6), (4.6) and appendix B will be
used. Because collective variables describe only the long-range part of interaction
(short-range part of interaction is completely included into H0), among all possible

cumulant average quantities we are interested in those for which Φλ(~Rq, ~Rq′ 6= 0),
i.e. λ = 7, 16 for intercluster interactions of the Ising type (see (2.17)) and λ =
2, 4, 5, 7, 10, 11 for intercluster interactions of the Heisenberg type (see (2.18)). In
the interaction representation, the Hubbard operator

X ij(~Rq, β
′) = e−β′H0X ij(~Rq)e

β′H0 (4.8)

satisfies a very important relation [6]:

R0X
ij(~Rq, β

′) = e−βλijX ij(~Rq, β
′)R0, (4.9)

where
R0 = e−βH0 (4.10)

is a statistical operator of the reference system, and

λij = Ei − Ej (4.11)

is a distance between energy levels of the cluster. When executing a cyclic commuta-
tion of the X ij(~Rq, β

′) operator under the Tr symbol and taking into account (4.9),
one can prove:

〈X i1j1(~Rq1
, β1)X

i2j2(~Rq2
, β2)X

i3j3(~Rq3
, β3) . . .〉 = 0 (4.12)

at λi1j1 + λi2j2 + λi3j3 + . . . 6= 0.
This relation simplifies the procedure of calculation because it shows the expres-

sions which are identically equal to zero.
Based on the (2.6), (4.6) and (4.2) for n-th order cumulant one obtains a formula:

Mλ1λ2...λn
(~k1, ν1, ~k2, ν2, . . .~kn, νn) =

=
1

Nn/2

∑

q1,q2,...qn=1

exp
{

−i
[

~k1
~Rq1

+ ~k2
~Rq2

+ . . . + ~kn
~Rqn

]}

× 1

βn

∫ β

0

dβ1

∫ β

0

dβ2 . . .

∫ β

0

dβn exp {i [β1ν1 + β2ν2 + . . . + βnνn]}

×
∑

i1,j1,i2,j2,...in,jn

Ui1j1λ1
Ui2j2λ2

. . . Uinjnλn

× 〈TX i1j1(~Rq1
β1)X

i2j2(~Rq2
β2) . . .X injn(~Rqn

βn)〉c0 . (4.13)

Here 〈. . .〉c0 means a cumulant average. To calculate this cumulant average quantity,
the Block-Wick-Dominicis theorem [12] in the form [13] may be used. It must be

noted that all the operators X ij(~Rq) in (4.13) are of Bose type because the total
member of particles in every cell is constant.

Since for Ising and Heisenberg types of intercluster interactions, the complete
sets of cumulants are different, those sets will be presented separately.
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4.1. Ising-type intercluster interactions

For generalized transition operators

Y7 =
1√
2
[X23 + X32],

Y16 =
1√
2
[X11 − X44] (4.14)

the total set of nonzero cumulant averages to the fourth order inclusive is as follows.
For the first-order cumulants:

MIsing
7 (~k, ν) = 0,

MIsing
16 (~k, ν) =

√
2eβ V

2 sinh βh

Z0
δ(~k)δ(ν); (4.15)

for the second-order cumulants:

MIsing
77 (~k1, ν1, ~k2, ν2) =

4V e−β V
2 sinh βV

β(4V 2 + ν2)Z0

δ(~k1 + ~k2)δ(ν1 + ν2),

MIsing
1616 (~k1, ν1, ~k2, ν2) =

[

eβ V
2 cosh βh

Z0

− 2eβV sinh2 βh

Z2
0

]

δ(~k1 + ~k2)δ(νi),

MIsing
716 (~k1, ν1, ~k2, ν2) = 0; (4.16)

for the third-order cumulants:

MIsing
777 (~k1, ν1, ~k2, ν2, ~k3, ν3) = 0,

MIsing
16 16 16(

~k1, ν1, ~k2, ν2, ~k3, ν3) =
eβ V

2 sinh βh√
2Z0

δ(~k1 + ~k2 + ~k3)δ(νi)

− 3
√

2eβV cosh βh sinh βh

Z2
0

δ(~k1 + ~k2)δ(~k3)δ(νi) +
4
√

2e
3

2
βV sinh3 βh

Z3
0

δ(~ki)δ(νi),

MIsing
7 7 16(

~k1, ν1, ~k2, ν2, ~k3, ν3) = −4
√

2V sinh βV sinh βh

β(4V 2 + ν2)Z2
0

× δ(~k1 + ~k2)δ(~k3)δ(ν1 + ν2)δ(ν3),

MIsing
7 16 16(

~k1, ν1, ~k2, ν2, ~k3, ν3) = 0; (4.17)

for the fourth-order cumulants:

