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The method of molecular dynamics (MD) is a powerful tool for the prediction
and investigation of various phenomena in physics, chemistry and biology.
The development of efficient MD algorithms for integration of the equations
of motion in classical and quantum many-body systems should therefore
impact a lot of fields of fundamental research. In the present study it is
shown that most of the existing MD integrators are far from being ideal and
further significant improvement in the efficiency of the calculations can be
reached. As a result, we propose new optimized algorithms which allow
to reduce the numerical uncertainties to a minimum with the same overall
computational costs. The optimization is performed within the well recog-
nized decomposition approach and concerns the widely used symplectic
Verlet-, Forest-Ruth-, Suzuki- as well as force-gradient-based schemes. It
is concluded that the efficiency of the new algorithms can be achieved
better with respect to the original integrators in factors from 3 to 1000 for
orders from 2 to 12. This conclusion is confirmed in our MD simulations
of a Lennard-Jones fluid for a particular case of second- and fourth-order
integration schemes.
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1. Introduction

Modelling various physical and chemical processes in molecular dynamics (MD)
simulations, we come to the necessity of integrating the equations of motion for
a many-body system of interacting particles. A lot of numerical algorithms have
been devised and implemented over the years to perform such an integration. The
traditional high-order explicit Runge-Kutta (RK) and implicit predictor-corrector
(PC) schemes [1,2] were applied in early investigations. It was soon realized that the
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extra orders obtained in these schemes are not relevant since the truncation errors
accumulate too rapidly on MD scales of time [3]. This high instability restricts the
application of RK and PC integrators in long-term MD simulations to very small
time steps only, and, thus, reduces significantly the efficiency of the computations.
In addition, the RK and PC algorithms produce solutions which, unlike exact phase
trajectories, are neither symplectic nor time reversible.

In 1990, a new approach to the integration of motion in classical and quantum
systems was proposed [4,5]. Within this approach the exponential operator of time
evolution is decomposed into analytically solvable parts. As a result, the symplectic
map of the flow of particles and time reversibility can be conserved exactly, despite
an approximate character of the produced trajectories. The preservation of sym-
plecticity and reversibility appears to be very important because, as is now well
established, this closely relates to the stability of an algorithm [6]. The stability
means that the numerical errors arising during the decomposition integration are
bounded even for large sizes of the time step. This is contrary to the RK and PC
schemes, where the truncation uncertainties increase linearly with the increase of
the time of integration [3,7–10]. The decomposition algorithms are, therefore, ideal
for long-duration evaluations in MD [6] and in astrophysical [11] simulations.

The construction of MD algorithms within the decomposition approach has been
the subject of many investigations [4,5,7,12–20]. However, much of the previous
work has been of a heuristic nature. Moreover, any freedom in the choice of schemes
has been eliminated by restricting attention to particular schemes, mainly to those
which lead to a minimal number of decomposition stages at a given order. The most
notorious example is the widely used Verlet algorithm [21,22], which corresponds to
a three-stages decomposition scheme of the second order. The fourth-order algorithm
by Forest and Ruth [5] relates to a scheme with seven single-exponential stages. The
sixth-order propagations are available [13,16] beginning from such fifteen stages.
Higher-order integrators can be obtained by composing schemes of lower orders
[4,12,14,16,23–26].

Recently, a more consequent analysis of the exponential factorization process has
allowed to extend the family of analytically integrable decomposition algorithms by
new members from the so-called force-gradient class [15,17,18]. But again, as in the
non-gradient case, the study has been restricted to particular solutions, actually to
the fourth order only. For example, Chin [18] introduced a set of five- and seven-
stages of such force-gradient solutions. In order to derive the algorithms of higher
orders, it has been proposed to apply the crude iterative procedure [27]. Advan-
tages of the force-gradient integrators over their standard non-gradient (including
Verlet and Forest-Ruth) counterparts have been demonstrated in celestial [18,27],
stochastic [28,29], and quantum [30] dynamics simulations.

The question of how to improve the efficiency of the decomposition integration
for atomic systems with long-range interactions has also been considered. As a result,
the so-called multiple time scale integrators have been introduced [22,31]. In these
integrators, the slow subdynamics is treated in a specific way using larger step
sizes in view of the weakness of long-range forces. The faster motion, caused by
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the interactions at short interparticle distances, remains to be integrated using the
original decomposition algorithms, such as the Verlet integrator. In addition, it has
been shown that the decomposition approach can be adapted to integrate not only
the translational motion in atomic liquids, but also to simulate more complicated
molecular and spin systems at the presence of orientational degrees of freedom [7,
19,20].

Despite these advances, there has been very little work done on the systematic
construction of decomposition integrators. Some results in this direction have been
obtained by Li [16], but he restricted ourselves to the most obvious solutions. In
addition, his consideration was limited to the non-gradient class exclusively, omit-
ting the case of force-gradient algorithms. Note that a complete systematization
of decomposition integrators presents not only a methodological interest but may
have an important practical significance, because the new solutions found can be
more efficient than the already known ones. In particular, as has been shown quite
recently [32–34], the decomposition propagators with minimal number of stages do
not necessarily lead to an optimal performance.

The primary goal of this work is to provide a comprehensive study of a whole fa-
mily of symplectic self-adjoint decomposition integrators. Note that the self-adjoint-
ness should be fulfilled to reproduce the property of time reversibility in the solu-
tions for non-dissipative systems (in the case of stochastic dynamics the same is
needed to recover the principle of detailed balance). In this context, we should men-
tion another family of symplectic self-adjoint schemes developed within an extended
Runge-Kutta approach [35]. These schemes, however, are implicit and require the
systems of nonlinear equations to be solved by expensive iterations at each step of
the integration process. Since such equations cannot be solved exactly (because the
number of the iterations is finite), the symplecticity and time reversibility will be vi-
olated. These disadvantages are absent in the present decomposition method, where
the time propagation is performed explicitly by a set of canonical transformations.
Another benefit of our approach is that we work with the most general solutions and,
thus, are able to easily carry out an optimization with respect to their efficiency.
The optimization is reached by imposing additional constraints, such as minimizing
the principal error coefficients, and thus it allows us to choose the best integrator
for each given order.

