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In this paper we compare two different approaches for the calculation of the
enhancement factor Wi , based on its definition as the ratio of the chemical
and the component diffusion coefficients for species in mixed-conduction
electrodes, originated from the “dilute solution” or “lattice gas” models for
the ion system. The former approach is only applicable for small changes
of the ion concentration while the latter allows one to consider a broad
range of intercalation levels. The component diffusion coefficient of lithi-
um ions has been determined for a series of lithium intercalation anodes
and cathodes. A new “enhancement factor” for the ion transport has been
defined and its relations to the intercalation capacitance and the interca-
lation isotherm have been established. A correlation between the depen-
dences of the differential capacitance and the partial ion conductivity on
the potential has been observed. It is considered as a prove that the inter-
calation process is controlled by the availability of sites for Li-ion insertion
rather than by the concurrent insertion of the counter-balancing electronic
species.

Key words: Li-ion battery, binary component, chemical diffusion
coefficient, ionic conductivity, lattice gas model
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1. Introduction

Thermodynamic and kinetic behaviour of various mixed-conduction solids, in
particular Li-alloys (e.g. LiXAl or Li1+Y Sb) have been carefully studied both theo-
retically and experimentally in the late 70 ties by Weppner and Huggins [1–3]. Their
approach was based on the so-called “dilute solution” approximation, for which the
enhancement factorWi was defined as the ratio of the chemical diffusion coefficient of
ions, Dei, and the component diffusion coefficient Di. The total variation of X with
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potential was considered to be small (X ≪ 1), thus the partial ionic conductivity
κi for mixed-conduction electrode, κi, is parameterized within the “dilute solution”
approach by a quantity proportional to the product of the ion electric mobility (and,
hence the component diffusion coefficient) and the bulk ion concentration.

An alternative approach which may be related to an intercalation electrode with
large variation in X from 0 to 1, has been advanced by Chidsey and Murray [4].
They considered the redox-capacity of electroactive polymer films, C int being limited
by availability of sites for insertion of electrons in the bulk film. Therefore, in their
treatment the kinetic properties of these mixed-valence electrodes were associated
primarily with electron properties, for which a more realistic description (compared
to “the dilute solution” approximation [1]) has been proposed in the framework of
a simple lattice-gas model [5]. The direct current (dc) electron conductivity, κ e, was
represented as the product of the redox-capacity Cint and the chemical diffusion
coefficient for electrons, De [4]. Therefore, De could be easily calculated as a func-
tion of potential using a combination of dc conductivity measurements and linear
scan voltammetry (Cint is proportional to the measured voltammetric current for
sufficiently slow scan rates).

In contrast to the case of electroactive polymers, for Li-intercalated compounds
it is often the availability of sites in the host’s bulk that limits the intercalation
capacity, as was suggested by McKinnon [6]. Although the partial ionic conductivity
of Li-insertion compounds can, in principle, be measured by dc current technique,
as was described by Weppner and Huggins for Li-alloys [3], a lot of experimental
difficulties may complicate the measurements due to the fact that practical Li-ion
insertion electrodes are mostly powdery porous composites. On the other hand, the
partial ionic conductivity κi as a function of potential can be measured with a good
accuracy using one of the appropriate relaxation techniques such as potentiostatic
or galvanostatic intermittent titration techniques (PITT and GITT, respectively),
or electrochemical impedance spectroscopy (EIS), similar to that described for the
titration of Li-alloys [2,7].

Our first goal is to perform an adequate parameterization of this quantity, κ i,
similar to the parameterization of κe described above [4], with further compari-
son between the experimental κi vs. E curves and the theoretical ones obtained in
the framework of a simple lattice-gas model. Such comparison will allow us to pro-
pose a new method for the reliable determination of the new component diffusion
coefficient of ions, D◦

i . When contrasting this value with the plots of the chemi-
cal diffusion coefficient of Li-ions vs. potential, potential dependence of the ratio
W ◦

i = Dei/D
◦

i , defined as a new “enhancement factor”, can be attributed to the
interactions between the intercalation sites, either attractive or repulsive. Thus, the
physical factors manifesting themselves in the potential dependences of W i and W ◦

i

are different. Our second goal will be to correlate the classical “enhancement fac-
tor” Wi with an analytical expression for the related intercalation isotherm. Such
a correlation can be elucidated taking into consideration the stoichiometry of the
bulk association-dissociation reaction between the electronic and ionic species in the
mixed-conduction electrode.
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2. Experimental

The mode of preparation of vacuum-deposited V2O5 films further heat-treated
at 350 ◦C for better crystallization was previously reported [8,9]. Here we worked
with V2O5 films 1600 Å thick. All other 6 electrodes were composites consisting of
the related powdery mass mixed with polyvinylidene fluoride (PVdF) binder and
electrically conductive carbon black (only in the case of the cathodes). Details can
be found in previous publications related to graphite [10,11], disordered carbons [12],
LiCoO2 [13], LiNiO2 and LiNi0.8Co0.2O2 [14,15]. In brief, graphite electrodes were
composed of 90% of synthetic graphite powder KS 6 (Lonza, 6 µm average particle
size along the basal plane, 0.1–0.5 µm thick) and 10% PVdF binder. A piece of Ni
or Cu foil (1.2× 1.2 cm) served as a current collector. Composite disordered carbon
electrodes contained 90% of disordered carbon produced by Mitsubishi (10 µm av-
erage particle size) and 10% PVdF binder. The technique of electrode preparation
was identical to that of graphite electrode.

LiCoO2, LiMn2O4, LiNiO2 and LiNi0.8Co0.2O2 powders were obtained fromMerck
(2–3 and 0.5–1 µm particle size, for the former and three latter powders, respective-
ly). The electrode’s active mass was 85 wt% of one of the above transition metal
oxides, 10 wt% conductive carbon black, and 5 wt% PVdF binder. These substances
were thoroughly mixed with an appropriate amount of 1-methyl-2-pyrrolidone, with
subsequent sonication in a test tube. Using a micropipette, several drops of this
suspension (under continuous sonication) were removed from the middle level of the
tube, then uniformly spread on one side of a heated 1.2 × 1.2 cm piece of Al foil.
After drying in an oven at 150 ◦C, the other side of the foil was similarly covered
with the same active mass. Each electrode contained about 1–2 mg of the active
mass (a few microns thick).

A three-electrode cell contained a polyethylene frame with symmetrical slits on
both sides holding the working and counter electrodes in a parallel plate configura-
tion with Li counter and reference electrodes.

The electrolyte solution was 1M LiAsF6 (Lithco) in an ethylene carbonate (EC)
– dimethyl carbonate (DMC) 1:3 mixture (Merck’s solvents). All other details, in-
cluding glove-box operation and electrochemical measurements, were reported in
previous publications [16,17].

In brief, PITT and EIS were applied using Schlumberger’s 1286 electrochemi-
cal interface and 1255 FRA driven by the Corrware software from Scribner Assoc.
(486 IBM PC). In some cases PITT and the measurements of differential capaci-
ty as a function of electrode potential (the latter response is similar to the cyclic
voltammetric response obtained at different scan rates) were performed, utilizing a
multi-channel Arbin system driven by a Pentium IBM PC computer.

Highly resolved PITT and GITT data were analyzed with the use of finite-
diffusion models [1–3]. In the vicinity of differential capacity peaks, when necessary,
the incremental potential step applied for PITT was as small as 5 mV. Each step
was executed after complete equilibration during the preceding step. Residual (back-
ground) charge current was less than 0.5 µA/mg.
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Figure 1. Schematic charging – discharging curves of Li1+YA alloy (a), |Y | ≪ 1
(“dilute solution” approximation) and LiXA intercalation compound (b), 0 6

X 6 1 (lattice-gas model approximation). α, β and γ denote conventional pure
phases. Solid curve in figure 1b relates to a first-order phase transition between
phases α and β , whereas broken curve corresponds to monotonous change of X
within α phase.
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3. Results

We consider first the case of Li-alloys, such as LiXAl and Li1+Y Sb [1,2]. Figure 1a
shows schematically the equilibrium charging (discharging) curve of a Li-alloy of the
conventional stoichiometry Li1+YA. Here X denotes the change in the Li-content
in the bulk of the alloy, related to the drastic change in the equilibrium potential.
The most interesting and well-documented kinetic feature, namely, the dramatic
enhancement of the Li-ion mobility, is always observed in the very close proximity
to the stoichiometric composition, e.g. Li1+Y Sb [1] where Y is of the order of a few
thousandths. At higher deviations from the stoichiometric composition (LiSb), the
both portions of the curve relate to regions of phase co-existence, α+ β or β + γ, at
the negative or positive values of Y in the Li1+YA (see figure 1a). Note that these
two regions are usually ignored in kinetic analysis [1].

