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Abstract. The peculiarities of quantum oscillations in bulk semiconductors with Cnv 
symmetry caused by the lack of their symmetry centre are considered. A quasi-qubic 
model is used for finding the magnetic levels. The algorithm for numerical calculating 
the levels in the presence of the tilted magnetic field is suggested. Numerical estimations 
are performed for Сd3As2 and Cd3-xZnxAs2. It is shown that the most suitable conditions 
for observing the beating effect in these compounds are the high values of the electron 
concentrations and small angles between the direction of the magnetic field and crystal 
symmetry axis. 
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1. Introduction 
 
In the crystals without the symmetry center while 
straying from the Brillouin zone center, complete 
removing the energy band degeneracy may occur. The 
opposite signs of the electron spin projections onto the 
quantization axis correspond to the splitted states. For 
the crystals with υnC  symmetry class, such a splitting is 
linear in the wavevector k. The appropriate isoenergetic 
surface is described by the following equation in the 
cylindrical coordinate system [1]: 
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where a , b  are the semiaxes of the ellipse in which 
axial rotation along zk  produces the surface; 0k  is the 
nonzero (as a result of the symmetry center lack) value 
of the ellipse center shift from the origin of coordinates 
within the plane perpendicular to the crystal main axis.  

Since 0,, kba  depend on the band parameters as well 
as on the electron energy ε, the alteration of the latter 
one may lead to changes in the shape and topology of 
isoenergetic surface. When ak >0 , the surface is 
topologically equivalent to the torus while for ak <0  it 
is the fourth order surface self-crossing in two conical 
points (Fig. 1).  

The possibility to manifest peculiarities of 
isoenergetic surfaces (1) in quantum-oscillatory 
phenomena (Shubnikov – de Haas (SdH) and de Haas – 
van Alphen effects (dHvA)) was discussed in [2, 3]. 
However, these works dealt only with the cases when the 
magnetic field was parallel or perpendicular to the zk -
axis and the simple one-band parabolic model was used. 
In this paper, we present a more comprehensive study of 
this problem. In particular, we take into account the 
possible nonparabolicity of the energy spectrum and 
using the effective mass method consider the conditions 
for beating appearing in the case of different electron 
concentrations and orientations of magnetic field. Our 
theoretical analysis was accompanied by numerical 
calculations performed for Cd3As2 and 2xx-3 AsZnCd  

that have 12
4υC  space group symmetry. 

 
2. Theory and numerical calculations 
 
It is known [4] that, in the quasi-classical approximation, 
the period of quantum oscillations is defined by the 
extreme in zk ′  ( zk ′  is a component of the wavevector 
along the magnetic field B) cross-section area mS  of the 
Fermi surface (FS) normal to the external magnetic field 
direction: T = 2πe/ћSm. For FS which has more than one 
extreme cross-section area normal to a given magnetic 
field direction, there will be oscillatory effects associated 
with each such area. 
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Fig. 1. Shape of the isoenergetic surfaces described by 
equation (1): ak <0  (a), ak >0 (b). 

For the majority of semiconductors, the characteristic 
of the deviation of FS (1) from an ellipsoidal shape 
r = k0/a << 1. The quasi-classical theory developed for 
this case [2, 3] predicts the existence of regular “beats” 
in quantum oscillations connected with the existence of 
two close central cross-section areas of FS. It is easy to 
derive the expression for finding the beating period in 
the form 

)(80 κπ ErTTB =  (2) 

where 
F

baabeT F εεθθε =+= )sincos2()( 22222
0 h   is 

the oscillatory period obtained by ignoring the inversion 
asymmetry; εF is the Fermi energy; )(κE  is the complete 
elliptic integral of the second kind with the parameter 

θκ 222 cot)(11 ab+= ; θ  is the angle between the 
field direction and zk -axis. It should be noted, however, 
that within the limits of quasi-classical approach the 
interaction between the electron spins and magnetic field 
(Zeeman’s term) is not taken into account. Very often 
such an interaction complicates the beating pattern [5, 6]. 
So, to correctly describe this effect one should use the 
quantum-mechanical approach. 