2. Theoretical background

2.1. Basic equations of motion in classical and quantum systems

For classical systems, the equations of motion can be cast in the following com-
pact form

dρ

dt
= [ρ ◦H] ≡ Lρ(t) , (1)

where ρ denotes the set of phase variables, [ ◦ ] is the Poisson bracket, and H rep-
resents the Hamiltonian function. In the case of N classical particles interacting
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through the pair-wise potential ϕ(rij) ≡ ϕ(|ri − rj|), the explicit expression for the
Hamiltonian is

H =
N

∑

i=1

mvi
2

2
+

1

2

N
∑

i6=j

ϕ(rij) ≡ T + U . (2)

Here ri denotes the position of particle i (i = 1, 2, . . . , N) moving with the velocity
vi = dri/dt and carrying mass m, so that T and U are the total kinetic and potential
energies, respectively. Then ρ = {ri,vi} ≡ {r,v}, and the Liouville operator of the
system takes the form

L =

N
∑

i=1

(

vi·
∂

∂ri
+

fi

m
·
∂

∂vi

)

, (3)

where fi = −
∑N

j(j 6=i) ϕ
′(rij)rij/rij are the forces acting on the particles due to the

interactions.

For quantum systems, the state evolution can be described by the time-depen-
dent Schrödinger equation

i~
∂ψ

∂t
= H(r)ψ ≡

(

T + U(r)
)

ψ(t) , (4)

where T = −1
2

∑N
i=1 ~

2
∇

2
i /m and U are the kinetic and potential energy operators,

respectively, and ψ is the wave function. The stochastic [28,29] and hybrid quantum-
classical [36] dynamics models can also be introduced (in the latter case we come to a
coupled system of Newtonian (1) and Schrödinger (4) equations). But, for simplicity,
we will deal only with the above purely classic and quantum considerations.

If an initial configuration ρ(0) or ψ(0) is specified, the unique solution to equa-
tion (1) or (4) can formally be presented as

R(t) = eLt
R(0) ≡

(

eL∆t
)l

R(0) , (5)

where ∆t is the size of the time step, l = t/∆t is the total number of steps, R

denotes either ρ or ψ, and L corresponds to L or −iH/~. It is well known that the
time evolution of many-particle systems (N > 2) cannot be carried out exactly. So
that the only way of handling the problem (5) is to perform the calculations by
numerical methods.

2.2. Symplectic self-adjoint decomposition schemes

The basic idea of a decomposition approach is to factor out the exponential
propagator eL∆t on such suboperators which allow to be presented analytically or
at least in quadratures. This is achieved by splitting the operator L = A + B
into its kinetic A and potential B parts, where A = v·∂/∂r or A = −iT /~ and
B = a·∂/∂v with a ≡ {ai} = {fi/m} being the acceleration or B = −iU/~ for the
cases of classical or quantum mechanics, respectively. Then the total propagator can
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be decomposed as

e(A+B)∆t+O(∆tK+1) =
P

∏

p=1

eAap∆teBbp∆t+Ccp∆t3 , (6)

where C ≡ [B, [A,B]] is the auxiliary operator and [ , ] denotes the commutator of
two operators. The coefficients ap, bp, and cp have to be chosen in such a way as to
provide the highest possible value for the order K > 1 at a given integer number
P > 1. As a result, taking into account the smallness of ∆t, the integration (5)
can be performed approximately using the equation (6) by neglecting truncation
terms O(∆tK+1). The precision of the integration will improve with the increase
of the order K and with the decrease of the size ∆t of the time step. Formula (6)
represents the decomposition approach in its most general form [34]. For cp ≡ 0,
equation (6) reduces to the usual non-gradient factorization [4,5,12,14,15].

In order to show that the exponential subpropagators arising on the right-hand-
side of equation (6) are indeed analytically integrable, let us first consider more in
detail the structure of the third-order operator C. In view of the expressions for
operators A and B, it can be readily obtained in the case of classical systems that

C ≡ [B, [A,B]] =
N

∑

i=1

gi

m
·
∂

∂vi
≡ G·

∂

∂v
, (7)

where giα = 2
∑

jβ (fjβ/m) ∂fiα/∂rjβ . The force-gradient evaluations ∂fiα/∂rjβ can
also be explicitly represented because of fiα = −∑

j(j 6=i) ϕ
′(rij)(riα − rjα)/rij. This

results in

gi = −2
N

∑

j(j 6=i)

[(

ai − aj

)ϕ′
ij

rij

+
rij

r3
ij

(

rijϕ
′′
ij − ϕ′

ij

)(

rij·(ai − aj)
)]

(8)

≡
N

∑

j(j 6=i)

g(rij) = gi(r) ,

where ϕ′
ij ≡ ϕ′(rij) = dϕ(rij)/drij and ϕ′′

ij = dϕ′
ij/drij. As can be seen, the function

G like a does not depend on velocity and, thus, the operator C will commute with
B. Then, taking also into account the independence of v on r, yields the following
two equalities

eAap∆t{r,v} = {r + apv∆t,v} ,
(9)

eBbp∆t+Ccp∆t3{r,v} = {r,v + bpa∆t + cpG∆t3}

that represent simple shifts in position and velocity spaces, respectively [34]. For
quantum systems, where C = i

∑

i |∇iU|2/(~m), the calculation of eBbp∆t+Ccp∆t3 also
presents no difficulties (at least for particles in external fields), because this requires
only the knowledge of the potential and its gradient. The kinetic part eAap∆t will
require carrying out two, one direct and one inverse, spatial Fourier transforms [30].
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An important feature of the decomposition integration (6) is its exact conserva-
tion of the symplectic map of the flow of particles in the phase space. This follows
from the fact that separate shifts (9) of positions and velocities do not change the
phase volume. The property S−1(t) = S(−t) of time reversibility of evolution opera-
tors S(t) = eLt can also be reproduced perfectly by imposing self-adjoint constraints
on the coefficients ap, bp, and cp. There are two kinds of such constraints [33], namely,
a1 = 0, ap+1 = aP−p+1, bp = bP−p+1, cp = cP−p+1, as well as ap = aP−p+1, bp = bP−p,
cp = cP−p with bP = 0 and cP = 0. Then single-exponential subpropagators will en-
ter symmetrically into the decomposition (6), providing automatically the required
reversibility. The existence of the two kinds of constraints is caused by the two kinds
of single-exponential operators (9) and the fact that the symmetry is invariant with
respect to the replacement of these operators between themselves. Note also that
within the self-adjoint schemes, the total number of single-exponential operators
(stages) in equation (6) is actually equal to S = 2P − 1, i.e. it takes only odd values
(because one of the boundary set of coefficients is set to zero, a1 = 0 or bP = cP = 0).