In contrast, in the case of a typical Li-intercalation compound LiXA, X changes
between 0 and 1, and this change relates to a much more extended range of potentials
compared to the potential range of interest for the Li-alloys. The solid line curve in
figure 1b shows schematically an equilibrium charging (discharging) curve for such
an intercalation electrode with practically horizontal plateaus corresponding to the
α + β phase co-existence at the intermediate intercalation levels and rather steep
portions of the curve at both limits X → 0 and X → 1 for pure phases α and β,
respectively. Thus the horizontal plateaus correspond to a first-order phase transition
in the host bulk. The other (dashed) curve in the same figure arises in the case of
the monotonous charging of phase α. Then, the typical X-ray diffraction (XRD)
patterns show single peaks which are shifted gradually to lower 2θ values as Li-
insertion proceeds. As is presented below, our data correspond to these two different
classes of Li insertion, namely a first-order phase transition and a smooth variation,
LiXNiO2 and LiXCo0.2Ni0.8O2, respectively, being their typical representatives.

3.1. Theoretical model of coupled electron-ion transport

The lithium ion systems are frequently treated, mostly without any argumenta-
tion, as pure ion conductors. However, the change of the doping level of the bulk
material with respect to lithium cations always requires a corresponding transfer of
the electronic charge, to retain the local electroneutrality condition. It means that
all these systems represent in reality mixed (electron-ion) conductors.

It is well known that the transport phenomena in such systems include a coupling
between the redistributions of both mobile species, at least via the above condition.
Besides, there are generally short-range interactions between these species. Depend-
ing on their character one can distinguish two limiting cases:

(1) excessive (i.e. mobile) electrons are mostly localized at the immobile centers
in the host matrix so that their displacement is realized via the hopping mech-
anism between these centers;

(2) these electrons are mostly localized at lithium ions so that the system can be
modeled as mobile lithium atoms inside the host matrix.
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Both classes of systems can be described by similar sets of equilibrium and transport
equations but with different assumptions on the values of the parameters in them.
In this paper the consideration is limited to type (1).

The general transport equations for mixed conductors inside a solid matrix
may be based on the irreversible thermodynamics or on “multi-component diffu-
sion” approach [18]. If charging (discharging) of Li1+YA alloy or LiXA intercalation
compound is performed using small-amplitude perturbations from their equilibrium
states, then a linear response theory can be applied. Then, one can linearize the
equations with respect to the perturbations of all variables. In particular, there ex-
ist linear relations between the gradient of the perturbation of the electrochemical
potential µα of a species α (electrons or ions) and the instantaneous flux densities
of all species Jβ:

c◦α∇µα =
∑

β

Kαβ(Jβ/c
◦

β − Jα/c
◦

α). (1)

Here, index α means e or i (electrons or Li cations), β runs all interacting compo-
nents, electrons, ions and the host matrix (m), Kαβ are the “friction coefficients”
characterizing the interaction between the corresponding fluxes which are generally
some functions of unperturbed concentrations c◦α, this matrix being symmetrical,
Kαβ = Kβα .

In the coordinates with respect to the matrix its velocity is zero and the equations
can be rewritten as [19]:

∇Ee ≡ ∇(µe/zee) = −keie + kii , (2a)

∇Ei ≡ ∇(µi/zie) = −kiii + kie , (2b)

where the fluxes are replaced by the partial current densities, iα ≡ zαeJα (e is
the proton charge, the charge valency of ion, zi, is chosen below as +1 while ze =
−1). The electrochemical potentials are proportional to the corresponding electrode
potentials, Ee or Ei , i.e. the local values of the potential measured with an electrode
reversible with respect to the corresponding species, e or i.

Coefficients ke, ki and k represent combinations of three coefficients Kαβ in equa-
tions (1). In particular, k is proportional to the non-diagonal term, Kei, in equa-
tions (1). Since it is assumed in this paper that the electrons are mostly localized
at the host lattice, this term will be neglected, see for discussion in [6]. Within this
approximation the diagonal coefficients in equations (2a), (2b) are directly related
to the partial electron and ion conductivities, kα = 1/κα:

ie = −κe∇Ee , ii = −κi∇Ei . (3)

One can introduce two other parameters instead of these characteristics, total con-
ductivity κ and the transport numbers of electrons and ions te, ti:

κ = κe + κi, te = κe/κ, ti = κi/κ, te + ti = 1. (4)

Another important characteristic of the system is its redox capacitance, C int . It
is defined as the ratio of the specific charge to be supplied to the film across its
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interfaces in quasi-equilibrium conditions to the change of the electrode potential,
dE

Cint = −dρi/dE ≡ −V −1dQi/dE, (5)

The electron and ion charges inside the film, Qe and Qi , are proportional to their
charge densities, ρe,i , or their occupation numbers per unit site in the matrix, Xe

and X :

Qe ≡ −V ρe ≡ −QmXe, Qi ≡ V ρi ≡ QmX, Qm = NAeV/Vm . (6)

Here,NA is the Avogadro number, V the volume of the system, Vm the molar volume,
Qm the maximum (limiting) intercalation charge (if X varies between 0 and 1). The
electroneutrality condition for the bulk film may be written in two forms:

Qe +Qi +Qs = 0, i.e. Xe = X + zs , (7)

where Qs is the “fixed” charge of the host matrix, zs = Qs/NAe is the corresponding
charge valency of a site. The charge valencies of electrons and mobile ions (lithium
cations) is taken as –1 and +1, correspondingly.

The electrode potential in the equilibrium is directly related to the difference of
electron and ion electrode potentials inside the film:

E = Eei + const, Eei ≡ Ee −Ei ≡ −(µe + µi)/e+ const. (8)

Thus, to determine the redox capacitance it is sufficient to modelize the dependences
of the chemical potentials of electrons and ions in equation (8) (since the electric
terms are cancelled in Eei) on the charging degree, X :

Cint = −QmV
−1dX/dEei ≡ −eQmV

−1dX/d(µe + µi). (9)

This formula shows that the intercalation capacitance is determined by the internal
properties of this phase, i.e. it is independent of its interfacial structure or other
phases.

The constant terms in equation (8) depend on the type of the reference electrode.
If it is lithium metal, then

EM/Li = e−1(µLi − µe − µi), (8a)

where µLi is the chemical potential of lithium atom in the metal phase. On the other
hand, if the reference electrode is reversible with respect to the anion, A−, of the
binary electrolyte in the solution, LiA, equation (8) takes the form:

EM/A = e−1(µLiA − µA − µe − µi). (8b)

Now, µLiA is the chemical potential of the LiA salt in the solution (µLiA ≡ µ+
Li+µ−

A),
µA the chemical potential of the neutral X species in the reference electrode, e.g.
µCl ≡ µAgCl − µAg for the Ag/AgCl electrode.
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In the latter case one can vary the electrolyte concentration, i.e. the chemical
potential of the salt LiA, while keeping the electrode potential versus this anion
reference electrode, EM/A, fixed. The dependence of the lithium intercalation charge
as a function of this chemical potential, Qi(µLiA), for E

M/A = const may be called
intercalation isotherm.

The combination of equations (8b) and (9) gives a simple relation between the
intercalation capacitance and the isotherm:

Cint ≡ −QmV
−1dX/dE = −eQmV

−1dX/d(µe + µi)

≡ eV −1dQi/dµLiA,

EM/A = const. (9a)

This formula also demonstrates a proportionality of the derivatives of the depen-
dences, X(E), X(µe + µi) and Qi(µLiA). In this meaning the former may also be
termed as the “intercalation isotherm”.

