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Recently we proposed the microscopic approach to the description of the
phase behaviour and critical phenomena in binary fluid mixtures. It was
based on the method of collective variables (CV) with a reference system.
The approach allowed us to obtain the functional of the Ginzburg-Landau-
Wilson (GLW) Hamiltonian expressed in terms of the collective variables
(“density” variables). The corresponding set of collective variables included
the variable connected with the order parameter. In this paper, based on
the previous results, we construct the GLW Hamiltonian in the phase space
of the “field” variables qb,; (fluctuating fields) conjugate to the “density” vari-
ables. We apply the obtained GLW functional to the study of both the binary
symmetrical mixture and the restricted primitive model. In the former case
we consider the Gaussian approximation only and show that the obtained
results are the same as those found previously using the CV method. In the
latter case we calculate the phase diagram taking into account the powers
of ¢; higher than the second one.
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1. Introduction

Nowadays the theory of phase transitions and critical phenomena is well devel-
oped in general. It enables us to obtain both universal and non-universal properties
for many model systems. However, a number of questions still remains open, for
instance, a criticality of ionic fluids, a Yang-Yang anomaly and others. In order to
answer these questions it is important to obtain the explicit form of an effective
Ginzburg-Landau-Wilson (GLW) Hamiltonian with coefficients related to the mi-
croscopic parameters of the system. While for lattice models this task does not pose
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special difficulties, the case of continuous systems is more complicated from a math-
ematical point of view. Particularly, the latter case was studied in [1-5]. However,
these considerations either did not go beyond the mean field approximation [2,3] or
just took into account Gaussian fluctuations [1,4,5].

Another microscopic approach to the study of phase transitions was proposed in
the late 80ies. First it was applied to a 3D Ising model [6] and then it was developed
for a simple fluid near the gas-liquid critical point [7-9]. This theory has its origin
in the approach based on a functional representation of a partition function in the
collective variables (CV) space [10,11]. Its particular feature is a choice of the phase
space in which the system is considered. Among the independent variables of this
space there should be the ones connected with the order parameters. This phase
space is formed by a set of CV. Each of them is a mode of density fluctuations cor-
responding to the specificity of the model under consideration. In particular, for a
magnetic system, the CVs are the variables connected with spin density fluctuation
modes, while for a one-component fluid they are connected with particle density
fluctuation modes. This approach allows one to determine, on microscopic grounds,
the explicit form of the effective GLW Hamiltonian and then to integrate the parti-
tion function in the neighbourhood of the phase transition point taking into account
the renormalization group symmetry. As a result, non-classical critical exponents
and analytical expressions for thermodynamic functions are obtained [6,9]. More
recently this theory has been developed for a binary fluid mixture [12-17].

In contrast to lattice systems, the description of phase transitions in continuous
systems has a number of the important peculiarities. On the one hand, as one usu-
ally does in the liquid state theory, we should distinguish a reference system (RS)
describing the behaviour at short distances. This will allow us to take into consider-
ation the short-range and the long-range interactions simultaneously. On the other
hand, the grand canonical ensemble (GCE) should be used in order to describe the
processes relating to the phase transitions in multi-component fluids in which the
composition fluctuations play a crucial role (e.g., the gas-gas and liquid-liquid equi-
libria in binary fluid mixtures). The task of the development of the CV method for
the case of the GCE is also caused by the problem of selecting the CV phase space
which includes the variable connected with the order parameter.

The set of CV can be called “density” variables. The proper choice of the CV
phase space is very important for determining the order parameter appearing in
complex systems below the phase transition point. When the “density” variable
connected with the order parameter is known we can represent the GLW Hamil-
tonian in the phase space of the “field” variables (fluctuating fields) conjugate to
the “density” ones. This is the main purpose of the present paper. In section 2 us-
ing the Hubburd-Schofield method [18] we obtain the functional representation of a
grand partition function of a multi-component continuous system in the phase space
of “field” variables. A two-component system is considered in section 3. The fields
conjugate to the CV connected with the order parameters are determined here. The
case of the binary symmetrical fluid is discussed. In section 4 we use this approach
to the study of a restricted primitive model (RPM). The terms of the order higher
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than the second one in the GLW Hamiltonian are taken into account. As a result,
the phase diagram is obtained which demonstrates both the gas-liquid and charge
ordering phase transitions. Section 5 contains some concluding remarks.