2.3. Order conditions

The above symmetry will result in the automatic disappearing of all even-order
terms in the error function of decomposition transformation (6), i.e.,

O(∆tK+1) = O1∆t + O3∆t
3 + O5∆t

5 + O7∆t
7 + . . .+ OK+1∆t

K+1 + . . . . (10)

We see, therefore, that the order K of self-adjoint algorithms may accept only even
numbers (K = 2, 4, 6, 8, . . .). The cancellation of the remaining odd-order terms
(up to OK−1∆t

K−1 for the order K) has to be provided by fulfilling a set of basic
conditions for ap, bp, and cp. Let us write down explicit expressions for the functions
O1, O3, O5, and O7 (this will be enough to derive algorithms up to the eighth order).
Expanding both sides of equation (6) into Taylor’s series, and collecting the terms
with the same powers of ∆t one finds:

O1 = (ν − 1)A + (σ − 1)B , O3 = α[A, [A,B]] + β[B, [A,B]] , (11)

O5 = γ1[A, [A, [A, [A,B]]]] + γ2[A, [A, [B, [A,B]]]]

+ γ3[B, [A, [A, [A,B]]]] + γ4[B, [B, [A, [A,B]]]] , (12)

O7 = ζ1[B, [B, [A, [B, [A, [B,A]]]]]] + ζ2[B, [B, [B, [A, [A, [B,A]]]]]]

+ ζ3[B, [B, [A, [A, [A, [B,A]]]]]] + ζ4[B, [A, [B, [A, [A, [B,A]]]]]]

+ ζ5[A, [B, [B, [A, [A, [B,A]]]]]] + ζ6[A, [B, [A, [B, [A, [B,A]]]]]]

+ ζ7[B, [A, [A, [A, [A, [B,A]]]]]] + ζ8[A, [B, [A, [A, [A, [B,A]]]]]]

+ ζ9[A, [A, [B, [A, [A, [B,A]]]]]] + ζ10[A, [A, [A, [A, [A, [B,A]]]]]] . (13)

Here we take into account the equality [B, C] = 0 following from the commutation
of operators B and C, so that any occurrence of combinations containing the chain
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[B, [B, [A,B]]] has been ignored (in particular, for the fifth-order truncation term O5,
this has allowed us to exclude the two zero-valued commutators [B, [B, [B, [A,B]]]]
and [A, [B, [B, [A,B]]]]). The multipliers ν, σ, α, β, γ1−4, and ζ1−10, arising in equa-
tions (11)–(13), will depend on the coefficients ap, bp, and cp, where p = 1, 2, . . . , P .
The forms of this dependency for the first two multipliers are particularly simple
and look like ν =

∑P
p=1 ap and σ =

∑P
p=1 bp. Explicit expressions for α, β, γ1−4, and

ζ1−10 as functions of {ap, bp, cp} can be found in our recent work [34].
So that putting ν = 1 and σ = 1 will cancel the first-order truncation uncer-

tainties, O1 = 0. The next multipliers α, β, γ1−4, ζ1−10 should be set to zero to kill
higher-order truncation terms, namely, O3, O5, and O7 (see equations (11)–(13)).
In such a way, we come to a set of the required order conditions. They present, in
fact, a system of non-linear equations which should be solved with respect to the
time coefficients ap, bp, and cp.

3. Optimization of decomposition schemes

The main idea of our approach lies in the fact that for each given order, we can
always introduce an extended set of single-exponential time coefficients with one or
more free parameters. Then, imposing an additional constraint related to the norm
of the principal error coefficient, the best solutions can be chosen by minimizing that
norm with respect to these parameters. In this section we will first describe in detail
the optimization of the most known non-gradient Verlet [21,22] and Forest-Ruth [5]
integrators of orders 2 and 4, respectively. The final results on the optimization of the
schemes with higher orders and stage numbers, including the case of force-gradient
integrators, will also be presented.

3.1. Verlet-like algorithms of the second order

The method just highlighted is quite general to build numerical integrators of
arbitrary orders. In particular, the second-order (K = 2) velocity Verlet (VV) algo-
rithm [21,22]

e(A+B)∆t+O(∆t3) = eB
∆t
2 eA∆teB

∆t
2 (14)

is immediately reproduced from equation (6) at P = 2 and a1 = 0, b1 = b2 = 1/2,
a2 = 1 as well as c1 = c2 = 0. The case when the operators A and B are replaced by
each other (A ↔ B) is also possible, and we come to the so-called position-Verlet
(PV) algorithm [22], e(A+B)∆t+O(∆t3) = eA∆t/2eB∆teA∆t/2, corresponding to the choice
a1 = a2 = 1/2, b1 = 1, and b2 = 0.

Despite the fact that the method of construction of time-reversible integrators
using symplectic decompositions is not new, some important cases have never been
considered and have been completely ignored in the literature. This concerns, in
particular, the following question. Are the above Verlet algorithms optimal in view
of the time efficiency among all possible basic (i.e. with single splitting of the Liou-
ville operator) decomposition integrators of the second-order? We can say only that
the Verlet algorithms do minimize the number of force evaluations per time step.
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However, as will be shown below, this does not guarantee the optimization with
respect to the overall number of force recalculations (the most time-consuming part
of MD simulations), which are necessary to perform during a fixed observation time
in order to achieve a given precision in solutions.

It can be readily seen that the Verlet algorithms (P = 2) require only one
(P − 1 = 1) force evaluation per time step ∆t, whereas the fourth- and higher-order
schemes (P > 4) need three or more such evaluations (see the next subsections
3.2 and 3.3). Let us consider now the intermediate case P = 3 which leads to an
extended self-adjoint propagation in the form

e(A+B)∆t+O3∆t3+O(∆t5) = eAξ∆teB
∆t
2 eA(1−2ξ)∆teB

∆t
2 eAξ∆t (15)

following from equation (6) at a1 = a3 ≡ ξ, a2 = 1 − 2ξ, b1 = b2 = 1/2, and b3 = 0
(with c1 = c2 = c3 = 0). Again, the propagation with A ↔ B is also acceptable
(then a1 = 0, b1 = b3 ≡ ξ, b2 = 1−2ξ and a2 = a3 = 1/2). Formula (15) represents a
whole family of symplectic time-reversible integrators of the second-order in which
a particular member can be extracted by choosing a value for a free parameter ξ.
For ξ = 0, equation (15) reduces to the VV (see equation (14)) or PV (at A ↔ B)
algorithm. The extended (when ξ 6= 0) propagation requires already two, instead of
one, force recalculation per time step. For this reason, we can come to an incorrect
conclusion that such a propagation has no advantage over the Verlet algorithms.