Let us introduce now another transport characteristics, Dei, which is called bi-
nary or electron-ion or chemical diffusion coefficient. It may be defined from the
relation between the fluxes and the concentration gradients, or between the partial
currents and the gradients of the corresponding charge density, at the condition of
the zero overall current, i = ie + ii (the displacement current is neglected in this
paper):

ie = −Dei∇ρe, ii = −Dei∇ρi for i = 0 (10)

(these two definitions are equivalent since ie + ii = 0 and ∇ρe +∇ρi = 0).
In the absence of the non-diagonal term in equations (2) (see [19] for the gen-

eral case) one can get a relation between this diffusion coefficient and the partial
conductivities or transport numbers.

For it one can derive a general relation for the partial currents. A combination
of equations (3), (8), (9) and (6) gives:

ie/te − ii/ti = −κ∇Eei = −κC−1
int∇ρe . (11)

Since the sum of the partial current is equal to the overall one, i, one can find both
partial currents:

ie = tei− tetiκC
−1
int∇ρe, ii = tii− tetiκC

−1
int∇ρi . (12)

The comparison with equation (10) for i = 0 gives relations between Dei and the
total or partial conductivities:

Dei = tetiκC
−1
int ≡ teκiC

−1
int ≡ tiκeC

−1
int . (13)

This relation in one of these forms has appeared in many publications, see e.g.
[1,4]. The above derivation emphasizes that this formula is quite symmetrical with
respect to electrons and ions, in particular the above diffusion coefficient represents
a joint property of both mobile species and any of the partial conductivities may be
introduced in this relation.
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A similar relation between the diffusion coefficient and the conductivity also
exists for materials possessing a single type of mobile charge carriers, either electronic
or ionic ones [20–22]:

D = κe−2dµo/dc, (13a)

µo being the chemical potential, an analog of µe + µi in equation (8).
Often equation (13) is written down in a different form for systems where the ion

transport is of primary importance while the electron one represents an inevitable co-
process. The partial ion conductivity is transformed in the way as if the mobile ions
can be considered within the framework of the ideal solution approximation where
the conductivity and the diffusion coefficient are related by the Nernst-Einstein
formula:

κi ≡ ciNAe
2(kT )−1Di . (14)

In the general case where the ion system cannot be treated as an ideal solution this
equation represents a definition of the quantity which is called [1] the component
diffusion coefficient. In this meaning its value can only be found experimentally
from the ion conductivity measurements. In particular, it has no relation to the
measurements of the diffusion rates in PITT or GITT conditions which allows one
to determine the chemical (electron-ion) diffusion coefficient D ei.

The combination of equations (13) and (14) gives for the ratio of these two
diffusion coefficients:

Dei = WiDi, Wi = teciNAe
2(kT )−1C−1

int . (15)

The multiplier, Wi, in this formula is called Wagner or enhancement factor [1].
Equation (15) relates it to the electron transport number and the redox capacitance.

For the intercalation phase of the Li1+YA alloy, ci = XQm(V NAe)
−1, X ≡ 1+Y ,

and this formula for Wi takes the form after the use of equation (9):

Wi = −(tee/kT )XdE/dX ≡ (kT )−1teXd(µe + µi)/dX. (15′)

From figure 1a we can see that in the vicinity of the composition related to the
stoichiometric alloy LiA, the derivative, dE/dX , is rather high, thus the chemical
diffusion coefficient Dei may be several orders of magnitude greater than the ion
(“component”) diffusion coefficient, Di.

The use of the identity,

d(µe + µi) ≡ kTd ln(aeai) ≡ kTd lnaatom (16)

(ae, ai, aatom are the activities of electrons, mobile ions and corresponding atoms
inside the intercalation phase) allows one to arrive to an equivalent formula for W i

[1]:
Wi = ted ln aatom/d ln ci . (15′′)

One should keep in mind that this introduction of the atomic activity has no relation
to the real existence of lithium atoms in the system. Moreover, the neglect of the
non-diagonal terms in equations (1) which represents the basis of this formula can
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be justified just for the systems where the association of mobile electrons and ions
into atoms is practically absent.

In view of the symmetry of equation (13) quite a similar “enhancement factor”,
We, can also be introduced for electrons satisfying to analogous equations.

We’ll see below that the ion enhancement factor represents a convenient quantity
for the ion transport in continuous media. On the other hand, for lithium diffusion
inside a solid lattice where the saturation effects play a crucial role one can introduce
a more suitable characteristic of the system based on a different definition of the
“ion diffusion coefficient”, D◦

i , instead of Di in equation (14):

κi ≡ ci(1− ci/cm)NAe
2(kT )−1D◦

i ≡ X(1−X)V −1
m NAe

2(kT )−1D◦

i , (14a)

where cm ≡ V −1
m the maximum concentration of intercalated ions. It leads to a

“modified enhancement factor”, W ◦

i , defined by equation (15a):

Dei = W ◦

i D
◦

i , W ◦

i = teX(1−X)V −1
m NAe

2(kT )−1C−1
int . (15a)

Then, equations (5) and (9) give for this factor:

W ◦

i = −(tee/kT )X(1−X)dE/dX ≡ (kT )−1teX(1−X)d(µe + µi)/dX. (15′a)

It is shown below that these new quantities, D◦

i and W ◦

i , represent more informative
characteristics of the intercalation system.

Let us apply these relations to particular models of ionic systems.

3.2. “Dilute solution” approximation

The basic results for this model have been derived by Weppner and Huggins
[1–3].

“Dilute solution” approximation is based on the expression for the electrochem-
ical potential which is used for both electron and ion species in equation (8):

µα = µ◦

α + kT ln cα + zαeφ, (17)

where µ◦

α stands for the chemical potential in the standard state, φ is the electro-
static potential, k and T are the Boltzmann constant and the absolute temperature.
Besides, the partial ion conductivity κi is proportional to the ion electric mobility
ui or the ion diffusion coefficient, Di which both are concentration independent:

κi = NAeciui = NAe
2(kT )−1ciDi . (18)

The latter formula is identical to equation (14), i.e. in this case the quantity in-
troduced by equation (14) corresponds to the real ion diffusion coefficient. Then,
one can use general equations (15) and (15′) for the enhancement factor, Wi. The
combination of equations (15) and (17) (for the electrons and ions) leads to the
expression:

Wi = te(1 + ci/ce). (19)
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Note that equation (19) corresponds to the case of single-charged cations and elec-
trons. In general case, where the charge number of the electronic species is equal to
ze and the corresponding charge number of ions is zi, then this formula takes the
form:

Wi = te(1 + z2i ci/z
2
ece). (19′)

Equation (19) is of crucial importance for understanding the physical meaning of
Wi when turning from Li1+YA alloy to LiXA intercalation compound.

The enhancement factor Wi is expected to be close to 1 in the two following
particular cases: (i) when the mobility of electrons is much higher than that of ions
(so that te ∼= 1), and the host contains an excess of electrons (ce ≫ ci), (ii) when
one can use “ideal solution” formula (18) for electrons, too, besides De = Di (then,
te = 0.5) and ce = ci. On the contrary, if the electron and ion concentrations are
equal, ce = ci (it means the absence of the “fixed charge”, Qs, in equation (7)) but
the conductivity of electrons is much higher than that of ions (i.e. De ≫ Di), then
equation (19) results in te = 1 and Wi = 2.

Finally, for certain semiconductors, the concentration of electrons can be lower
than that of ions, ce ≪ ci , whereas their conductivity is, in contrast, much higher
than that of ions, such that te ∼= 1. In this case, Wi may easily increase up to 103–104

which is typical for the various Li1+YA alloys [1,2].
Thus, equation (19) is useful for the comparison of electrochemical behaviour of

Li1+YA alloy and LiXA intercalation compound (such as those shown in figures 1a
and 1b). However, we should remember that the expression for the “enhancement
factor” Wi in equation (19) was derived in the “dilute solution” approximation. In
the following section we will see how the “saturation effect” in the course of Li-ion
intercalation into inorganic hosts influences these predictions for the “enhancement
factor” Wi.