MIsing
7777 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) =

=
4V e−β V

2 sinh βV

2β(4V 2 + ν2)Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− 48V 2e−βV sinh2 βV

β2(4V 2 + ν2)2Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

402



On the functional representation of partition function

MIsing
16 16 16 16(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) =
eβ V

2 cosh βh

2Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(νi)

− 4eβV sinh2 βh

Z2
0

δ(~k1 + ~k2 + ~k3)δ(~k4)δ(νi)

− 3eβV cosh2 βh

Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(νi)

+
24e3β V

2 cosh βh sinh2 βh

Z3
0

δ(~k1 + ~k2)δ(~k3)δ(~k4)δ(νi)

− 24e2βV sinh4 βh

Z4
0

δ(~ki)δ(νi),

MIsing
771616(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) =

= −4V sinh βV cosh βh

β(4V 2 + ν2)Z2
0

δ(~k1 + ~k2)δ(~k3 + ν3)δ(ν1 + ν2)δ(ν3)δ(ν4)

+
8V eβ V

2 sinh βV sinh2 βh

β(4V 2 + ν2)Z3
0

δ(~k1 + ν2)δ(~k3)δ(~k4)δ(ν1 + ν2)δ(ν3)δ(ν4), (4.18)

all the rest cumulants of this order are equal to zero.
One may verify that at h = 0 (external field is absent) all odd-order cumulants in

(4.15)–(4.18) are equal to zero. Other interesting properties of the obtained cumu-

lants must be noted. Only cumulants built on the ρ̂7(~k, ν) operators are dependent

on Matsubara’s frequencies. But all the cumulants built solely on the ρ̂16(~k, ν) op-

erators, are independent on ν. Let’s remind that collective variables ρ̂16(~k, ν) are
responsible for the appearance of a long-range order in the physical cluster system
because 〈ρ̂16(0, 0)〉 ∼ 〈Y16(~Rq)〉 (see (2.17), (3.4) and (3.7)) determines a total spin
moment of the cluster and its mean value is proportional to the external magnetic
field intensity. So, it confirms a statement that ferromagnetic ordering (phase tran-
sition) is an essentially classical phenomenon [15]. At the same time, the considered
system possesses quantum properties, which are important at low temperatires when
basic state effects dominate.

The asymptotic behaviour of cumulants at h → 0, V → 0 are quite different for
ν = 0 and for ν 6= 0:

ν = 0 MIsing
77 = MIsing

1616 =
1

4
, MIsing

7777 = MIsing
16161616 = − 1

16
,

ν 6= 0 all cumulants are equal to zero. (4.19)

Taking into account that at V = 0, h = 0, the partition function of the isolated
cluster is twice bigger than the partition function of one spin, as well as taking into
account the normalizing factors in (4.8), one may pass from the expressions (4.24)
to classical spin cumulants of Ising model (see [4]):

MIsing
77 = MIsing

1616 =
1

4
· 2 · (

√
2)2 = 1;

MIsing
7777 = MIsing

16161616 =
1

8
· 2 · (

√
2)4 − 3

16
· 22 · (

√
2)4 = −2. (4.20)
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4.2. Heisenberg-type intercluster interactions

For generalized transition operators

Y2(~Rq) =
1√
2
[X11(~Rq) − X44(~Rq)],

Y4(~Rq) =
1

2
[X12(~Rq) + X21(~Rq) − X24(~Rq) − X42(~Rq)],

Y5(~Rq) =
1

2
[X13(~Rq) + X31(~Rq) + X34(~Rq) + X43(~Rq)],

Y7(~Rq) =
1√
2
[X23(~Rq) + X32(~Rq)],

Y10(~Rq) =
1

2
[−X13(~Rq) + X31(~Rq) − X34(~Rq) + X43(~Rq)],

Y11(~Rq) =
1

2
[−X12(~Rq) + X21(~Rq) + X24(~Rq) − X42(~Rq)] (4.21)

the mean value of which forms in this case a total set of cumulants, we have:
for the first-order cumulant:

MHaiz.
2 (~k, ν) = MIsing

16 (~k, ν), (4.22)

for the second-order cumulants:

MHaiz.
22 (~k1, ν1, ~k2, ν2) = MIsing

1616 (~k1, ν1, ~k2, ν2),

MHaiz.
44 (~k1, ν1, ~k2, ν2) = −MHaiz.

1010 (~k1, ν1, ~k2, ν2)

=
eβ V

2

2βZ0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2)δ(ν1 + ν2),

MHaiz.
55 (~k1, ν1, ~k2, ν2) = −MHaiz.