2. Functional representation of a grand partition function of a
multi-component continuous system

Let us consider a classical m-component continuous system of interacting parti-
cles consisting of N,, particles of species a;, N,, particles of species as, ... and N,
particles of species a,,. The system is in volume V' at temperature 7T'.

The interaction potential between particles has a pairwise additive character and
may be presented as a sum of two terms:

U'yé(r) = 77075 (T) + @75(7’),

where 1),5(r) is a potential of a short-range repulsion that characterizes the mutual
impermeability of particles. In the simplest case it can be chosen as an interaction
between the two hard spheres 0., and o55. ®.5(r) is an attractive part of the potential
which dominates at large distances.

Let us start with a grand partition function

== Z Z Z ﬁ j\[l/dv ) exp {——ZZU% Tij ], (2.1)

Na; =0 Ngy,=0 Nam—O’Y a ¥o  ij

where (dI') =[], dl'y,, d['x, = di{'d7’ ... d7y is an element of the configurational
space of the yth species; z, is the fugacity of the yth species: z, = exp(ﬁu;),
1, = py + B In[(2rm, 8712 /h%); 3 = 1/kgT, kg is the Boltzmann constant,
T is temperature; m.,, is mass of the yth species, h is the Planck constant. !l is
determined from

OlnZ=
= (N.),

where (INV,) is the average number of the yth species.
Let us introduce operators DF

which are Fourier transforms of the particle number density operators. Now we write
the attractive part of the potential in the form

Z Dy5(rij) Z CI)’Y5 pk,ﬂ/ ks P0,0+5),
i#]

where &)75(]{]) is the Fourier transform of ®.5(r;;) Then we can represent = as

y (2.2)

(11
[1]
[1]

RS
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Here =g is the grand partition function of the RS

Am, eX (0)
ZRs = Z Z Z HP—N)/(dF ) €xp [——ZZW T@J]’

Nq;=0 Ngy=0 Nam—OW ai v¥5  ij
(2.3)

where uﬁfo) is the chemical potential of the «vth species in the RS. =; is as follows
[19]:

- < R 5 R
=1 = (exp{f Z ,Ugl)PO,y oV Z Z 7p7,;75}>Rg . (2.4)
=1 7,8

k
Here (...)rs means the average over RS. The chemical potential ,ugl) =l — ,u(o)
is determined from the equation
Oln El
ot

We assume the thermodynamic and structural properties of the RS to be known.
In the matrix representation (2.2)—(2.4) can be written in the form

= <Nv>~

= = Ens(exp{Ba"po + = Z P_ih)Rs (2.5)

where p;: denotes a column-vector

ﬁE,l
. P2
Pg = : ;
Pim
,[L(l) denotes a row-vector
A = (1", )
and G(k) is a symmetrical (m x m) matrix with elements a.5(k) = —(8/V)®,5(k).

We perform in (2.5) the Hubburd-Stratonovich transformation [20]

/ H dz; exp(— ZL‘Z‘V;;IZEJ‘ + y;x;) = const x exp(y;Vi;y;), (2.6)

oo =1

where summation over repeated indices is implied, and V is any symmetric positive
matrix. As a result, we obtain

= = Eno([ICn) et BE): [ f IT TTdox.
i —00 “0o =1k
xeXp{——ZB ngg +> k((ik"F(sgﬁﬂ(l))})RSa (2.7)
E
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where (513 is a row-vector with elements éﬁv‘ B(k) denotes an inverse matrix to (k)
with elements b;;.

After transformation qg;g = qglg + 5135/1(1) in (2.7) we obtain

= SnsTl(20) et B / / 1 ] 4%,

m=1

(1]

—00

XeXp{——ZB O+ BV B(0)d
%3() eXpr ;2 (2.8)

Here (ﬁ% has a meaning of a “field” variable conjugate to a “density” variable p;.

