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Abstract. The analysis of the basic features of the generalized Kildal model had been 
presented for the semiconductors without the center of symmetry and with one main 
crystal axis. It had been proved, that the Kramers’ degeneration survives only along and 
against of the direction of the main crystal axis and at point Γ  ( 0=k ) within this model 
under the condition of the absence of the center of symmetry, as rule. The Kramers’ 
degeneration is possible everywhere, although only for the band of the heavy holes like 
within Kane’s model, even under the previous condition, but only if casually takes place 
the special relation between parameters. The typical set of solutions within this model 
consists of one conductivity band ( 0≥ε ) and of three valence bands ( 0≤ε ). Each of 
them contains two spin subbands. The additional conductivity band would be possible in 
principle, but only under special condition ( 0<δ ), which is the obligatory but not 
enough condition.  
 
Keywords: energy bands, degeneration, Kramers, splitting, spin sub-bands. 
 
Manuscript received 31.03.05, accepted for publications 18.05.05. 

 
 

1. Introduction 
 
A generalization of the known Kildal model had been 
reported [1] recently. This version describes the energy 
band spectra of semiconductors with one main axis as 
well as prior models [2, 3]. On the other hand, the new 
version is applicable not only to the crystals with the 
center of symmetry as [2, 3], but also to those, where 
such centers are missing. Moreover, there takes into 
consideration oneself and the lattice deformation along 
the main axis.  

The Hamiltonian with its exact dispersion law had 
been presented in [1]. Authors reported that it had been 
possible to present the characteristic polynomial of the 
Hamiltonian as a product of two different polynomial 
factors. Both had the same degree. Indeed the dispersion 
law [1] looks like following with spherical coordinates 
( ϕθ ,,k ): 
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This characteristic polynomial has the quite evident 
decomposition into the product of two factors. Let us to 
explain the sense of symbols. There: 
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All these are polynomials as to the energy of car-
riers – ε . Thereto: Pg ,, Δε  are three well-known 
Kane’s parameters [3] (the energy gap, the spin-splitting 
parameter and the matrix element of the impulse). 
Further δ  is the known parameter of the crystal field 
[2] and d  is another parameter of the crystal field, 
which describes the absence of the symmetry center [1]. 
Lastly η  is the scalar factor taking into account the 
deformation of the lattice [4]. The expressions (2 to 5) 
are equally correct both for semiconductors with 

0>gε  and for others with  0<gε . Zero of energy 
( 0=ε ) is located at the top of the band of heavy holes 
at any of both situations. 

However, the paper [1] did not contain the deep 
analysis of the equation (1) as well as the investigation 
of the influence of its features as for the energy bands 
spectra. Only the few details could be as exclusion from 
this statement. They were visible in a figure showing 
the typical dependences of )(kε  for these two 
directions. On the other hand, there had been presented 
only one concrete material (by the way with 0<gε ), 
and therefore it remained not lucid even as far as these 
details are general like other similar crystals.  

The main aim of this paper is the search of 
mentioned basic peculiarities of the energy band spectra 
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within the model [1], and this investigation should be 
leaning mostly against the detailed algebraic analysis of 
the expressions (1 to 5). It should provide the selection 
of most common features of the energy band structures 
for all the semiconductors described by this model.  
 
2. The analysis of the dispersion law 
 
Let us first present two factors of (1) as: 
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Let us rewrite further these polynomials to their 
canonical (alias monic) forms as regard regard to the 
main variable (ε ) by using the expressions (2 to 5): 
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The companion matrixes corresponding to both 

polynomials are almost identical: 
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here ja  are the coefficients at jε  in the polynomials 
(8, 9) ( 3,2,1,0=j ) and the additional index (at βα 11 ,aa ) 
shows the only two different coefficients in (8), (9) and 
only two different elements in matrixes (10). Therefore, 
the Hamiltonian that corresponds to the characteristic 
polynomial (1), acquires the block-diagonal structure 
with two sub-matrixes (10): 
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Such a shape of Hamiltonian means that its space of 
the eigenvectors is divided onto the two invariant sub-
spaces that are non-equivalent generally speaking [5]. 