3.3. “Saturation effect” and the “enhancement factor”

Consider first the case of monotonous charging occurring in an inorganic host
within the whole range of the intercalation level, from 0 to 1 (see broken line in
figure 1b). Two particular cases are dilute solutions (at small values of X) and
“saturation limit” (at X close to 1), respectively. The “saturation limit” originates
from a fixed number of sites in the host, accessible for Li-ion intercalation. Similar
to thermodynamic description of holes in conventional inorganic semiconductors,
the electrochemical potential of Li-ions can be represented as a simple logarithmic
function of the entropy factor X/(1−X), i.e. the function of the ratio of the number
of occupied sites to the number of unoccupied ones:

µi = µ◦

i + kT ln{X/(1−X)}+ eφ. (20)

To simplify the further equations, the “ideal solution” approximation, equation (17),
will be retained for the chemical potential of electrons. Then, equations (5), (6) and
(8) give the expression for the redox capacitance:

Cint = NAe
2(kT )−1{c−1

e + c−1
i (1−X)−1}−1. (21)
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Then, formula (15) leads to the expression for the “enhancement factor”:

Wi = te{(1−X)−1 + ci/ce}. (22)

Assuming that te = 1 and a high concentration of electrons, ce ≫ ci , the “en-
hancement factor” is reduced to Wi = (1−X)−1. This expression is definitely valid
in “dilute solution” approximation: at small levels of intercalation W i = 1 and the
chemical diffusion coefficient is close to the ion one, D i. However, no meaningful
explanation can be offered for the infinite increase of Wi as X approaches unity.
The reason of this failure is related to the lattice-gas model for the distribution of
intercalation sites in which the electrical mobility of Li-ions u i should not be taken
as a constant at high values of X , in contrast to the case of small X . Thus, a prop-
er model for the dependence of ui on X is required to adequately describe kinetic
properties of intercalation compounds.

3.4. The “enhancement factor” and intercalation isotherms

One can derive another expression for the chemical (electron-ion) diffusion coef-
ficient Dei with the use of equations (13), (5), (6) and (8):

Dei = tee
−1uiXdµei/dX, µei = µe + µi . (23)

This formula is still valid for a general case, except for the assumed proportionality
of ci and X .

One needs now to specify the dependence of the ion mobility, ui, and the total
(electron-ion) chemical potential from the charging degree.

For the first problem one can use the argumentation derived for the systems
with a pure ion conductivity [22]. If the ion subsystem is close to the saturation
level one can consider this saturation limit (all possible sites are occupied by lithium
cations) as the background point, to which a dilute lattice gas of vacancies in this
cation lattice is added. Then, the ion conductivity must be proportional to the
concentration of these vacancies, κi ∼ (cm− ci), where the maximum concentration,
cm, is defined in equation (14a). On the other hand, for low charging levels, the
conductivity is proportional to the ion concentration, ci. Thus, the general expression
for the conductivity of intercalated ions must have the form [22]:

κi ≡ ci(1− ci/cm)NAe
2(kT )−1Di(ci), (24)

where the constant multiplier, NAe
2(kT )−1, is chosen to ensure that the unknown

function, Di(ci), approaches to the “component” (ion) diffusion coefficients of the
ions or of the vacancies for low or high values of the charging level, X ≪ 1 or
1−X ≪ 1.

If the transition of an ion between the neighbouring sites in the lattice is indepen-
dent of the presence of the other ions (except for their blocking effects of the sites),
then this function, Di(ci), represent a constant, D◦

i , and the general expression (24)
is reduced to formula (14a).

340



Interpretation of PITT experiments for Li-insertion electrodes

This expression (14a) for the ion conductivity explains the reason of an unex-
pected behaviour of the conventional “enhancement factor”, Wi, in equation (22).
Comparison of equations (14) and (14a) shows that the formally introduced “com-
ponent diffusion coefficient”, Di, represents a function of the ion concentration:

Di = D◦

i (1−X), (25)

i.e. this quantity tends to zero near the saturation limit. As a result, the conventional
enhancement factor defined by equation (15) increases as (1−X)−1, to compensate
this behaviour.

On the contrary, this singularity is removed in the definition of the new “en-
hancement factor”, W ◦

i , defined in equation (15a) which rests finite for both limits
of low and high charging levels.

As an illustration, one can insert expression (21) for the redox capacitance into
equation (15a) to obtain:

W ◦

i = te{1 +X(1−X)cm/ce}. (26)

Its value is close to 1 for the whole range of the intercalation levels if both electron
concentration and its conductivity are much higher than those for ions.

Another important formula relates the electron-ion (chemical) diffusion coeffi-
cient and the “adsorption isotherm”. Combination of equations (24) and (23) results
in the relation:

Dei = teX(1−X)D◦

i (kT )
−1dµei/dX, µei = µe + µi . (27)

Its approximate form for the particular case corresponding to the dominance of
the electronic subsystem (both concentration and conductivity):

Dei = X(1−X)D◦

i (kT )
−1dµi/dX (27a)

was earlier used by McKinnon to emphasize the relation between Dei and intercala-
tion isotherms [6].

A simplest Frumkin-type intercalation isotherm with an interaction constant g
(which is independent of X) has the following form [23,24]:

(e/kT )E = gX + ln(X/(1−X)). (28)

The expression for the chemical potential of Li-ions corresponding to this isotherm
takes into account both the “saturation effect” and interaction between the interca-
lation sites:

µi = µo
i + kT ln(X/(1−X)) + kTgX. (29)

Differentiating µi with respect to X in equation (29) and combining further the
result with equation (27) allows for derivation of the final expression for Dei valid
for the whole range of intercalation levels from 0 to 1 [4,24]:

Dei = D◦

i [1 + gX(1−X)]. (30)
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Equation (30) defines the new “enhancement factor” W ◦

i = Dei/D
◦

i which is related
to the intercalation isotherm, equation (28):

W ◦

i = [1 + gX(1−X)]. (31)

Comparing two “enhancement factors”, namely the classical one, W i (equation (19)
and that related to the intercalation isotherm, W ◦

i (equation (26)), we should note
that they reflect quite different characteristics of mixed-conduction electrodes. Elim-
ination of the potential gradient ∂φ/∂y in equation (3) through the bulk electroneu-
trality condition (equation (7)) resulted in the factor Wi, which reflected the depen-
dence of the ionic flux density ji on the ratios of electronic and ionic mobilities and
concentrations in the “dilute solution” approximation. In contrast, equation (31)
describes mainly the dependence of the new factor W ◦

i on the interaction param-
eter g in the whole range of intercalation levels X . It is seen that independent of
g, W ◦

i = 1 both at very small X and close to saturation, X → 1. For these two
regions Wi = W ◦

i = 1 since as we will show in the next section a simple Frumkin
intercalation isotherm with one single potential drop across the host/solution inter-
face formally corresponds to ci/ce ≪ 1 and te = 1, thus according to equation (19′)
Wi = 1. The physical meaning of W ◦

i is quite different from that of Wi. Since accord-
ing to equation (31) W ◦

i = 1 at g = 0 within the whole range of X , the deviation of
W ◦

i from unity reflects the deviation of the related chemical diffusion coefficient from
the true constant component diffusion coefficient caused by interactions between the
intercalation sites. As was discussed elsewhere, for attractive interactions (g < 0),
W ◦

i < 1 whereas for repulsive interactions (g > 0) W ◦

i > 1. In the case when the
attractive interaction reaches a critical value gcrit = −4, W ◦

i = 0. Within two-phase
co-existence region (as related to solid line in figure 1b), W ◦

i takes formally negative
values.