We can present the expression (exp > ﬁEQAﬁ’E)RS in the form of a cumulant expan-
sion [21,22]:

(0 S edihns = o0 35 Dul (29)
n=1
where 1
Duld) = = 5 Moy F)O B O (2.10)
1ok
95%(]21, e En) is a symmetrical m x m X ... X m matrix (see Appendix A).

In general, the dependence of Sﬁxl"'%(lgl, cee En) on wave vectors El, cee En is
complicated. Since we are interested in the critical properties, the small-k expansion
of the cumulants can be considered. Hereafter we shall replace 90U 7 (ky, ..., ky) by
their values in the long-wavelength limit 9t)~7(0,...,0). The recurrence formulas

for 9)1-7(0,...,0) are obtained in [23].
As a result, we can present (2.8) in the form

= = =w]fen @Bt [ [ [T,
i —00 —o0 M=1 g

3. A two-component system

Let us consider a classical two-component system of interacting particles consist-
ing of N, particles of a species and N, particles of b species. We pass to new variables
gbl;f and ¢ in (2.8)~(2.10) by means of the orthogonal linear transformation

R TP 1
O = 5 Gkat O 0p = 50k~ Ry
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As a result, we obtain for =

— Exs[J(2m) 2(det BR)? [ (d6)(a67)

(1]

« exp{_1 2 b5 BB + M*EE + Mgy
_1 Z R)GEGT .+ 2U(k) DD+ W(k)$- 4]
+ ZDn (6,07} (3.1)
n=1

Here the following notations are introduced:
M= %[ﬁué”(?(()%ra(@))+ﬁu§f)(17(0) — U(0))], (3:2)
M~ = [ﬁu JOW(0) +U(0)) — Buy” V() — U(0))), (3.3)

V(k) = (bir(k) + baa(k) + 2015(k)) /2,
W(k) = (bu(k) + baa(k) — 2b1a(k)) /2,
k) —

(k) = (bu(k) — ba(k))/2, (3.4)
o 1 . B
Di(@%,67) = —= (a5 +MVeg), (3.5)
A 1 1 - o
+ 1y ©0) 7+ 2+ (1) 24+ 17—
D(6%.67) = 5 3 (M of 6 + 250k 6
k1,k2
+ M0 07 ) i, (3.6)
. . 1 1 o
Ds(9*,¢7) = gﬂzﬁ( 5 - (M85 o 6 + 3ok o b
ki...k3
(2) 54 2- o (35— 12— 7
+3IMGE b b + I Or b ) Ok, (3.7)
+ -y ©0) 74+ 2+ 14+ 1+ (D 2+ 2+ 24 71—
Dilom,07) = 31 2 () (0701, 61, 07, 0F, + 4905 67 07 7,
ki...ka
(2) 54 24 G- o (3) 14+ 2= 7= 1
TOMOp O bp Op +AMT DL O b O
+ MG 0L 0 9%,) Fruras - (3.8)

The expressions for 9") are the same as those in [14].
Let us consider the Gaussian approximation of the functional of the grand par-
tition function (n < 2 in (3.1)):

s [T(2m)7/2(det B(R)) [ (dd7)(a6)

—_
—
—

[I]
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1 YY in —_ Y /\7
x exp{—3 > Bul by + (MF+ I )of + (M + 9
7,0

~

1 . . .
—3 Z[An(k)%ﬂﬁg +2A412(k) oL ¢ + An(k)dr o]}, (3.9)
k

where

Ank) = V(&) —mP,
Agg(k) - W(k})—i)jtg),

Ap(k) = Uk)—mP, (3.10)
i) — Lol
n \/5 n

In order to determine the “field” variables conjugate to the order parameters we
diagonalize the square form in (3.9) by means of the orthogonal transformation:

Qgg = A(k)XLE + BUf)Xz,E’

op = Clk)x z+Dk)xyyz, (3.11)
where
b1 2
A(k) = . B(k) = :
" y1+06t 1+ 33
Ch) = ————, D) = ——