Let us find the resultant of polynomials, ),( βα PPres  
by using of the standard algebraic method [6]. The 
result may be written in the form:  
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Any two polynomials have a mutual root if and only 
if their resultant is equal to zero [6, 7]. Here are below 
few physically reasonable conditions providing a zero 
of above-mentioned expression: 

k = 0, (13) 

0sin =θ , (14) 

0=d . (15) 

Every one of them provides also the automatic 
execution of the following condition: 

βα 11 aa = . (16) 

In addition, as it follows from (16):  

βαβα HHPP == , . 

The first two conditions (13) and (14) simply signify 
that each of the energy levels is always twice 
degenerated at the point Γ ( 0=k ) firstly, and along 
and against the direction of the main crystal axis 
secondly. These two statements are independent of the 
presence or absence of the symmetry center in a 
semiconductor. All energy levels are twice degenerated 
for any set of ( θ,k ) at presence of the symmetry center 
thirdly. It follows from the condition (15). Validity of 
these assertions is independent of the magnitudes or the 
signs of other model parameters. Thereby they are 
faithful for all semiconductors described by this model.  

Although the formal possibility to think about the 
other trivial conditions (for instance, like 0=P  and so 
on) as it is following from (12), but it seems senseless 
physically. Nevertheless, there is one non-trivial 
condition making the expression (12) equal to zero, 
specially: 
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This condition looks like a relation between 
parameters of the model and may be satisfied, or be 
almost satisfied, randomly or artificially. That is why 
the condition (17) has in principle another quality as 
compared to the above conditions. The condition (17) 
leads to another but an equivalent condition:  

00 =a . (18) 
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, 
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The polynomials (8), (9) and matrixes (10) are still 
different, but get now one mutual root: 0=ε . Thus, this 
mutual root is twice degenerated, and thereto is 
independent of the module ( k ) as well as of the 
direction (θ ) of the wavevector. It signifies physically, 
that we deal with the infinitely narrow band of the 
heavy holes like the same within Kane’s model [3]. This 
analogy does not surprise, if to note that the condition of 
applicability of the Kane’s model (i.e., 1=η  and 

0=δ ) converts immediately the expression (17) into 
the identity. Such a kind of degeneration should be 
acknowledged as parametric dependent and con-
sequently casual by the nature. That is why it has 
another quality and origin in contrast with the above-
considered kinds of the genuine degeneration and even 
with same within Kane’s model.  

At the same time, the other roots of characteristic 
polynomials all are different despite (17) and thus are 
single. It follows from the resultant between shortened 
polynomials, obtained from αP  and βP  after the divi-
ding of both on the energyε . This resultant is equal to: 
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The expression is not equal to zero obviously under 
the condition (17) and returns us to conditions (13 to 
15) if we keep in mind their degeneration. 

One more theorem of the algebra of polynomials 
gives warranty that all roots of a polynomial are 
different each to other (and thus are single). It would be 
true, if only a polynomial is mutually simple with own 
first derivative as for main variable [5]. The direct 
calculation within well-known Euclid’s algorithm 
shows that both greatest common divisors of the 
polynomials (8), (9) as for their derivatives are trivial, 
and thereby are equal to 1. Thus, all the roots of poly-
nomials are single under the condition, of course, that 
neither of the above-mentioned conditions (13 to 17) is 
satisfied. Moreover, the roots are different not only 
“inside polynomials”, but “between them”, too.  

What type of the degeneration we are keeping in 
mind? The time inversion operator K̂ , for instance, can 
convert polynomials one into another as it turns of a 
motion and a spin state into own opposites. So from 

πθθ +=K̂ and θθ sin)(sinˆ −=K  follows, that βα PPK =ˆ  

and vice versa αβ PPK =ˆ . The subscripts βα , should be 
recognized consequently as the indicators of the 
different spin states that are degenerated or not 
degenerated in dependence on the satisfaction of the 
terms (13 to 17). 