It is known [4] that the harmonics amplitudes of the 
SdH(dHvA)-signal contain the multiplicative factor 
cos(jπν) (j is the harmonic number; cnn ωεεν h)( −+ −= , 

where ±
nε  is the energy of the Landau magnetic subband 

with the extreme value zk ′ , cω  is the cyclotron 
frequency). When the ν-factor magnetic field depen-
dence is available, the harmonics amplitudes may turn 
into zero for certain values of the magnetic field – a 
“node” appears in the oscillatory curve. As a rule, these 
peculiarities manifest themselves in the range of the 
magnetic fields where it is possible to detect only the 
first harmonic. The condition of the node appearing for it 
is written as 5.0−= iν , where i is the node number. 

To determine the subband energies, we use the quasi-
cubic band model [7], which properly describes the 
effects of spin splitting, anisotropy and nonparabolicity 
of bands energy. In the eight-band effective mass 
approximation, the electronic wavefunction can be 
chosen in the following form: 
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where N is the number of a unit cell in crystal; 
( ) 2iYXR ±=±  and the symbols ↑ and ↓ mean the 

spin-up and spin-down functions, respectively. 
ZYXS ,,,  are the periodic Bloch amplitudes transfor-

med like atomic s- and p-functions under the operations 
of the tetrahedral group at Γ point. ϕ i are envelope 
functions satisfying the set of eight coupled differential 
equations, which in the case of quasi-cubic approxima-
tion can be represented in the following matrix form [8]:
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Here εεε −= g1 , )3(2 ∆++−= δεε , =3ε  

)32( ∆+−= ε , 321 ∆=∆ ; )ˆˆ)(21(ˆ
yx kikk ±=± , 

where zyx kkk ˆ,ˆ,ˆ  are the components of the operator 

A)(ˆ heik +∇−= , A  is the vector-potential of field. 
Hence the model along with the optical energy gap gε  
needs to know the values of spin-orbit splitting of the 
valence band ∆ and interband momentum matrix 
element P, crystal field splitting the valence band at Γ  
point δ , and ξ  is the parameter defined by 
”interaction” between S and Z states via the asymmetric 
part of the crystal potential [8, 9].  

Let us introduce the axis transformation 
zxx θ−θ=′ sincos , yy =′ , zxz θθ cossin +=′ , and 

choose the “Landau” gauge in the form 
).0,0,( yB ′−=′A  In this case, we have the next 

commutation relations 
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where eBl h=  is the cyclotron radius. Let us express 

83 ϕϕ K  in terms of 1ϕ , 2ϕ  and eliminate them by 
substituting in the first two equations of  the set (3). 
Then using (4) we obtain 

where 
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From (5) it follows that 0,, kba  may be expressed in 
terms of polynomials ,γ  if  as 
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It is convenient to perform a unitary transformation 
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in order to make a new two-component quasi-
Hamiltonian to be a diagonal one up to the terms 
proportional to 3f . Expand now the new components 

1
~ϕ , 2

~ϕ  into an infinite series of linear harmonic 
oscillatory functions: 
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and introduce the creation and annihilation operators 
according to [10]: 
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It is possible to express the components of the 
wavevector operator via these operators as follows: 
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Taking into account these remarks, it is easy to show 
that the system (5) is reduced to the infinite system of 
algebraical equations, a fragment of which has the form: 
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0  is the value of 

ν -factor in the limit of strong magnetic fields (in (6) we 
put 0=′zk , because it corresponds to the extreme FS 
cross-section). 

It is possible to derive the analytical expression for 
finding the energy levels from (6) only in the case when 

0=ξθ . With 0=ξ  ( 03 =f ), we have the result first 
obtained in [11]. If 0=θ  one gets  
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(while obtaining the expressions (7), we performed 
1+→ nn  shift for the system of “–” levels, because 

this numeration is more preferable from the physical 
point of view). 