In order to prove that the above conclusion is indeed incorrect, let us analyze
more in detail the influence of truncation errors O3∆t

3 on the result. The Taylor’s
∆t-expansion of equation (15) yields

α(ξ) =
1 − 6ξ + 6ξ2

12
, β(ξ) =

1 − 6ξ

24
, (16)

so that the norm of O3 with respect to the third-order commutators [A, [A,B]] and
[B, [A,B]] (see equation (11)) is

d(ξ) =
√

α2(ξ) + β2(ξ) . (17)

Then, the norm of local uncertainties appearing during a single-step propagation
can be expressed in terms of d and ∆t as g = d∆t3. During a whole integration over
a fixed time interval t, the total number l of such single steps is proportional to ∆t−1

(see equation (5)). As a result, the local third-order uncertainties will accumulate
step by step leading, at t� ∆t, to the second-order global errors Γ2 = g∆t−1, i.e.,

Γ2(ξ,∆t) = d(ξ)∆t2 . (18)

Extended propagation (15) can now be optimized with respect to ξ by minimizing
the function d(ξ). As can be readily verified, the minimum of d(ξ) is achieved at
ξ = ξ0, where

ξ0 =
1

2
− (2

√
326 + 36)1/3

12
+

1

6(2
√

326 + 36)1/3

≈ 0.1931833275037836 , (19)
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with dmin ≡ d(ξ0) ≈ 0.00855. On the other hand, the value d(0) of d corresponding
to the Verlet algorithms (when ξ = 0) is equal to d(0) ≈ 0.0932, i.e., it increases
in d(0)/d(ξ0) ≈ 11 times. Remembering that the extended propagation requires two
force evaluation per time step ∆t, it should be performed with double step size 2∆t
with respect to that of the Verlet algorithms, in order to provide the same num-
ber of total force recalculations during the integration over the same time interval.
Therefore, the extended propagation will be more efficient if the following inequality
Γ2(ξ, 2∆t) < Γ2(ξ = 0,∆t) takes place. Taking into account equation (18), such an
inequality can be rewritten as d(0)/d(ξ) > 4, and thus it is fulfilled completely in
the optimization regime. In particular,

Γ2(ξ0, 2∆t)

Γ2(ξ = 0,∆t)
≈ 0.367 , (20)

indicating that the optimized propagation, being applied even with double sizes of the

time step, will reduce the global errors approximately three times.
In view of equations (9) and (15), more explicit expressions for the single-step

propagation of position and velocity from time t to t + ∆t within the optimized
VV-like algorithm are:

rI = r(t) + ξv(t)∆t ,

vI = v(t) + f [rI]∆t/(2m) ,

rII = rI + (1 − 2ξ)vI∆t ,

v(t+ ∆t) = vI + f [rII]∆t/(2m) ,

r(t+ ∆t) = rII + ξv(t+ ∆t)∆t , (21)

whereas the optimized PV-like algorithm (when A ↔ B in equation (15)) reads:

vI = v(t) + ξf [r(t)]∆t/m ,

rI = r(t) + vI∆t/2 ,

vII = vI + (1 − 2ξ)f [rI]∆t/m ,

r(t+ ∆t) = rI + vII∆t/2 ,

v(t+ ∆t) = vII + ξf [r(t+ ∆t)]∆t/m , (22)

where the parameter ξ should take its optimal value ξ0 (see equation (19)), and rI,
rII, vI, and vII are the auxiliary quantities denoting positions and velocities of all
particles in intermediate stages.

The algorithms are simple, require only slight modification with respect to the
original Verlet versions, and can be easily implemented in the existing program
codes.

3.2. Forest-Ruth-like algorithms of the fourth order

The fourth-order (K = 4) algorithm by Forest and Ruth (FR) [5] is reproduced
from equation (6) at P = 4 as

e(A+B)∆t+O(∆t5) = eAθ ∆t
2 eBθ∆teA(1−θ)∆t

2 eB(1−2θ)∆teA(1−θ)∆t
2 eBθ∆teAθ ∆t

2 (23)
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with a1 = a4 = θ/2, a2 = a3 = (1 − θ)/2, b1 = b3 = θ, b2 = (1 − 2θ), b4 = 0,
c1 = c2 = c3 = c4 = 0, and θ = 1/(2 − 3

√
2) ≈ 1.3512.

Let us consider now an extended decomposition scheme of the fourth order by
allowing P to exceed the necessary minimum (P = 4) by unity, i.e., letting P = 5.
Remember that we cannot choose the number P to be too big, because this results in
a too large number, namely P −1, of expensive force recalculations. Choosing P = 5
we just hope to reduce the truncation errors significantly with a little additional
computational cost, rather than to increase the order of the decomposition scheme
(note that sixth-order integrators are derivable [4] beginning from P = 8).

For P = 5, the extended decomposition can be presented in the form

e(A+B)∆t+O3∆t3+O5∆t5+O(∆t7) =

= eBξ∆teA(1−2λ)∆t
2 eBχ∆teAλ∆teB(1−2(χ+ξ))∆teAλ∆teBχ∆teA(1−2λ)∆t

2 eBξ∆t (24)

following from equation (6) with a1 = 0, b1 = b5 = ξ, a2 = a5 = (1 − 2λ)/2,
b2 = b4 = χ, a3 = a4 = λ, c1−5 = 0, and b3 = 1 − 2(χ + ξ). Here the symmetry of
time coefficients and the condition

∑P
p=1 ap =

∑P
p=1 bp = 1 have already been taken

into account. The fourth-order conditions now read

α(ξ, λ, χ) = − 1

24
+ λ2χ +

ξ

4
= 0 ,

β(ξ, λ, χ) = − 1

12
+ λχ(1 − χ− 2ξ) +

ξ

2
− ξ2

2
= 0 . (25)

Equation (25) provides the cancellation (O3 = 0) of third-order truncation uncer-
tainties (see equation (11)) and thus describes a whole family of symplectic time-
reversible integrators of the fourth order.