It follows from the second expression of equation (13) for te ∼= 1 that the ionic
conductivity of the intercalation electrodes can be written in the following way
(similar to the parameterization of the electronic conductivity of electroactive redox-
polymers, see [4]):

κi = CintDei = (Qm/V )Dei(dX/dE), (32)

where V is the volume of the intercalation electrode under study, Qm is the limiting
(maximum) intercalation charge and C int is the differential intercalation capacity –
an important equilibrium characteristic of the intercalation electrode. The quantity
Cint can be easily derived by taking the reciprocal of the derivative of the electrode
potential E with respect to X (the Frumkin isotherm, equation (28)):

Cint = (eQm/kT )[g +X−1 + (1−X)−1]−1. (33)

Substitution of Cint from equation (33) to equation (33) results finally in the follow-
ing expression for κi:

κi = (eQmD
◦

i /kTV )X(1−X). (34)

Equation (34) coincides with equation (14a) if to take into account the dependence
of D◦

i on ci. Surprisingly, it appears that κi is not an explicit function of g. This
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is due to the fact that Cint (equation (33)) is inversely proportional to W ◦

i whereas
Dei depends linearly on W ◦

i (equations (30) and (31), thus the dependence of κi

on g is cancelled. However, g will implicitly affect the dependence of κ i on E since
X = X(g, E), see equation (28). Alternatively, κi = κi(X) relationships can be
converted to the related κi = κi(E) relationships by changing X for E using for this
numerical integration of the reciprocal of C int:

E −Eo = (eQm/kT ) ∫ C
−1
int dX. (35)

Equations (33)–(35) are used in this work for theoretical simulation of κ i vs. E
curves. On the other hand, equation (32) shows that κi can be easily determined
experimentally as a function of E due to the fact that both these quantities Dei and
Cint are calculated using any incremental titration technique such as potentiostatic
or galvanostatic intermittent titration (PITT and GITT, respectively) or electro-
chemical impedance spectroscopy (EIS). We have already discussed in full detail the
particular features of the related experimental procedures appearing during deter-
mination of Dei and Cint for electrodes with highly attractive interactions between
the intercalation sites [24]. Here we only refer to the final form of the equation,
which can be used for the experimental determination of κi by PITT:

κi = (πl2/V Qm∆X)[(It1/2)2/∆E], (36)

where l is the characteristic diffusion length in the finite-space diffusion model. For
thin-film electrodes l is equal to the film’s thickness whereas for porous powdery
electrodes l rather relates to half of the average particle size. ∆E is an applied small
potential increment during which the measurement of the instantaneous current is
carried out. Next potential increment is applied when the current drops to a very
small value (equilibrium state). ∆X is the change of the intercalation level related
to the applied potential increment ∆E.

3.5. Relation of the classical “enhancement factor” Wi to particular forms
of intercalation isotherms

The use of the classical “enhancement factor” Wi in describing solid-state diffu-
sion is relevant only in “dilute solution” approximation and, in fact,W i cannot reflect
interactions between the intercalation sites. However, this factor may be related to
the particular form of the intercalation isotherm relevant to a specific system. Such
a relation is based on the fact that both the isotherm and Wi are functions of the ra-
tio of the bulk concentrations of the electronic and ionic species in the electroactive
material and the stoichiometry of the related association process, which forms the
neutral species as the final result of the insertion process. A detailed analysis of the
shape of isotherms for different stoichiometries of association reactions in the bulk
of electroactive polymer films has been reported previously [25]. Here we will refer
to several simple examples, which can also be relevant to intercalation reactions in
inorganic hosts. In accordance with equation (19) when the host material is highly
electronically conducting (ce ≫ ci, and ue > ui and hence Wi = 1), a complete
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electronic equilibrium takes place across the current collector/host bulk interface.
Therefore, this potential drop will not change with applied potential (the changes in
electron concentration with potential are much smaller than the bulk electron con-
centration itself). This system is characterized by a single potential drop across the
host/solution interface due to the dependence of the chemical potential of Li-ions
on X , equation (29). In this case a simple Frumkin-type isotherm (equation (28))
rigorously describes the E vs. X relationship; the related differential intercalation
capacity is expressed as a function of X by equation (33).

Let us consider another case, which frequently takes place for the hosts possess-
ing semiconductor properties. If ue > ui, as in the former case, but ce = ci, then
te = 1 and Wi = 2 (see equation (19)). Taking into account both the Li-ion and elec-
tron species and assuming 1:1 ratio of their concentrations during the intercalation
we come to conclusion that the both interfaces, i.e. the current collector/host and
host/solution interface, should be polarized, and the changes in the interfacial po-
tentials across these interfaces should be equal [25]. In this case the simple Frumkin
isotherm is no more valid, and we have to use a more general equation instead of
equation (28) [4,23]:

(e/kT )E = gX + ln(X/(1−X))− z−1
i ln[(1−X − zs)/zi]. (37)

The differential intercalation capacity corresponding to this isotherm can be written
with a certain modification of equation (33) [4,23]:

Cint = (eQm/kT ){g +X−1 + [(1−X)−1][zi/(1−X − zs)]}
−1. (38)

Here ze and zi are the charge numbers of the electronic and ionic species whereas
zs is their ratio: zs = −zi/ze. Equation (37) describes explicitly different forms of
intercalation isotherms as a function of zi, i.e. the function of the bulk material
stoichiometry. In particular, the case Wi = 2 may relate to ze = −1, zi = 1 and
zs = 1. As a result, equations (37) and (38) are simplified to the following form:

(e/kT )E = gX + ln[X2/(1−X)], (39)

and
Cint = (eQm/kT )[g +X−1 +X−1(1−X)−1]−1. (40)

Earlier equations similar to (39) and (40) were successfully applied for fitting to the
experimental Cint vs. E curves obtained with thin films of conventional redox [4] and
electronically conducting polymers [25]. One important particular case relates to the
bipolaronic (electronic) species in the bulk of conducting polymers: z e = 2, zs = 0.5
(for zi = −1). The electroneutrality condition in this case requires substitution of
zi for zs in equation (19′). Since ci/ce is obviously 2 in this case, then Wi = 1.5.
In accordance with this value it was previously established that the isotherm for
the bipolaronic species coincides with equation (39) with substitution of the second
term in its right-hand side ln[(X 2/(1−X)] for ln[(X1.5/(1−X)].

Recently, we tried to apply equation (39) for its fitting to experimental charging
curves related to a powdery spinel electrode [26].
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A more general expression for the chemical diffusion coefficient of ions can be
obtained by the modification of equation (30) [4]:

Dei = D◦

i {1 + [g − z−1
i (X − zs)

−1]X(1−X)}. (41)

In the particular case of Wi = 2 (zs = 1, zi = 1, te = 1) equation (41) is reduced to
the form:

Dei = D◦

i {1 + [g + (1−X)−1]X(1−X)}. (42)

Equations (39), (40) and (42) are used in combination with equation (32) in the
following section for theoretical simulation of κ i vs. E-curves for Wi = 2.

3.5.1. Comparison between experimental and theoretically simulated plots
of Li-ion conductivity as functions of the electrode potent ial

Figure 2a-c shows respectively the theoretical plots of C int,Dei and κi as functions
of the electrode potential for a number of values of the interaction parameter g;
equations (33), (30) and (34) were used in this calculation (Wi = 1). The half-
peak width of the differential intercalation capacity peak strongly depends on the
interaction parameter g, as was previously discussed [4,23,24]. At the critical value,
gcrit = −4 (ideal first-order phase transition), the value of Cint at the peak potential
is infinitely high whereas Dei → 0. These features of the Cint and Dei vs. E plots
manifest high intensity of the attractive interaction between the intercalation sites.
It is interesting and practically significant that κ i passes at this potential through the
same maximum as that for the κi vs. E curves calculated for g > −4 (monotonous
charging of the electrode). The length of the two-phase co-existence region on the
potential axis is about 7–8 mV for g = −5 (see curve 5 in figure 2a-c). This region is
centered at the related standard potential. Within the two-phase region C int takes
formally negative values (figure 2a), whereas Dei traces a loop reaching a negative
value of Dei at the standard potential (figure 2b). In contrast, although κi shows
also a loop in the vicinity of Eo, this loop is located near the invariable (with
respect to g) real value for the peak of κi. This opens up the way for the most
precise determination of the component diffusion coefficient D ◦

i since at E = Eo the
entropy factor X(1−X) takes the maximum possible value 0.25 and all of the other
numerical coefficients in equation (34) can be obtained experimentally.