J1+ 32 J1+ 52

Ayg — An F \/(An — Agp)? +4A3%,
2A12 ’

Pra=—

As a result, we get for the square form
1 2
_5 Z Z Es(k)XS,EXs,fIS ’
s=1 E

where

e1a(k) = Ani (k) + Asa(k) F /(A (k) — Ass(k))? + 4A% (). (3.12)

In a general case only one of the quantities £1(k) and e9(k) is a critical one, no
matter whether the system approaches the gas-liquid or mixing-demixing critical
point [15,16].
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We pass in (3.5)-(3.8) to new variables x, i (see Appendix B). As a result, the
functional of the grand partition function (3.9) has the form

= = Zas [0 (et B2 [ () (dxe)

1
X exp{—§ Zﬁugl)bwﬁ,ugl) + (AM™* +CM )x10+ (BM™ + DM )x2p0
¥,0

n=3

13 .
=5 2o XX+ 2 Dalxaxe)}, (3.13)
s=1 pg

In order to obtain the effective GLW Hamiltonian we can follow the program
proposed in [13,16], namely: (1) to determine the critical branch e4(k) and the
ordering fields x, r connected to it; (2) to integrate over the remaining x ; (irrelevant
variables), using7the Gaussian density measure as the basic one; (3) as a result of
the integration performed in (2), to construct the functional including higher powers
of the ordering fields x| ; than the second power. As a result, we obtain the GLW
Hamiltonian with coefficients which are the known functions of the microscopic
parameters, temperature, concentration and density.

A symmetrical mixture. We consider a symmetrical binary fluid mixture (SBFM),
i.e. a system in which the two pure components “a” and “b” are identical and only
interactions between the particles of dissimilar species differ: o,, = oy = ¢ and
Do (1) = Ppp(1r) = P(1) # Pup(r). Notwithstanding its simplicity, the SBFM exhibits
all the three types of two-phase equilibria which are observed in real binary fluids,
namely: gas-liquid, liquid-liquid and gas-gas equilibria. In this case the functional of
the grand partition function (3.13) is reduced to the form

= = Zxs[[2n) VA (det BR)V? / (ddH)(de™)

1 - 4
x exp{—3 > Bub,s s + MT oy + M~y
¥,0

— 5 2 (@1(R)d 0 +e2(k)GF0TE) + 3 Du(dF.07)}, (3.14)
e n=3
where
_ 1 _ gn@
ei(k) = (k) — au (k) My,
N I —, {C) (3.15)

a(k) + ag(k)

+_ b 288"
M= V2 (<N> * a(0) +aab(0)> ’

and in (3.5)-(3.8) all cumulants M) = 0 if 4,, are odd [13].

M~ =0 (3.16)
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The nth cumulant 9 with 4, = 0 is connected with the nth structure factor
of the one-component system S,,(0) [13]:

M (0) = (N)S,(0).

Structure factors S, (0) with n > 2 can be obtained from S3(0) by means of
a chain of equations for correlation functions [24]. Cumulants with i, # 0 can be
expressed in terms of M (0) (see formulae (4.8) in [13]):

73(0)
= 2ot gy = 3po, - 2o
CTTVR o T T g

As a result, we can rewrite (3.14)—(3.16) in the form

— CZns [(d6")(dd7) exp(~036), (3.17)

(1]

where

k

A 1
C = H(27T)_1/2(det B(l{:))l/2 exp{—§ z; ﬁ,ugl)bwgﬁugl)}.
7,

H is the Hamiltonian expressed in terms of the two fluctuating fields (ﬁl;f and Qgg (in
the approximation of the ¢* model):

H = —MTof — M ¢y + = 251 )op 0+ ea(K) DL )

F1...k3
1 (95?(°)<z3f O &t ot + 6MP L dL o b
4! . 4 TE Tk ks 4 VK Ry ks kg
k‘l...k‘4
1y (4)
+ M, ¢ ¢k2¢k3 ) Ry Ryt (3.18)