A particular member of the above family can be obtained by choosing the corre-
sponding values for ξ, λ, and χ. As far as there are three parameters and only two
constraints (see equation (25)), one of these parameters, ξ say, can be treated as a
free one. Then, for example, putting ξ = 0, equation (24) reduces to the original
FR algorithm (23). The extended (when ξ 6= 0) propagation will require already
four, instead of three, force recalculation per time step. However, having a room in
varying ξ, we can overcompensate the increased computational efforts by minimizing
the fifth-order truncation uncertainties O5∆t

5.
In order to show this, let us consider explicit expressions for the γ-multipliers.

They are:

γ1 =
7

5760
− λ2χ

12

(1

2
− λ2

)

− ξ

192
,

γ2 =
1

480
− λχ

2

( 1

12
− λ

6
+ λ2χ+ λξ − χ

12
− ξ

6

)

− ξ2

24
,

γ3 =
1

360
− λ2χ

(1

6
− λ

6
− λχ

3
+
λξ

3
− ξ

2

)

− ξ

48
+
ξ2

24
,

γ4 =
1

120
− λχ

(1

6
− λ

2

[1

6
+
χ

2
− χ2 − χξ − ξ + ξ2

]

−χ
6

+
χξ

2
− 5ξ

6
+ ξ2

)

− ξ

16
+

7ξ2

48
− ξ3

8
.
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Then the norm of O5 (see equation (12)) is

γ(ξ, λ, χ) =
√

γ2
1 + γ2

2 + γ2
3 + γ2

4 , (26)

and the global errors will behave as

Γ4(ξ, λ, χ,∆t) = γ(ξ, λ, χ)∆t4 . (27)

The optimization of the extended propagation (24) with respect to time coeffi-
cients ξ, λ, and χ can be carried out by finding the global minimum for the function
γ(ξ, λ, χ), provided α = 0 and β = 0, i.e., solving the system of equations











α(ξ, λ, χ) = 0 ,

β(ξ, λ, χ) = 0 ,

γ(ξ, λ, χ) = min (global) .

(28)

The result within sixteen significant digits is

ξ = +0.1644986515575760E+00

λ = −0.2094333910398989E−01

χ = +0.1235692651138917E+01 (29)

with the global minimum γEFRL
min ≈ 0.00065, where the abbreviation EFRL refers

to the extended Forest-Ruth-like scheme (24). At the same time, the value of γ
corresponding to the usual FR integration (23) is equal only to γFR ≈ 0.028. We
see, therefore, that applying the extended integration allows one to decrease the
truncation errors approximately γFR/γEFRL

min ≈ 43 times. Taking into account that
such a decrease has been achieved by increasing the number of force evaluations
per step from three to four, the extended propagation must be performed with step
sizes which are a factor of 4/3 higher than those of the FR algorithm, in order to
provide the same number of total force recalculations during the fixed overall interval
of integration. Thus, we will come to more efficient calculations if the inequality
Γ4

EFRL
min (4∆t/3) < Γ4

FR(∆t) is fulfilled. Simple computations show

Γ4
EFRL
min (4∆t/3)

Γ4
FR(∆t)

≈ 0.073 , (30)

so that the global errors can be reduced approximately 15 times with respect to the

FR integration without spending any additional computational costs.

3.3. Classification of schemes through 11 stages

The decomposition schemes of higher orders and with larger stage numbers can
be derived and optimized in a similar way as the above. Some of them have been
reported in our recent papers [33,34,37]. Herein, the optimization within the Suzuki
composition approach [14] was considered as well [33]. In this paper we present
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Table 1. The complete family of self-adjoint decomposition algorithms with up
to eleven stages

Algorithm Order nf ng Err3 Err5 Err7 Efficiency Remarks No.

BAB 2 1 0 0.0932 .00913 .00132 10.7 ?? [21,22] 1
ABA 2 1 0 0.0932 .00911 .00134 10.7 ?? [22] 2
CAC 2 1 1 0.0833 .0134 .00224 1.3 New 3
ACA 2 1 1 0.0417 .00648 .000725 2.7 ? New 4

BABAB(a) 2 2 0 0.00855 .00103 .000110 29.2 ??? New 5
ABABA 2 2 0 0.00855 .00106 .000106 29.2 ??? New 6
CABAC 4 2 1 0 .00334 .000272 1.2 ? New 7
BACAB 4 2 1 0 .000713 .0000630 5.5 ?? [15,18] 8
CACAC 4 2 2 0 .000595 .0000483 1.3 ? New 9
ACACA 4 2 2 0 .000715 .0000559 1.1 ? [15,18] 10

BABABAB 4 3 0 0 .0383 .0126 .32 [5] 11
ABABABA 4 3 0 0 .0283 .00630 .44 [5] 12

CABABAC 4 3 1 0 .000855(b) .0000224(b) 1.9 ?(b) [30]/New 13

ABACABA 4 3 1 0 .000141(b) .0000104(b) 11.3 ??(b) [18]/New 14
BACACAB 4 3 2 0 .0000443 .00000371 9.4 ?? New 15
ACABACA 4 3 2 0 .0000823 .00000912 5.1 ?? New 16
CACACAC 4 3 3 0 .0000167 .00000574 9.1 ?? New 17
ACACACA 4 3 3 0 .0000123 .00000491 12.4 ?? New 18

BABABABAB 4 4 0 0 .000654 .0000645 6.0 ?? New 19
ABABABABA 4 4 0 0 .000610 .0000456 6.4 ?? New 20
BABACABAB 4 4 1 0 .0000634 .00000511 12.2 ?? New 21
CABABABAC 4 4 1 0 .000294 .0000129 2.6 ? New 22
CABACABAC 4 4 2 0 .00000368 .00000679 66.3

???
New 23

BACABACAB 4 4 2 0 .00000649 .00000123 37.6 ??? New 24
ABACACABA 4 4 2 0 .0000323 .00000171 7.6 ?? New 25
ACABABACA 4 4 2 0 .0000464 .00000541 5.3 ?? New 26
CACABACAC 4 4 3 0 .00000605 .0000104 16.5 ?? New 27

CACACACAC(c)