In figure 3a-c we present the same dependencies of Cint, Dei and κi calculated
with the use of equation (40), (42) and (32) for Wi = 2 (the related intercalation
isotherm is described by equation (39)). The related critical value of g is g crit = −5.82
instead of gcrit = −4 for the simple Frumkin isotherm (equation (28), W i = 1).
Qualitatively, the curves in figure 3a-c reveal similar changes in their shape with g,
as in the case of Wi = 1 (see figure 2a-c); however, the shape of the corresponding
curves is less symmetrical with respect to Eo compared to rigorously symmetrical
curves in figure 2a-c. An interesting consequence of this asymmetry in the shape is
as follows: when X approaches unity, the corresponding Dei takes values twice larger
than that for X = 0. This is an expected result since the limit of Dei at X → 1 does

345



M.D.Levi, D.Aurbach, M.A.Vorotyntsev

0

10

20

30

40

50

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

E - Eo / V

C
in

t 
/ C

V
-1

0

2

-2 -4

-5

a

-0.4

0

0.4

0.8

1.2

1.6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

E - Eo / V

D
i/D

o

2

0

-2

-4

-5

b

0

0.1

0.2

0.3

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

E - Eo / V 

κ i

�
��
�
�
	

�
�



o�

2

-2

0

-4

-5

c

Figure 2. Potential dependence of theoretically simulated curves related to a
simple Frumkin-type isotherm (Wi = 1): the differential intercalation capacity,
Cint (a), equations (33) and (35); the dimensionless chemical diffusion coefficient,
Dei/Di (b), equations (30) and (35); and the dimensionless partial ionic conduc-
tivity κi(kTV/eQmD◦

i ) (c), equations (32) and (35). Numbers at curves denote
the value of the interaction parameter g.
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Figure 3. Potential dependence of theoretically simulated curves related to a
modified isotherm for Wi = 2, equation (39): the differential intercalation ca-
pacity, Cint (a), equations (40) and (35); the dimensionless chemical diffusion
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i ) (c), equations (32) and (35). Numbers at
curves denote the value of the interaction parameter g.
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Figure 4. Potential dependencies of Cint and Dei (a) and κi (b) calculated for
a vacuum-deposited V2O5 film 1600 Å thick. Broken horizontal line relates to
average value of D◦

i obtained from the both peaks of κi.
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not depend any longer on the factor (1 − X) and approaches the theoretical limit
2Dei(X = 0) (see equation (42)).

Figure 4a-c shows the plots of Cint, Dei and κi vs. potential obtained with 1600 Å
thick vacuum-deposited V2O5 film. The characteristic of this thin-film electrode,
which does not contain conductive additives is the most appropriate for compar-
ison with that simulated theoretically. All other experimental details related to
PITT measurements have been previously reported [9]. κi was calculated using
equation (36), the characteristic diffusion length l was assumed to coincide with
film’s thickness. Under these assumptions, the values of κi ranged from 1 · 10−8 to
5 · 10−8 Ω−1cm−1. This range of κi values is five orders of magnitude less than the
specific electronic conductivity of the V2O5 film, κe = 1.6 · 10−3 Ω−1cm−1 [8], thus
κe ≫ κi , and hence te = 1.

Both two peaks on the Cint and Dei vs. E curves are suggested to be centered
around 3.2 and 3.4 V (vs. Li/Li+) related to first-order phase transitions. In fully
delithiated state (small X) V2O5 consists of pure orthorhombic α-phase, which is
transformed to ε-phase via a first-order phase transition (0.1 < X < 0.35, the peak
around 3.4 V (vs. Li/Li+)). The ε-phase undergoes only small structural changes in
the range of 0.35 < X < 0.5 (monotonous discharge in between the two phases).
With further increase in X , ε-phase co-exists with a δ-phase (0.5 < X < 0.9) with
the related peak around 3.2 V (vs. Li/Li+). At X = 1 the lithiated V2O5 presents
almost pure δ-phase.

If the actual attractive constant g would be equal to the critical value gcrit = −4,
then the half-peak widths of both Dei and κi vs. E curves should be as small as
11 mV (see figure 2b and 2c). However, practically as follows from figure 4a and
4b, Dei and κi vs. E curves are much more broader as compared not only to the
theoretical curves but also to the experimental C int vs. E curves. This emphasizes
once again (see also our previous discussion on the measurements of the chemical
diffusion coefficient within two-phase co-existence regions [13,24]) that the related
Cottrell slopes, It1/2 required for calculation of κi , equation (36), can be distorted
due to an Ohmic potential drop or kinetic limitations (either interfacial or controlled
by a nucleation step [27]). However, despite this complication, we made an attempt
to evaluate the values of the component coefficient D◦

i from the both two peaks at
3.4 and 3.2 V (vs. Li/Li+) using equation (34). The values of D◦

i obtained were close
to each other: 1.9 · 10−11 and 2.2 · 10−11 cm2/s, respectively. A broken horizontal
line in figure 4a related to the average value of the component diffusion coefficient
of Li-ion calculated from the both peaks: D◦

i = 2.05 · 10−11 cm2/s. As is seen from
figure 4a, this value is fully compatible with equation (30). In fact, the minima on
the Dei vs. E curve, related to two-phase co-existence regions (highly attractive
interactions between the intercalation sites), are located below this line whereas the
values of D◦

i related to the single-phase region (continuous discharge) appear to be
slightly above the line. In the framework of the simple lattice gas model presented
above this indicates that in the single-phase region separating the two regions of
two-phase co-existence, repulsion dominates among the interaction forces between
the intercalation sites (equation (30) with g > 0, compare with curve 2 in figure 2b).
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Later similar feature, but in much more pronounced form, will be reported and
discussed for LiXCoO2, LiXNiO2 and LiXCo0.2Ni0.8O2 electrodes.

Here one important advantage of the proposed method of calculation of Dei

should be emphasized. From figure 4a it is seen that at the very beginning of the
Li-intercalation (X < 0.1, E > 3.425 V (vs. Li/Li+)) and at the end of the process
(X > 0.9, E < 3.155 V (vs. Li/Li+)), the values of Dei, shown as filled squares, ap-
pear to heavily deviate upwards from the horizontal line. These points relate to very
small values of Cint such that it is difficult to measure precisely the changes in X and
in the Cottrell slope It1/2 for the neighbouring potential increments (equations (32)
and (36)). Practically, both these two quantities when related to a thin-film elec-
trode containing a few milligram of the host material can be severely distorted by
some parasitic background currents. The ratio between the incremental intercalation
charge and the parasitic one is clearly increased in the vicinity of the C int maxima.
Relative error when measuring Dei in the vicinity of the minima in figure 4a did not
exceed several percents However, for some extreme situations, within the region of
two-phase co-existence, the typical Cottrell-like behaviour can be completely masked
by some other than diffusion rate-determining steps. Such a behaviour has been re-
cently reported for the Li-insertion-deinsertion in the vicinity of the 3 V plateau on
the charging-discharging curves of LiXMn2O4 spinel, which relates to slow droplet
formation of a new phase in the bulk of the old one [27]. Another important conclu-
sion resulting from figure 4a is that the determination of D ◦

i described above aids
significantly to evaluate the reliability of the measured D ei for the two least precisely
characterized regions related to either small X or in the vicinity of unity.

Similar to thin-coated V2O5 electrode, we measured κi vs. E plots for a large
number of composite carbonaceous anodes and transition metal cathodes. Figure 5a
shows three main peaks on both Cint and log Dei vs. E curves obtained with a
composite graphite electrode [11]. From figure 5b one can see the relevance of these
peaks to the maxima on the κi vs. E curve. The values of D◦

i for three major two-
phase co-existence regions were obtained similar to the case of the V2O5 electrode.
D◦

i was found to be 1.6 · 10−9, 1.0 · 10−9 and 2.0 · 10−9 cm2/s for the following
two-phase coexistence regions: diluted phase I – phase IV (the most anodic peak),
phase III – phase II (the middle peak) and phase II – phase I (the less positive
peak). Thus the component diffusion coefficient of Li-ions appears to be constant
within a factor of 2 for the whole range of X .

Figure 6a presents Cint and logDei vs. E curves for a disordered carbon electrode
obtained from Mitsubishi. In contrast to graphite, a maximum in the D vs. E
curve rather than a minimum is clearly seen in this case. Our model calculations
predict the appearance of the maximum on the Dei vs. E curves as a result of
the effective repulsive interaction between the intercalation sites. We speculate that
the specific disordered structure of this carbonaceous material promotes effectively
repulsive interactions between the intercalation sites [12]. In the case of graphite, a
minor contribution of repulsive interactions between the Li-ions on the neighbouring
graphene planes is overcome by the highly attractive intra-layer interactions [6]. The
lack of order in the disordered carbon obviously diminishes the role of the latter
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Figure 5. Potential dependencies of Cint and Dei (a) and κi (b) calculated for a
thin composite graphite electrode.
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Figure 6. Potential dependencies of Cint and Dei (a) and κi (b) calculated for a
thin composite disordered carbon electrode NX − 1.
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factor. As is seen from figure 6b, κi of the Li-ions in the disordered carbon varies
in the range from 1 · 10−8 to 8.4 · 10−7Ω−1cm−1. Using equations (34) and (36) we
calculated D◦

i from the value of κi related to the maximum of the curve shown in
figure 6b: D◦

i turned out to be equal to 3.3 · 10−11 cm2/s. This component diffusion
coefficient is shown as a broken horizontal line in figure 6a. In agreement with the
model proposed the measured chemical diffusion coefficient represents a bell-shaped
curve, although not ideally symmetric, located above the horizontal line within the
whole range of intercalation potentials (compare with figure 2, curve with g = 2).