The fluctuating fields (bg and Qﬁ]g are conjugate to the fluctuating (or collective)
densities, namely: pp = py , + P, and ¢ = pr,, — Py, - Lately [14], for the SBFM we
obtained the expression for the effective GLW Hamiltonian expressed in terms of the
collective variables (fluctuating densities) pi and c;. The two representations yield
the same results in the Gaussian approximation (see [13]). As was shown, in such
a system the two phase transitions can occur, namely, the gas-liquid and mixing-
demixing phase transitions. The corresponding critical temperatures are determined
from the equations (in the Gaussian approximation):

81(!{3:0):0, 82( :O):O

In the above formulas an interaction in the system was not specified. The SBFM
was studied in detail within the framework of the method of CV and the following
model systems were considered: the hard-core Yukawa system [25], the hard-core
Morse system [26] and the hard-core square-well system [14,17]. In the last case the
non-universal critical properties were studied within the framework of the ¢* model.
Below we shall use the approach proposed to the ionic fluid.
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4. Restricted primitive model (RPM)

We consider the simplest continuous model of an ionic fluid, namely, the restrict-
ed primitive model (RPM). It consists of N = N, 4+ N_ hard spheres of diameter o
with N, carrying charges +q and N_ (= N, ) charges —¢q, in a medium of dielectric
constant D. The interaction potential of the RPM has the form

U () 00, r<o n
s\T") = q; = =T4.
i ql,y)?, 7“20' ) 1

We split the potential U,s(r) into short- and long-range parts using the Weeks-
Chandler-Andersen partition [27]. As a result, we have

oo, 1r<o
¥s(r) {O, r>o ’
CI),\/(;(’I’) = 4v4s .

Dr r>ao

The Fourier transform of ®.5(r) has the form

sin x

Bp®.s(k) = 243"

x3

where % = %—qj, n= %p03 is fraction density, x = ko.

Let us start with formulas (3.14)—(3.16). One must remember that for the RPM
the transformation (2.6) has a formal character only. Thus the transition from the
SBFM to the RPM should be performed in the final formulas for thermodynam-
ic functions. For the RPM the fluctuating fields ggg and 65,5 are conjugate to the
fluctuating densities ,5% and Pz the total number density and the charge density
respectively. For this model the Gaussian approximation yields the only phase tran-
sition, connected with the charge ordering. The corresponding boundary of stability
is determined from the condition (k) = 0 or from the equation

sinx 1

T = —-24 T = —. 4.1
Ucat 5 (4.1)
As a result, the equation of the charge ordering spinodal line is obtained
. cosx*
Tc (:E 777) = _87] 2 (42)
where z* is determined from the condition
tana™ = %, (4.3)

which yields x* ~ 4.0783.
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In order to obtain the gas-liquid critical point we should take into consideration
the order terms higher than the second order terms. As it was proposed in [13,16],
we integrate in (3.17)—(3.18) (taking into account (3.15)—(3.16)) over QASIE with the
Gaussian measure density as the basic one.

We consider the integral

After the integration in (4.4)(taking into account the first term of the expansion)
we obtain

= = OC'Zgs / (dd*) exp(—BI), (4.5)

where the following notations are introduced

o = H\/i (4.6

W= Mt +5Zs2(k drot. — 3, 3 qﬁ%éég@%‘ségl_i_@_i_%
k k‘l k3
-0 3 GGt ot o0 (47)
4) L= T TR TR Tks ks k1+k2+k3+k4 .
ki...ka
M= Mt ma(), )

. 4.10
¥ (4.10)
Next, the shift is carried out in order to eliminate the cubic term in (4.7)

i

where A = —952;0)/952510).
Then (4.5)—(4.7) has the form

= = CC'C"Zxgg / (A" exp(—FF0), (4.11)
where
_ _ 2 _
C// _ _MJr mgO) _ ng Dﬁ_:(s()) _ l(mg()))4_ (4.12)
my’ 27 \m?) 8
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1 (0) 4 T4+ 4
T Z m4 (b/?; ¢E2¢E3¢E45E1+E2+/;3+E4’ (413)