≡ 6 4 3 0 0 .00150 .00067 New 28
BACACACAB
ACACACACA 4 4 4 0 .00000312 .00000227 15.5 ?? New 29

BABABABABAB 4 5 0 0 .0000270 .00000272 59.3 ??? New 30
ABABABABABA 4 5 0 0 .0000518 .0000173 30.9 ??? New 31
CABABABABAC 4 5 1 0 .0000165 .00000631 25.2 ??? New 32
ABABACABABA 4 5 1 0 .0000121 .00000537 34.4 ??? New 33
BACABABACAB 4 5 2 0 .00000320 .00000156 47.6 ??? New 34
BABACACABAB 4 5 2 0 .0000132 .00000351 11.5 ?? New 35
ABACABACABA 4 5 2 0 .00000127 .00000224 120.0 ??? New 36
ACABABABACA 4 5 2 0 .0000117 .00000483 13.0 ?? New 37
CABACACABAC 6 5 3 0 0 .0000147 .0384 ?? New 38
CACABABACAC 6 5 3 0 0 .0000264 .0214 ? New 39
ACABACABACA 6 5 3 0 0 .00000607 .0930 ??? New 40
ABACACACABA 6 5 3 0 0 .000146 .0039 New 41
BACACACACAB 6 5 4 0 0 .00000366 .0566 ?? New 42
ACACABACACA 6 5 4 0 0 .0000139 .0149 ? New 43
CACACACACAC 6 5 5 0 0 .00000249 .0353 ?? New 44
ACACACACACA 6 5 5 0 0 .00000299 .0294 ? New 45

(a)Particularly outstanding algorithms are shown by the bold font
(b)The values corresponding to new algorithms
(c)This nine-stages algorithm is, in fact, of the sixth order [34]
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only the final results with brief comments to the most important cases. All the
decomposition algorithms, obtained by us within up to S = 11 stages, are collected
in table 1.

In our classification, for each algorithm introduced we point out the order K
of the integration as well as the numbers nf and ng of force and force-gradient
evaluations per time step. The designations Err3, Err5, and Err7 relate to the
norms d, γ, and ζ =

∑10
i=1 ζi

2 of third-, fifth- and seventh-order truncation er-
rors, respectively (see equations (11)–(13), (17), and (26)). Note that the number
nf = P − 1 = (S + 1)/2 − 1 of force recalculations is directly connected with the
number S = 2P − 1 of stages. The maximal possible value of ng is, thus, equal
to nf . The minimal value is equal to zero and can be achieved when all the coeffi-
cients cp = 0 are equal to zero as well. The latter case will correspond to a scheme
belonging to the non-gradient class. The force-gradient class will be filled up with
algorithms having nonzero numbers ng. Different numbers ng will lead to different
decomposition variants within the same value of S. In addition, we distinguished two
versions, namely velocity and position ones, which are related to the first (a1 = 0)
and second (bP = cP = 0) type of boundary self-adjoint constraints.

The efficiency of the algorithms has been measured in terms of the quantity

Eff(K) =
1

(nf +Gng)KErrK+1

(31)

at G = 2, where ErrK+1 is the leading error coefficient (i.e. Err3, Err5, or Err7, in
dependence of the order K = 2, 4, or 6). The weight G reflects the fact that one
gradient evaluation requires more (in factor G) processor time than that necessary
for one force calculation. Each algorithm has been presented in an abbreviated form,
so that the letters A and B correspond to the exponential operators exp(Aap∆t) and
exp(Bbp∆t), respectively, whereas the letter C denotes exp(Bbp∆t + Ccp∆t3). The
optimized values for time coefficients {ap, bp, cp} can be found in our quite recent
paper [37]. They have been obtained using the computer algebra packages, Maple 6
and Mathematica 4 (the two packages have been applied to ensure the correctness
of the results and to minimize transcription mistakes). Each group of algorithms
corresponding to the same number (S = 3, 5, 7, 9, and 11) of stages is separated by
horizontal lines. Within the same group, the algorithms are allocated in the order
of increasing of computational efforts. At the same values of nf and ng, the velocity
versions (where the letters C or B, but not A, appear first) are written first as well.
When all these parameters coincide among themselves, the preference is given to
more precise schemes (with smaller values for the leading error coefficient, i.e. with
higher efficiency).

It can be seen that within 11 stages there are 46 possible decomposition vari-
ants which lead to 45 (10 non-gradient plus 35 force-gradient) different algorithms
overall (it has been established that the scheme CACACACAC actually reduces to
BACACACAB, because the cancellation of fifth-order truncation errors is reached
only when c1 = 0). Among them, 4 non- plus 4 force-gradient integrators were known
previously (see the references in the remarks to table 1). All other 37 schemes are
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new. According to the efficiency, the algorithms have been categorized using a three-
star classification (the worst with no star and the best with 3 stars). Some of the
integrators are particularly outstanding (they are marked by the bold font) be-
cause they lead to the most efficient computational scheme within a given order.
For instance, the five-stages non-gradient algorithms (equation (15)), labelled by
No. 5 and 6 in table 1, are the best among second-order decomposition schemes.
The well-known Verlet integrators (equation (14)) No. 1 and 2, which are used in
the majority of molecular dynamics simulations, are obviously worse (see also sub-
section 3.1). An interesting situation is observed in the fourth-order decomposition
schemes. As we can see, the previously known seven-stages integrator by Forest and
Ruth (equation (23)) No. 12 results in the worst (with no star) integration. The
optimized nine-stages EFRL scheme No. 19 (equation (24)), described in subsection
3.2, is much better (two stars) but not the best. The best integrator of the order
four is No. 36 and belongs to the gradient class with eleven stages. It allows to
reduce the numerical uncertainties up to 120/0.32 ≈ 375 times at the same overall
computational costs. The algorithm No. 23 leads to a similar reduction of numerical
errors and appears to be the best within a nine-stages group. The scheme No. 30
also exhibits an equivalence in the efficiency and should be considered as the best
within the non-gradient class. Finally, for the order six, the optimal integration can
be carried out using the eleven-stages algorithm under No. 40. Its efficiency is higher
by a factor of 0.0930/0.00067 ≈ 140 with respect to the worst sixth-order algorithm
under No. 28. We see, therefore, that the best algorithms at each order considered
belong to extended groups (where the number of stages exceeds the necessary mini-
mum). Moreover, the efficiency of these new algorithms is higher with respect to the

known schemes in factors from 3 up to 375 for orders 2 to 6.