Figure 7a and b shows Cint, logDei and κi vs. E curves calculated for a thin pow-
dery LiXMn2O4 spinel electrode [27]. The data are qualitatively similar to that for
the V2O5 electrode. Two intercalation steps of Li-insertion into the host lattice are
manifested by two rather sharp peaks on the Cint vs. E curve and the corresponding
minima on the logDei vs. E curve. These steps reflect two first-order phase transi-
tions in cubic spinel related to the ordered insertion of Li-ions into (8a) tetrahedral
sites. Electronic conductivity of LiMn2O4 does not show any insulator-to-metal tran-
sition on delithiation, keeping values of the order of κe = 10−5 Ω−1cm−1 typical of
semiconductors. Comparing this value with the values of the specific ionic conduc-
tivity of Li-ions in the range from 10−11 to 10−10 Ω−1cm−1 (see figure 7b), one can
conclude that te = 1 and that the mobility of electrons in the LiXMn2O4 host is
much higher than that of Li-ions. Two distinct and rather sharp maxima are seen
on the κi vs. E curve of the LiXMn2O4 electrode, related to the peaks on the Cint

and logDei vs. E curves. The component diffusion coefficient D◦

i calculated from
the peaks on the κi vs. E curve was close to 1.3 · 10−11 cm2/s (logD◦

i = −10.9).
This value is compatible with equations (30) and (31): as is seen from figure 7a, the
values of Dei drastically decrease within the range of potentials related to the peaks
of Cint (W

◦

i < 1). Somewhat higher values of Dei compared to D◦

i in the range of
potentials from 3.75 to 3.90 V (vs. Li/Li+) are probably caused by the decrease in
precision of the measured PITT data: they relate to small changes in the C int and
the Cottrell slopes It1/2 (i.e. at X ≪ 1 and in the vicinity of X = 1).

Figure 8a and b shows the potential dependencies of Cint, logDei [13] and κi for a
composite LiXCoO2 electrode, which is of great interest in view of the insulator-to-
metal transition occurring after partial Li-ion depletion from the electrode (X de-
creases from 1 to 0.75) [13]). The related potential range corresponds to co-existence
of two hexagonal phases, followed by a single-phase region as X increases to 0.5 [28].
We estimated the change in the specific electronic conductivity κe from the total
measured electronic conductivity related to the potential range from 3.0 to 4.3 V
(vs. Li/Li+): κe increases from 10−10 to 4 · 10−6 Ω−1cm−1. This increase occurs at
the very beginning of the Li-deintercalation, thus in the vicinity of the peak in
Cint vs. E curve κe = 4 · 10−6 Ω−1cm−1 is much larger than the maximum value
of κi = 10−8 Ω−1cm−1 (see figure 8b). Hence in this potential range te = 1. The
component diffusion coefficient D◦

i was estimated as described above; it turns out
to be D◦

i = 2.8 · 10−11 cm2/s. It is interesting that within the single-phase region,
i.e. from ca. 3.95 to 4.15 V (vs. Li/Li+) the specific ionic conductivity κi increases
once again (see figure 8b), but in this case the peak of κi is rather broad. On the

353



M.D.Levi, D.Aurbach, M.A.Vorotyntsev

0

0.05

0.1

0.15

0.2

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

E / V (vs . Li/Li+)

C
in

t /
 F

-11.8

-11.6

-11.4

-11.2

-11

-10.8

-10.6

-10.4

lo
g 

D
i /

 c
m

2  s
-1

LixMn2O4

Do=1.3x10-11 cm2s-1

a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

E / V (vs . Li/Li+)

κ i
x1

010
��
� Ω

-1
��
�

-1

LixMn2O4
b
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other hand, the dependence of Cint on the potential in this region is also rather flat
whereas logDei tends to pass through a broad maximum in the vicinity of E =
4.2 V (vs. Li/Li+), see figure 8a. Such behaviour of κi, Cint and Dei is compatible
with the positive value of the interaction constant g; this particular feature of the
LiXCoO2 electrode qualitatively resembles the shape of the curve with g = 2 in fig-
ure 2a-c. Note a very remarkable feature in figure 8a: the broken line corresponding
to D◦

i = 2.8 · 10−11 cm2/s marks the boundary, which separates the region of the
two-phase co-existence with the minimum in log Dei (the region from 3.8 to 4.0 V
(vs. Li/Li+) from the single-phase region in the potential range from 4.0 to 4.3 V
(vs. Li/Li+). This single-phase region relates to the effective repulsive interactions
with a flat minimum on the logDei vs. E curve centered at ca. 4.2 V (vs. Li/Li+).
The trend to exhibit effective repulsive interactions between the intercalation sites
around X = 0.5 becomes even more pronounced when turning from LiXCoO2 to
LiXNiO2 and LiXCo0.2Ni0.8O2 electrodes.

The data related to the latter two electrodes are presented in figure 9a and 9b
and figure 10a and 10b, respectively. We have previously reported [29] that this
pair of electrodes may serve as an example of a clear correlation between their
crystallographic structure and the electrochemical behaviour. In fact, considering
the whole range of intercalation potentials from 3.2 to 4.1–4.2 V (vs. Li/Li+), in
which X decreases from unity to ca. 0.3–0.4, we note that Cint vs. E curve for
the LiXCo0.2Ni0.8O2 electrode is generally similar to the smoothed curve for the
LiXNiO2 electrode (compare figures 10a and 9a, respectively). The curve related to
the former figure contains peaks, which can be regarded as heavily flattened peaks
of the LiXNiO2 electrode. Such a behaviour is in complete correspondence with
the sequence of first-order phase transition occurring during Li-deintercalation from
LiXNiO2 and with essentially single-phase reaction typical for LiXCo0.2Ni0.8O2. On
the phase diagrams shown on the bottoms of figures 9a and 10a H1 and H2 denote
two different hexagonal phases whereas M stands for the corresponding monoclinic
phase (for details see [29]). In strict correspondence with rather sharp peaks on the
Cint vs. E curve, deep minima on the logDei vs. E curves represent a characteristic
feature of the LiXNiO2 electrode. Changes in the Cint and logDei vs. E curves
related to the LiXCo0.2Ni0.8O2 electrode are much smoother compared to that for
the LiXNiO2 electrode, which is in accordance with the single-phase nature of the
Li-deintercalation reaction for the former electrode.

The above mentioned specific difference in the electroanalytical behaviour of
LiXNiO2 and LiXCo0.2Ni0.8O2 electrode is also clearly reflected in the corresponding
κi vs. E plots. A rather broad minimum in κi for the LiXCo0.2Ni0.8O2 electrode
around E = 3.85 V (vs. Li/Li+) looks like a heavily smoothed κi vs. E curve for
the LiXNiO2 electrode (compare figures 9b and 10b). The local peaks on the latter
curve correspond well with the peaks on the related Cint vs. E curve.

Similar to all the above considered Li-intercalation electrodes, we calculated the
values ofD◦

i in the maxima of κi, E curves (see figures 9b and 10b), which turned out
to be 2.1 ·10−12 and 1.6 ·10−12 cm2/s for LiXNiO2 and LiXCo0.2Ni0.8O2, respectively.
Logarithms of D◦

i are shown in figures 9a and 10a as horizontal broken lines. Once
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thin composite LiXNiO2 electrode.