. m
Mt = M++§2£m3 + o (4.14)

&k) = k) + 5 =5 (4.15)

)

The chemical potential ,u(+1 is determined from the equation

3lnEl

~—— = (N).
ot W)

Provided the terms of the fourth order in (4.13) are neglected ugrl) is equal to

o1 mPas) - LemP)3 /o)

1
3

1y =—— - . (4.16)
T 20+ joa(e) - S/
As a result, we obtain the equation for the gas-liquid spinodal curve
. mgO) mgO)
B =2 )
My my
or
2 /00 w?sinzdr_S5(0)  S3(0) (4.17)
mJo a3T* +24nsinz  ~S3(0)  S4(0)’ '

where 5,,(0) is the nth structure factor of the one-component hard-sphere system at
kE=0.

The phase diagram of the RPM (in the considered approximation) is shown
in figure 1. The curve with the maximum is the gas-liquid spinodal calculated by
(4.17).The Percus-Yevick approximation is used for S3(0). The straight line calculat-
ed by (4.2)—(4.3) corresponds to the charge ordering phase transition. The gas-liquid
critical point is located at 1)) = 0.0502 and 7. = 0.022. While the value for 77" is in
good agreement with the recent data of computer simulations [28,29] (7. ~ 0.05),
the critical density is underestimated (7. ~ 0.04).

5. Conclusions

Based on our previous studies, we develop the approach which allows one to
obtain the GLW Hamiltonian defined in the phase space of the fluctuating fields (bAE
conjugate to the fluctuating densities connected with the order parameter. We use
this approach to the study of both the SBFM and the RPM. In the former case we
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0,05

0,04

0,03

T*

0,02

0,01

0,00 T T y T T T T T T
0,01 0,02 0,03 0,04 0,05

Figure 1. The phase diagram of the RPM (see the text for the explanation).

consider the Gaussian approximation only and show that the equations obtained
for the phase instability boundaries are the same as those found in [13] within the
framework of the CV method. For the RPM we calculate the phase diagram taking
into account the powers of qglg higher than the second one. The obtained value for
the gas-liquid critical temperature correlates well with the MC simulation data.

The proposed approach can also be used in the case when both long-range
(Coulombic) and short-range (i.e., van der Waals) interactions are involved the mod-
el simultaneously. This task will be considered elsewhere.

Appendix A
Dl(é) = Z Z 93/t’lngl‘f‘,'y )
k=l
A 1
Dy(d) = o Z MY (e, l@)qs,;hm(b,gm )
) /5142 RERRE
P~ n 1 1,72
D3(¢) = § Z Z Dﬁg 7 7’73(]{:17 k:27 kj3)¢];:1771¢];2772¢]?;3,73 )

" k1koks 712,73

~ 1
Da(9) = Al Z Z ma T (ke k4)¢/¥1m¢/¥2,72¢153,73¢E474 :

Ty kg Y4

Here the nth cumulant 907 (ky, ..., k,) is connected with S, ., (k1,...,k,), the
n-particle partial structure factor of the RS, by means of the relation

m;yll..ﬁn(lgl’ e En) — n/N% o N%Sgy.ﬁn(kjl, el k”)5/51+~~+/5n ,

is a Kronecker symbol.

4]

E1++En
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Appendix B
Do) = = 3 — (0, 5w 30N X X
3lX1, X2) = 3] o (\/5)3 3 X1,k X1,k X1, /5 3 X1,k X1,k X2,k
2(2) 22(3)
+ 37X, X i, X, T 03 Xg,;aXz;;QXz,;;g) OF, +FatFa’
where

~

m = mPa 4+ 3mYA%C + 3mPac? + m{e?,
mY = mPA28+mP AAD + 2BC) + MPC(2AD + BC) + mE)¢c*D,
my = mPAB + MY BRAD + BC) + MPD(AD + 28C) + M ¢D?,
mP = mVB +3mB2D + 3mPBD? + mMP D,