It should be pointed out that formula (31) can be used to compare the algorithms
of the same orders only. In view of the structure of this formula it follows that the
relative efficiency of two algorithms is determined at a given K as the ratio of preci-
sions which can be achieved during the integration within the same computational
cost. The precision is introduced as the inverse to numerical uncertainties, i.e. as
1/Err. The leading term of these uncertainties behaves like Err(K) = CK ErrK+1∆t

K ,
where CK is the parameter which depends on the order K, on the system under con-
sideration and on the measured quantity. For the same value of K, such a parameter
is cancelled when determining the relative efficiency of one integrator with respect
to another one. When considering algorithms of different orders, K and K +M say,
one obtains that the relative efficiency is CK+M

CK
Eff(K)/Eff(K+M). It depends not only

on the norms ErrK+1 and ErrK+M+1 of numerical uncertainties but also on the factor
CK+M/CK. The last factor is not universal and cannot be evaluated theoretically.
It should be investigated directly in simulations for each concrete system, where the
final decision concerning the preference of higher-order algorithms over lower-order
ones or vise versa can be given.

With the increase of the number of stages above 11, the number of decomposition
variants increases too rapidly, so that the performance of a complete classification
at S > 11 becomes difficult. Moreover, sufficiently high stage numbers will result
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in very cumbersome systems of non-linear order conditions. So that we may come
to an unresolvable technical problem when trying to handle such conditions. Our
investigations [34] have shown that because of the restricted capabilities of modern
computers, the maximal number of stages, which can still be handled within the
direct decomposition approach, is limited to 23. This corresponds to force-gradient
algorithms of the order 8. Combining the decomposition method with an advanced
composition technique allows us to increase the overall order up to 16. Note that in
the earlier studies such extremely high-order algorithms were derived using the crude
iterative procedure [27]. As has been demonstrated [34], our composition technique is
better in efficiency by factors 25 to 1000 for orders 8 to 12, respectively. For orders 14
and 16, the advanced composition schemes, at considerably smaller computational
costs, permit to reduce the numerical uncertainties up to 100 000 times with respect
to those of the standard iterative approach.

4. Application to molecular dynamics simulations

In order to verify our theoretical predictions presented in section 3, we have
applied the optimized Verlet- and Forest-Ruth-like algorithms to MD simulations
of a Lennard-Jones (LJ) fluid, and compared the results with those of the original
approaches. The system under consideration was a collection of N = 256 particles
interacting through a shifted LJ-like potential, ϕ(r) = Φ(r) − Φ(rc) for r < rc and
ϕ(r) = 0 otherwise, where Φ(r) = 4u[(σ/r)12 − (σ/r)6] is the genuine LJ potential.
The particles were placed in a basic cubic box of volume V = L3, and the modifi-
cation of Φ(r) with rc = L/2 ≈ 3.36σ as well as the periodic boundary conditions
have been used to exclude the finite-size effects. The simulations were performed in a
microcanonical ensemble at a reduced density of n∗ = N

V
σ3 = 0.845 and at a reduced

temperature of T ∗ = kBT/u = 1.7. All the runs were of the length in l = 10 000 time
steps and were started from an identical well equilibrated initial configuration ρ(0).
The precision of the algorithms was measured in terms of the relative total energy
fluctuations E = 〈(E−〈E〉)2〉1/2/|〈E〉|, where E = 1

2

∑N
i=1mvi

2 + 1
2

∑N
i6=j ϕ(rij) and

〈 〉 denotes the microcanonical averaging. Note that if the equations of motion could
be solved exactly, the above fluctuations should vanish, because in microcanonical
ensembles the total energy is an integral of motion, E(t) = E(0). So that during ap-
proximate MD integrations, smaller values of E will correspond to a better precision
in evaluation of phase trajectories.

The total energy fluctuations obtained in the simulations at the end of the runs
for four (fixed within each run) dimensionless time steps, ∆t∗ = ∆t(u/mσ2)1/2 =
0.01, 0.005, 0.0025, and 0.001, are shown in figure 1 as depending on free parameter
ξ. The subsets (a) and (b) of this figure correspond to the VV- (see equation (21))
and PV- (see equation (22)) like integration, respectively. As can be seen, all the
dependencies E(ξ,∆t) have one minimum which locates at the same point ξ ≈
0.19 independently of the size ∆t of the time step. This point coincides completely
with the minimum at ξ0 (equation (19)) of function d(ξ) (equation (17)) which is
included in figure 1 as well (dashed curves in the subsets). Moreover, the energy
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fluctuations E(ξ,∆t) appear to be proportional to the norm Γ2(ξ,∆t) of global
errors (see equation (18)), and the coefficient of this proportionality almost does not
depend on ξ and ∆t. In addition, at each step size considered the energy fluctuations
decrease at the minimum more than ten times with respect to those at ξ = 0, that
is in agreement with our predicted value d(0)/d(ξ0) ≈ 11.

The MD results, obtained for the total energy fluctuations by the optimized
VV- and PV-like algorithms (at ξ = ξ0), are presented in figure 2. The calculated
values are functions of the length of the simulations and are plotted by curves
marked as OVV and OPV, respectively. For the purpose of comparison, the results
corresponding to the original VV and PV integrators are also drawn there (curves
marked as VV and PV). Note that for the original integrators, the time step within
each subset was chosen to be always twice smaller than that of the optimized versions
(this condition is necessary to provide the same number of force recalculations during
the same observation time), namely, ∆t∗ = 0.005, 0.0025, 0.00125, and 0.0005 (see
subsets (a), (b), (c), and (d), respectively). Note also that within the original Verlet
algorithms, the higher-orders truncation uncertainties become too big at step sizes
∆t∗ > 0.005. In particular, then the ratio of the total energy fluctuations to the
fluctuations in potential energy (the standard ratio for estimating the precision of
the calculations) appears to be more than a few per cent. For this reason, such large
step sizes cannot be used in precise MD simulations and, thus, are not considered
in the present study.