Using the formulae (7) and applying the method for 
ν -factor calculation suggested in [11] for this direction 
of the magnetic field, one obtains 
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The dependence of electron ν -factor on the 
magnetic field can be explained in this case by 
complicated nature of the spin-orbit interaction and as a 
result of it, the spin splitting of the Landau levels is no 
longer linear dependent on the magnetic field. When 

1>>i  (i.e., for relatively weak fields), from (8) it 
follows that rTBB ii 40

11
1 =− −−
+ . Hence, the nodes with 

large numbers are periodically located along the scale 
1−B  with the period (2). As the magnetic field 

increases, the location of the nodes turns to be irregular 
(the Zeeman subbands splitting reveals itself). If we 
take into account the fact that with the lowering the 
node number the difference between the magnetic field 
values corresponding to two neighbour nodes grows 
rapidly, it becomes obvious that only some first nodes 

can be observed in the fields where quantum 
oscillations start to manifest themselves. 

Let us perform the specific calculations for Cd3As2  
and Cd3–xZnxAs2. For this purpose, we use the rank 
values of their band parameters suggested in [8]. Since 
the value of the parameter ξ  is known only by its order 
[8], all the calculations are made for several values of 
this parameter. 

Fig. 2 shows the concentration dependences of the 
first nodes’ location calculated for three different values 
of the parameter ξ . The characteristic feature of all 
these curves is the increase (which is more or less 
smooth depending on ξ  value) of the field value 
corresponding to the node when increasing the electron 
concentration. 

Let us now examine the behaviour of ν -factor in the 
tilted magnetic field. The difficulty of this task is caused 
by the fact that it is impossible to apply the standard 
perturbation theory to the parameter 3f  because the 

combination nf3 being a part of (4.7) is not small 
[12]. Besides, the additional difficulties in comparison 
with 2D systems are connected with the fact that only 
the magnetic field component normal to the 2D layer 
effects on the orbital moment, while in the bulk crystal 
such an interaction is determined as a whole by the 
field. 

For defining the energy spectrum when 0, ≠ξθ , let 
us use the technique of folding the determinants of the 
block matrixes. Applying the well-known Schur 
formula it is possible to show that 
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Fig. 2. Theoretical dependence of the first (a), second (b) and third (c) node location on the electron concentration for Cd3As2: 

meV30=ξ (1); meV15=ξ (2); meV7=ξ (3). 
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Fig. 3. Theoretical dependence of the maximal magnetic field corresponding to the nodes of oscillation on the azimuth angle for 
Cd3-xZnxAs2: eV1.0−=gε (a-c), eV1.0=gε  (d-f); 324 m103 −×=en (a),(d); 324 m10 −=en  (b), (e); 323 m104 −×=en  (c), (f); 

meV30=ξ (1), meV15=ξ (2), meV7=ξ (3). 
 

While performing the specific numerical calculations, 
this algorithm is realized through the truncating the 
infinite matrix on the both sides of the fixed block 

0nΛ . 
In our calculations, the convergence for the eigenvalues 
was attained for the truncated matrix of 20×20 size. 

Fig. 3 shows the results of numerical calculations for 
the dependence of the maximal magnetic field 
corresponding to the nodes on the azimuth angle. The 
following features are clearly seen: 

1. With the increasing θ  the magnetic field 
decreases monotonously. 

2. Beating disappears in the case of large values θ ; 
the critical angle ( o70~ ) at which the  beating starts to 
disappear has a weak dependence on the band 
parameters and the carrier concentration. 

3. With the decreasing ξ  and rising gε , the values 
of the magnetic field reduce and locate within the 
narrower range. 

4. Conclusions 

The investigations carried out in this work show that the 
beating patterns in crystals with υnC  symmetry have 
their own specific character. Particularly, for V

2
II
3 BA  

compounds one should expect the decrease of the 
maximal magnetic field corresponding to the nodes of 
oscillation when the electron concentration decreases 
and the field tilting about the symmetry axis increases. 
Moreover, starting from a certain azimuth angle the 

beatings should disappear. The mentioned peculiarities 
are supposed to help in specifying the value of the 
parameter ξ which defines the magnitude of zero spin 
splitting of bands when studying the beating effect in  

V
2

II
3 BA semiconductors (in which it has already been 

observed experimentally [13]). 
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