It can be proved doubtless by the transformation of 
the Hamiltonian matrix (11) with operator K̂ . Indeed: 
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of the complex conjugation, and also takes into account 
that both blocks (10) have only the real matrix elements. 
The time inversion operator just permutes the blocks of 
Hamiltonian and there any phase multiplier does not 
matter physically, firstly. The time inversion and 
Hamiltonian are not commutative operators, so the well-
known Kramers theorem about the double degeneration 
does not act under condition βα HH ≠ , secondly. 
Well, it means we deal presently with the Kramers 
degeneration, if opposite βα HH =  [4].  

The characteristic polynomials (8 and 9) have both 
the fourth degree. This means that their roots could be 
obtained in radicals. However, it would be very 
tiresome and scarcely usefully to review these bulky 
expressions. It seems more important to find the 
distribution of roots of these polynomials on signs, 
especially in an asymptotic limit: ∞→k . The 
coefficients of both polynomials should be identical, if 
it is possible to neglect almost all elements, except for 
those which contain senior (leading) degrees of ∞→k . 
Let us write their asymptotic expressions:  
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It is accepted in these expressions an insignificant 
simplifying 1≈η  for the sake of greater simplicity and 
transparency. The amount of changes of signs in the 
sequence (21) determines the amount of positive roots 
of the proper polynomial ( N ). This assertion is known 
as Cartesian rule of signs [7]. 

Would we want to make no assumption about 
parameters of (21), so the distribution of signs should 
adopt the kind as following a pseudo-vector: (+,?,–,?,?). 
There are only six variants of sign distributions turning 
out a substitution in place of every indefinite sign (?) of 
one of certain signs (±). It is easily to check that they 
correspond to three possible values of 3,2,1=N , in 
pairs. Well, such super-generalized approach is not too 
fruitful. All, what is allowed to say is that every 
polynomial has at least one negative root (i.e. a valence 
band).  

Let us accept only one, but physically quite obvious 
assumption that 0>∆ . As a result, we can immediately 
write two different pseudo-vectors: (+,?,–,–,–) if 0>δ , 
and (+,?,–,?,+), if 0<δ . Moreover, it is 1=N  (if 0>δ ) 
or 2=N  (if 0<δ ), independently of the variants of the 
any substitutions instead of indefinite signs. Thus each 
polynomial has at least one (if 0>δ ) or even two (if 

0<δ ) positive roots, but no more. One of them is the 
conductivity band, whereas three negative roots of 
polynomial correspond to three valence bands, of 
course. Note that these assertions base just on one, 
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physically evident assumption about sign of one 
parameter.  

However, the possibility of two positive roots as the 
alternative to the typical conditions a bit washes out this 
analysis. The nature of the second positive root needs 
the additional study in this case, in dependence off other 
parameters of model. Thus, it as yet is few outside of 
the area of the presented investigation. 

3. Conclusions 

The Kramers degeneration survives only along and 
against of the direction of the main crystal axis and at 
point Γ  ( 0=k ) within generalized Kildal’s model 
under the condition of the absence of the center of 
symmetry, as a rule. 

The Kramers degeneration is possible everywhere, 
although only for the band of the heavy holes like those 
within Kane’s model, even under the condition of pt.1, 
but only if casually takes place the special relation 

between parameters: ( )
2

2

3
1
η
ηδ −∆

= . 

The typical set of solutions within this model consist 
of one conductivity band ( 0≥ε ) and of three valence 
bands ( 0≤ε ). Each of them contains two spin sub-
bands. The additional conductivity band would be 
 

possible in principle, but only under special condition 
( 0<δ ), which is the obligatory but not enough 
condition.  
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