As we see in figure 2, both the original (VV and PV) and optimized (OVV and
OPV) algorithms exhibit very good stability properties. No systematic deviations
in the total energy fluctuations can be observed for all the integrators. Instead,
in each of the cases considered the amplitude of these deviations tends to its own
value which does not increase with the further increase of the length of the simula-
tions. However, this value appears to be significantly larger for the original versions
VV and PV. On the other hand, using the optimized OVV and OPV algorithms
even with double sizes of the time step allows us to decrease the unphysical ener-
gy fluctuations approximately by a factor of three. This is in an excellent accord
with our theoretical prediction (20). Note also that the OPV algorithm is slightly
better in energy conservation than its OVV version (whereas the VV integrator is
better with respect to the PV counterpart). Furthermore, in view of the structure
of equations (21) and (22), the OPV algorithm is more convenient when averaging
macroscopic quantities. In particular, then the interparticle potentials can be cal-
culated at the end of time steps simultaneously with the interparticle forces within
the same loop, thereby increasing the time efficiency of the computations.

A similar pattern has been observed within the fourth-order integration, where
the equations of motion were solved using the extended decomposition scheme (24).
The total energy fluctuations, obtained in this case at the end of the runs, are
plotted in figure 3 as functions of the parameter ξ for three dimensionless time
steps, ∆t∗ = 0.00125, 0.0025, and 0.005. Note that the two other time coefficients
λ(ξ) and χ(ξ), arising in the decomposition (24), are connected with ξ according
to the order condition (25), so that γ(ξ, λ(ξ), χ(ξ)) ≡ γ(ξ) (see equation (26)).
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Figure 1. The total energy fluctuations obtained in the MD simulations for dif-
ferent values of free parameter ξ at four reduced time steps, ∆t∗ = 0.01, 0.005,
0.0025, and 0.001, using the VV- (subset (a)) and PV- (subset (b)) like integra-
tion (equations (21) and (22), respectively). The simulation results are presented
by circles connected by the solid curves. The function d(ξ) (see equation (17)) is
plotted in both subsets by the dashed curve.

Figure 2. The total energy fluctuations as functions of the length of the MD
simulations performed using the optimized VV- (solid curve marked as OVV)
and PV- (dashed curve, OPV) like algorithms, as well as the original VV (solid
curve, VV) and PV (dashed curve, PV) integrators. The results corresponding to
different values of the time step, namely, ∆t∗ = 0.01 and 0.005, 0.005 and 0.0025,
0.0025 and 0.00125, as well as 0.001 and 0.0005 are presented in subsets (a), (b),
(c), and (d), respectively.
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Figure 3. The total energy fluctuations obtained in the MD simulations with
the EFRL integration (equation (24)) for different values of free parameter ξ at
three fixed time steps, ∆t∗ = 0.00125, 0.0025, and 0.005. The simulation results
are presented by circles connected by the solid curves. The function γ(ξ) (see
equation (26)) is plotted by the dashed curve.

Figure 4. The total energy fluctuations as functions of the length of the MD simu-
lations performed using the optimized EFRL algorithm (equations (24) and (29))
as well as the original FR integrator (equation (23)). The results corresponding
to different values of the time step, namely, ∆t∗ = 0.00125 and 0.0009375, 0.0025
and 0.001875, 0.005 and 0.00375, as well as 0.01 and 0.0075 are presented in
subsets (a), (b), (c), and (d), respectively.
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Again, as in the case of second-order integrators (see figure 1), all the functions
E(ξ,∆t) display the global minimum at the same point on the ξ-axis, namely, at
ξ ≈ 0.164, independently of ∆t. Such a point coincides with the minimum given by
equation (29) for the function γ(ξ) (which is presented in figure 3 by the dashed
curve). This is so because the fluctuations E(ξ,∆t) prove to be proportional to the
norm Γ4 = γ∆t4 (equation (27)) of fourth-order global errors. In addition, these
fluctuations decrease at least 40 to 50 times with respect to those at ξ = 0, that is
close to our predicted value γFR/γEFRL

min ≈ 43.

The EFRL-energy fluctuations obtained in the optimization regime (29) are pre-
sented in subsets (a), (b), (c), and (d) of figure 4 as depending on the length of
the simulations for the time steps ∆t∗ = 0.00125, 0.0025, 0.005, and 0.01, respec-
tively. The corresponding dependencies related to the original FR integrator (see
equation (23)) are shown in this figure as well. Within the FR integration, the time
step for each subset was by a factor of 4/3 smaller than that of the optimized ver-
sion, i.e., ∆t∗ = 0.0009375, 0.001875, 0.00375, and 0.0075 (then the total number
of force recalculations during a given observation time t � ∆t is the same for the
both approaches). As can be easily seen, the optimized EFRL algorithm leads to a
much lower (15 to 25 times) level of numerical uncertainties than the original ver-
sion, despite the usage of larger time steps. This is in a good agreement with our
estimations obtained in subsection 3.2 (see equation (30)).

Some other fourth-order algorithms presented in table 1, including the force-
gradient versions, have been applied to MD simulations as well [34,37]. The esti-
mated and actual efficiencies obtained for such algorithms were also close between
themselves as was found for the cases considered above.

5. Conclusion

In the present study, a complete classification of all analytically integrable self-
adjoint decomposition algorithms which include up to 11 stages has been given.
The algorithms were consequently derived and the optimization processes used were
described. As a result, we have found 37 (6 non-gradient plus 31 force-gradient) new
schemes in addition to 8 (4 non- and 4 force-gradient) previously known integrators.
It has been predicted theoretically and confirmed in our MD simulations that some of
the new algorithms are particularly outstanding. They may lead to a much superior
integration of the equations of motion in comparison with decomposition schemes
widely used in the literature, such as, for example, the well-known Verlet and Forest-
Ruth integrators. In particular, it has been shown that the new Verlet-like algorithms
proposed should be considered as the best ones with respect to time efficiency among
all possible decomposition integrators (with single splitting of the Liouville operator)
of the second order. All the algorithms introduced are explicit (i.e., do not require
any iteration), simple in implementation, and produce stable solutions which (like
exact phase trajectories) are symplectic and time reversible.

The approach presented can also be adapted for the optimization of the integra-
tion of motion in more complicated systems, where splitting of the Liouville operator
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into more than two parts may pay dividends. The examples are multi-component
fluids and systems with long-range interactions, when characteristic time scales of
the dynamic processes can differ by many orders from each other. In some cases,
e.g. systems with orientational degrees of freedom, additional splitting may be nec-
essary to obtain analytically integrable parts. These and related problems will be
considered in our further investigations.

Part of this work was supported by the Fonds zur Förderung der wissenschaftlichen
Forschung under Project No. P15247. I.M. and I.O. thank the Fundamental Re-
searches State Fund of the Ministry of Education and Science of Ukraine for support
under Project No. 02.07/00303.
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