1111 (~k1, ν1, ~k2, ν2)

=
eβ V

2 h sinh βh

β(h2 + ν2)Z0
δ(~k1 + ~k2)δ(ν1 + ν2),

MHaiz.
77 (~k1, ν1, ~k2, ν2) = −MIsing

77 (~k1, ν1, ~k2, ν2); (4.23)

for the third-order cumulants:

MHaiz.
222 (~k1, ν1, ~k2, ν2, ~k3, ν3) = MIsing

161616(
~k1, ν1, ~k2, ν2, ~k3, ν3),

MHaiz.
244 (~k1, ν1, ~k2, ν2, ~k3, ν3) = −MHaiz.

21010(
~k1, ν1, ~k2, ν2, ~k3, ν3)

= −eβV sinh βh√
2βZ2

0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1)δ(~k2 + ~k3)δ(ν1)δ(ν2 + ν3),

MHaiz.
255 (~k1, ν1, ~k2, ν2, ~k3, ν3) = −MHaiz.

21111(
~k1, ν1, ~k2, ν2, ~k3, ν3)

404



On the functional representation of partition function

= −
√

2eβV h sinh2 βh

β(h2 + ν2)Z2
0

δ(~k1)δ(~k2 + ~k3)δ(ν1)δ(ν2 + ν3),

MHaiz.
772 (~k1, ν1, ~k2, ν2, ~k3, ν3) = MIsing

7716 (~k1, ν1, ~k2, ν2, ~k3, ν3); (4.24)

for the fourth-order cumulants:

MHaiz.
2222 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = MIsing

16161616(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4),

MHaiz.
5555 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = MHaiz.

11111111(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
eβ V

2 h sinh βh

2β(h2 + ν2)Z0

δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− 3eβV h2 sinh2 βh

β2(h2 + ν2)2Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

MHaiz.
4444 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = MHaiz.

10101010(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
eβ V

2

4βZ0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2 + ~k3 + ~k3)δ(ν1 + ν2 + ν3 + ν4)

− 3eβV

4β2Z2
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]2

× δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

MHaiz.
7777 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = MIsing

7777 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4),

MHaiz.
2255 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = −MHaiz.

221111(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
eβ V

2

4Z0

[

2h sinh βh

β(h2 + ν2)
− 1

]

δ(~k1 + ~k2 + ~k3 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− eβV h cosh βh sinh βh

β(h2 + ν2)Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1)δ(ν2)δ(ν3 + ν4)

+
2e3β V

2 h sinh3 βh

β(h2 + ν2)Z3
0

δ(~k1)δ(~k2)δ(~k3 + ~k4)δ(ν1)δ(ν2)δ(ν3 + ν4),

MHaiz.
2244 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = −MHaiz.

221010(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
eβ V

2

4Z0

[

(2V + h)(eβh − e−2βV )

β((2V + h)2 + ν2)
+

(2V − h)(e−βh − e−2βV )

β((2V − h)2 + ν2)
− e−2βV

]

× δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− eβV cosh βh

2βZ2
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1)δ(ν2)δ(ν3 + ν4)

+
e3β V

2 sinh2 βh

βZ3
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]
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× δ(~k1)δ(~k2)δ(~k3 + ~k4)δ(ν1)δ(ν2)δ(ν3 + ν4),

MHaiz.
551111(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) =

= −eβ V
2

4Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

+
eβV h2 sinh2 βh

β2(h2 + ν2)Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4);

MHaiz.
5577 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = −MHaiz.

111177(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
eβ V

2

4Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− 4V h sinh βV sinh βh

β2(4h2 + ν2)(h2 + ν2)Z2
0

δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

MHaiz.
551010(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = −MHaiz.
111144(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

= −eβ V
2

4Z0

[

2h sinh βh

β(h2 + ν2)
− 1

]

δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

+
eβV h sinh βh

2β2(h2 + ν2)Z2
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

MHaiz.
4477 (~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) = −MHaiz.

771010(
~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

=
e−βV

4Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

− 2V sinh βV

β2(4V 2 + ν2)Z2
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4),

MHaiz.
441010(

~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4) =

= −e−βV

4Z0
δ(~k1 + ~k2 + ~k3 + ~k4)δ(ν1 + ν2 + ν3 + ν4)

+
eβV

4β2Z2
0

[

(2V + h)(eβh − e−2βV )

(2V + h)2 + ν2
+

(2V − h)(e−βh − e−2βV )

(2V − h)2 + ν2

]

× δ(~k1 + ~k2)δ(~k3 + ~k4)δ(ν1 + ν2)δ(ν3 + ν4). (4.25)

All the rest Heisenberg-type cumulants up to the fourth-order inclusive are equal to
zero.

Clearly, the higher-order cumulants for the both types of intercluster interactions
considered here can be also obtained using the formula (4.13). Moreover, this formula
is suitable for other different possible types of interparticle interactions.