1 1

E4(X1 XQ) ( th(lO)X i X1 ks X1 5. X1.E
) | 4 1,k1 A1 ko A1 ks A1 ky
4. /;:1_ — (\/5)

Lka
= (1) v (2)
+ 493T4 X1,51X1,52X17E3X2,E4 + 693?4 X1,51X1,52X27E3X2,E4
71 (3) 7 (4)
+ 49ﬁ4 X1,51X2,52X2,E3X2,E4 + m4 XQ,/% X27E2X2,53X2,E4) 5E1+E2+E3+E4 )

My = mP A+ 4mY A + 6P A%+ 4mP AC + M,
mY = MO8+ mYA2(AD + 38C) + 3MP AC(AD + BC)

+ M2 (3AD + BC) + m{Vc*D,

mP = P AB” + 20V AB(AD + BC) + MY (AD? + BC? + 4ABCD)

+2mPeD(AD + BC) + me*p?,

m? = mPAB + MY BA3AD + BC) + 3 BD(AD + BC)

+MID2(AD + 38¢C) + M eD?,

mY = QB+ 4mVBD + 6mP B2D? + 4 BD? + D,
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O.V.Patsahan

FaminbToHiaH MNH30ypra-JlaHpay-BinbcoHa pnga
0araToKOMMNOHEHTHUX HeENepepPBHUX CUCTEM:
MiKpocCKoniYHUM nipxip,

O.B.lMauaraH

[HCTUTYT ®i3nKn KoHOeHCcoBaHMXx cuctem HAH Ykpainu,
79011 JlbBiB, ByN. CBEHLLBKOrO, 1

Otpumano 13 kBiTHa 2002 p.

HepaBHO MK 3anponoHyBanmM MiKpOCKOMIYHUIA Nigxig, Ao onucy ¢pasoBux
NepexoaiB i KPUTUYHKX ABUL, B BiHAPHUX GNIOIAHNX CyMilLax, Sk 6a-
3YETbCHA HA METOAI KONEKTUBHMX 3MiHHUX (K3) 3 BMAOINEHOI CUCTEMOIO
Biafiky. Llen nioxin A03BONVB HAM OTPUMATK OYHKLIOHAN ramMisisTOHIaHa
rna3dypra-JlaHgay-BinbcoHa (IT1B), sikuii BUpaXeHuii B TepMiHax Konek-
TUBHUX 3MiHHUX (“rYCTUHHUX" 3MiHHKX). BignoBigHWiA HAGip KONEKTUBHUX
3MiHHMX BKIOYAB 3MiHHY, MOB'A3aHy 3 napamMeTpoM nopsaky. B uin ctat-
Ti, 6@3yloynChb Ha NonepeHix peaynbratax, Mu O0yoyeMo raminbToHiaH
IM1B y ¢pazoBomMy NpOCTOopi “nofboBMX” 3MiHHMUX ‘Z’AE (pnykTYIOKOYMX NO-
NiB), CNPSXEHNX 0 “ryCTUHHUX" 3MiHHMX. M1 3aCTOCOBYEMO OTPUMAHMUIA
dyHkuUioHan 1B g0 BMBYEHHS BiHAPHOT CUMETPUYHOI CyMiLli | HAKNPOCTI-
Loi ioHHOT Mogeni. B nepluomMy BunagKy My po3rnsgaemo Tinbky raycco-
Be HAONMXEHHS | NOKA3YyEMO, LLLO OTPUMAaHi pe3ynbTaTh € TaKi X K i OTpu-
MaHi paHiwe B pamkax metoay K3. B opyromy Bunanky My o64McnioemMo
¢das30By giarpamy, BpaxoBylO4M BULLLi CTEMEHI qb,; HiXX gpyra.

Kniwo4oBi cnoBa: ¢pazoBuii nepexia, ABOKOMITOHEHTHA HENEPEPBHA
cuctTema, rnapameTp rnopsiaky, GaykTyrde noae

PACS: 05.70.Fh, 05.70.Jk, 65.10.+h
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