357



M.D.Levi, D.Aurbach, M.A.Vorotyntsev

3.5 3.6 3.7 3.8 3.9 4.0 4.1

0

1

2

3

C
in

t /
 F

E / V (vs. Li I Li+)

3.5 3.6 3.7 3.8 3.9 4.0 4.1

-17

-16

-15

-14

-13

-12

-11

log Do = -11.8

a

4.00 V

3.70 V

3.57 V

LixCo0.2Ni0.8O2

H1

 lo
g  

D
i /

 c
m

2  s
-1

0

0.5

1

1.5

2

2.5

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

E / V (Li/Li+)

κ i
x1

0
9 / Ω

-1
 c

m
-1

b

Figure 10. Potential dependencies of Cint and Dei (a) and κi (b) calculated for
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358



Interpretation of PITT experiments for Li-insertion electrodes

again, as in the case of LiXCoO2 electrode, these horizontal lines separate two-phase
co-existence regions or the region with essentially high attractive interaction between
the intercalation sites (the minima down from this line) from the single-phase region
with the dominating repulsive interactions between the intercalation sites. Certainly,
this is a remarkable and expected result in the framework of the proposed model
(compare with figure 2b). Moreover, the broad peaks on the κi vs. E curves for the
LiXNiO2 and LiXCo0.2Ni0.8O2 electrodes centered at ca. 3.85 V (vs. Li/Li+) seem to
be in excellent agreement with the potential dependence of the Li-ion charge transfer
resistance, Rct for the same electrodes measured using EIS [29]. In fact, we observed a
rather sharp minimum on the charge-transfer resistance vs. potential curve at about
3.80–3.85 V (vs. Li/Li+). This agreement is not of course an accidental one since
we have shown that R−1

ct ∼ X(1−X) [29]. Thus R−1
ct and, hence the corresponding

ionic exchange current density are proportional to the product X(1−X), as is the
case of κi (compare with equation (34)). This correlation (proportionality) between
io and κi can be easily appreciated: both kinetic quantities, io and κi depend not
only on the concentration of the reacting (or diffusing, as in the case of κi) species
but also on the concentration of the unoccupied sides. In the case of κi this is
true because the species move (by hopping) from occupied to unoccupied sites. As
related to the exchange current density, it reaches the maximum value at comparable
concentrations of the both reacting species (here, occupied and unoccupied sites);
at any deviation from the standard potential, corresponding to the maximum value
of the factor X(1−X), the supply of either reagent is insufficient to support a high
reaction rate.

In conclusion, table 1 summarizes the values of the component diffusion coeffi-
cient D◦

i of a large variety of the Li-insertion anodes and cathodes obtained from the
maximum values of the partial Li-ion conductivity, which was measured using one
and the same incremental technique (here, PITT). Since two characteristic lengths
are involved in the calculation, the diffusion length and the thickness of the elec-
trode, which do not necessarily coincide for the porous composite electrodes, we
believe that these values can be compared with a precision better than one order
of magnitude. It is seen from the table that D◦

i for the Li-ions in graphite has the
largest value whereas for the rest of the materials studied D◦

i varies in the range
between 10−11 and 10−12 cm2/s.

4. Conclusions

The classical “enhancement factor” Wi, characterizing the ratio of the chemi-
cal and component diffusion coefficients, Dei/Di, for mixed-conduction electrodes in
“dilute solution” approximation was compared with the new “enhancement factor”
W ◦

i , related to the same ratio but derived for a simple lattice-gas model approxima-
tion with interactions between the intercalation sites. The classical “enhancement
factor” Wi introduced by Weppner and Huggins depends on the ratios of the con-
centrations and mobilities of all electronic and ionic species participating in the
mass-transport through a mixed-conduction electrode. The concept of Wi is espe-
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Table 1. Component diffusion coefficient D◦

i (cm2/s) for a variety of Li-insertion
electrodes determined by PITT, equations (14) and (36).

Electrode D◦

i (cm2/s)

Synthetic graphite KS-6 1.0− 2.0 · 10−9

Disordered carbon NX-1 3.3 · 10−11

LiXV2O5 (vacuum-deposited film) 1.9− 2.2 · 10−9

LiXMn2O4 (composite) 1.3 · 10−11

LiXCoO2 (composite) 2.8 · 10−11

LiXNiO2 (composite) 2.1 · 10−11

LiXCo0.2Ni0.8O2 (composite) 1.6 · 10−12

cially useful for determination of thermodynamic and kinetic properties of various
Li-alloys. We have extended the classical approach to a more general model, which
implies the connection of the new “enhancement factor” W ◦

i with a family of in-
tercalation isotherms of the Nernstian and non-Nernstian type, depending on the
stoichiometry of the association reaction between the electronic and ionic species in
the electrode bulk. W ◦

i reflects quite a different property, as compared to that of
Wi, namely, the effect of interactions between the intercalated sites on the chemical
diffusion coefficient of Li-ions. Thus W ◦

i describes the deviation of the intercalation
isotherm from the Langmurian one.

In the case of “dilute solution” approximation the partial ionic conductivity is
parameterized by a quantity proportional to the product of the ionic electric mobil-
ity (and, hence, the component diffusion coefficient Di) and the concentration. In
contrast, the partial ionic conductivity κi within the lattice-gas approach was shown
to be parameterized by a quantity proportional to the product of the chemical diffu-
sion coefficient Dei and the differential intercalation capacity C int. Experimentally,
κi can be determined as a function of potential using one of the available small-
amplitude technique, e.g. PITT. Comparing the height of the peaks on the experi-
mental κi vs. E curves with the theoretical equation, we have proposed a simple and
reliable method of determination of the component diffusion coefficient D ◦

i . Using
7 different intercalation electrodes (synthetic graphite, disordered carbon, LiXV2O5,
LiXMn2O4, LiXCoO2, LiXNiO2 and LiXCo0.2Ni0.8O2) we were able to discriminate
between the potential regions, in which either attractive or repulsive interactions
between the intercalation sites play the dominant role. In addition, the proposed
method aids in recognizing the unreliable points on the Dei vs. E curve related
to the very beginning and the end of the intercalation process. We have found a
direct correlation of the shape of the κi vs. X curve with the dependence of the
ion-exchange current density vs. X . This correspondence is based on the common
entropy factor X(1 − X) influencing the both above quantity. Of principle impor-
tance is the correlation between the differential intercalation capacity curves, C int
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vs. E and the partial Li-ion conductivity vs. potential curves (both are bell-shaped
curves), which has been observed for all 7 intercalation electrodes under considera-
tion. This correlation means that the differential intercalation capacity is controlled
by availability of sites for the Li-ion insertion and not by availability of sites for
insertion of charge counter-balancing electronic species. This conclusion is in agree-
ment with the reported relatively high partial electronic conductivity of the most of
Li-insertion electrodes under consideration.
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Інтерпретація експериментів з застосуванням

техніки з переривистим потенціалом для різних

літієво-інтеркаляційних електродів

М.Д.Леві 1 , Д.Аурбах 1 , М.А.Воротинцев 2

1 Хімічний факультет, Університет Бар-Ілан, Рамат-Ґан 52900, Ізраїль
2 Факультет природничих наук, Бурґундський уніветситет,

бульв. Габріель 6, 21000 Діжон, Франція

Отримано 15 листопада 2001 р.

В цій роботі ми порівнюємо два різних підходи для розрахунку під-
силюючого фактора Wi , ґрунтуючись на його означенні як співвідно-
шенні коефіцієнтів хімічної та компонентної дифузії для компонент в
електродах із змішаною провідністю. Ці підходи беруть свій початок
від моделей “розведеного розчину” або “ґраткового газу” для іон-
них систем. Перший з цих підходів застосовний лише у випадку ма-
лих змін іонної концентрації, тоді як другий дозволяє розглядати ін-
теркаляції у широкому діапазоні рівнів. Коефіцієнт компонентної ди-
фузії іонів літію був визначений для серії анодів і катодів інтеркальо-
ваних літієм. Був означений новий “підсилюючий фактор” для іонно-
го транспорту та встановлений його зв’язок з інтеркаляційною теп-
лоємністю та ізотермою інтеркаляції. Спостерігалась кореляція між
залежностями диференціальної ємності від потенціалу та парціаль-
ної іонної провідності від потенціалу. Це розглядається як доказ того,
що інтеркаляційний процес контролюється доступністю центрів для
розміщення іонів Li, а не одночасним розміщенням збалансовуючих
електронних компонент.

Ключові слова: літієво-іонні батареї, бінарні компоненти,

коефіцієнти хімічної дифузії, іонна провідність, модель ґраткового

газу

PACS: 84.60.Dn, 66.30.Dn
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