So, the complete sets of two-particle cluster system cumulants for two types of
intercluster interactions (Ising’s and Heisenberg’s ones) are found. The functional of
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partition function is completely defined. Its final form is as follows:

Z = Z0

∫

(

dρλ(~k, ν)
)N

exp

{

∑

λ

∑

k,ν

β

2
Φλ(~k)ρλ(~k, ν)ρλ(−~k,−ν)

}

×
∫

(

dωλ(~k, ν)
)N

exp

{

i2π
∑

λ

∑

k,ν

[ρλ(~k, ν) −Mλ(~k, ν)]ωλ(~k, ν)

− (2π)2

2

∑

λ1,λ2

∑

k,ν

Mλ1λ2
(~k, ν,−~k,−ν)ωλ1

(~k, ν)ωλ2
(−~k,−ν)

+
i(2π)3

3!

∑

λ1,λ2,λ3

∑

k1,k2,k3
ν1,ν2,ν3

Mλ1λ2λ3
(~k1, ν1, ~k2, ν2, ~k3, ν3)

× ωλ1
(~k1, ν1)ωλ2

(~k2, ν2)ωλ3
(~k3, ν3)

+
(2π)4

4!

∑

λ1λ2,λ3,λ4

∑

k1,k2,k3,k4
ν1,ν2,ν3,ν4

Mλ1λ2λ3λ4
(~k1, ν1, ~k2, ν2, ~k3, ν3, ~k4, ν4)

× ωλ1
(~k1, ν1)ωλ2

(~k2, ν2)ωλ3
(~k3, ν3)ωλ4

(~k4, ν4)

}

. (4.26)

For practical calculation of the expression (4.26), the layer by layer integration over

collective variables ρλ(~k, ν), similar to those exploited in [10,14], may be used. This
problem is a subject of another paper.

5. Conclusions

1. The Hamiltonian of the cluster magnetic system (2.1) includes two essential-
ly non-equivalent parts of interparticle interactions. The first one describes
intracluster interactions between spin’s particles and may be represented by
exchange Heisenberg form. The second one is responsible for long-range in-
tercluster interactions of a dipole-dipole type. Depending on of the physical
nature of the investigated systems this part of interaction may be described
by Ising or by Heisenberg types of Hamiltonians.

2. The problem of complete determination of quantum states and correspond-
ing energy levels of a basic cluster system may be solved using generalized
transition operators Yλ(~Rq). Those operators are similar to the well-known

Hubbard-Stasyuk operators X ij(~Rq), but their form essentially depends on
the structure and on interparticle interaction peculiarity of the system stud-
ied.

3. To construct the functional of the partition function of a quantum magnetic
system, the collective variables method is proposed. The coefficients of this
functional are expressed by the cluster cumulants, which are calculated for
both Ising and Heisenberg types of intercluster interactions. Among different
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sorts of collective variables only certain ones are responsible for ferro-, antifer-
romagnetic or other kinds of the magnetic ordering. It has been shown that
“ferromagnetic-type” collective variables behave like the classical ones (they
don’t depend on Matsubara frequencies). Hence, the corresponding phase tran-
sition may be treated as a classical phenomenon.
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A. Intercluster interaction matrix for two-particle cluster
system

A.1. Ising-type interactions

Φ+ −Φ+

Φ− Φ−

Φ− Φ−

−Φ+ Φ+

A.2. Heisenberg-type interactions

Φ+ −Φ+

Φ− −Φ−

Φ+ Φ+

Φ− −Φ−

Φ− Φ−

-Φ− Φ−

Φ+ Φ+

Φ− Φ−

Φ+ Φ+

−Φ− Φ−

Φ+ Φ+

−Φ+ Φ+

Φ+ =
1

2

(

J11(~Rq, ~Rq′) + J12(~Rq, ~Rq′)
)

, Φ− =
1

2

(

J11(~Rq, ~Rq′) − J12(~Rq, ~Rq′)
)

.
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B. Unitary transfornation matrix U for two-particle cluster
system

B.1. Ising-type interactions

1√
2

1√
2

1
1

1
1

1
1√
2

1√
2

1
1

1√
2

− 1√
2

1
1

1
1

1
1√
2

− 1√
2

B.2. Heisenberg-type interactions

1√
2

1√
2

1
2

1
2

−1
2
−1

2
1
2

1
2

−1
2
−1

2

1
1
2

1
2

1
2

1
2

1
1√
2

1√
2

1
2
−1

2
−1

2
1
2

1
2

1
2

1
2

1
2

1√
2
− 1√

2

1
1
2
−1

2
−1

2
1
2

1
1
2
−1

2
1
2

−1
2

1
2
−1

2
1
2

−1
2

1√
2
− 1√

2
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