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Thermodynamic functions of the Mitsui model with bimodal random field
are calculated in the mean field approximation for long–range interac-
tions with an exact treatment of the intracell interaction of pseudospins.
Conditions of the appearing of the first order phase transition between
nonequivalent nonpolar phases or the possibility of phase separation are
investigated.
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1. Introduction

A crystalline system formed by two sublattices of pseudospins in equal value lon-
gitudinal fields with opposite signs (Mitsui model) affected by vacancies randomly
situated in the third sublattice placed in the symmetrical position is considered.
The vacancy influence is modelled by the random fields with the bimodal distribu-
tion acting onto pseudospins. Both equilibrium and nonequilibrium distributions of
vacancies are considered.

This model is of pragmatic interest due to the possibility of describing the apex
oxygen – chain oxygen subsystem in nonstoichiometric YBa2Cu3O7−x high–Tc su-
perconductor. In the framework of the model, anharmonic vibrations of apex oxygen
ions in double wells [1–3] are described by pseudospins [4] and chain oxygen vacancies
give rise to the random field.

Main goals of the present paper are: to consider the effect of an internal lon-
gitudinal random field on thermodynamics of Mitsui model; to propose a reliable
approach for calculating average pseudospin values which takes into account a pre-
sumably strong interaction of pseudospins from different sublattices in the same cell;
to investigate a phase diagram of the model and to establish the regions of model
parameter values where the system has got phase transitions or becomes unstable
(manifests a bistable behaviour [5] or a phase separation).
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2. Nonequilibrium vacancy distribution

The Hamiltonian of the two–sublattice pseudospin model under consideration is
as follows

H = −
∑
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(2.1)
Here Sz

αi = ±1

2
are the values of pseudospin z–component (which corresponds, e.g.

to two possible positions of anharmonic O(4) ion) from α sublattice (α = 1, 2) in
the i–th unit cell. The first term has a meaning of interaction with some internal
field acting on pseudospins of different sublattices in the opposite directions. The
two next terms describe interactions between pseudospins located in the same and
in the different sublattices.

The random field probability distribution looks like

P (hi) = cδ(hi − h) + (1− c)δ(hi − hvac) =
2

∑

n=1

pnδ(hi − hn), (2.2)

where p1 = c and p2 = 1−c. The correlations between random fields on different cells
are not included. For this reason such a distribution function can be applied in the
case of YBa2Cu3O7−x at sufficiently small values of x (ortho–I phase, x<0.15), when
the ordering processes of vacancies have not yet taken place and its distribution is
random.

Phase transitions in the Mitsui model may be analyzed in the mean field approx-
imation (MFA) and in the cluster approximation [6–8]. If an interaction between the
nearest neighbours from different sublattices is presumed to be significant it should
be treated separately and a cell formed by the nearest pseudospins from different
sublattices with the same site index should be considered as the basic one. To do this
the basis of four states of the pair of pseudospins in the cell |S z

1iS
z
2i〉 is introduced

[9]

|1〉 = |++〉, |2〉 = |+−〉, |3〉 = |−+〉, |4〉 = |− −〉. (2.3)

As the next step, pseudospin variables are expressed in terms of Hubbard operators
acting in the space of these states. Now one can treat intracell interactions exactly
while intercell interactions can be treated in the MFA.

The full (thermodynamical and configurational) averaging is made in the MFA
manner. In particular this means that the acting on the site mean field does not
depend on the configuration of environment [10]. As a result, a set of simultaneous
equations for variables η and ξ is obtained
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Figure 1. The transition temperature
Θc as a function of the concentra-
tion c (solid lines) at various values
of parameters j (on the left panel j =
−0.03; on the right panel j = −0.05)
and h ( a) h = 0.04; b) h = 0.08;
c) h = 0.12). Values of other param-
eters are a = −0.9, hvac = −0.4.
Dashed lines indicate boundaries of
stability regions of metastable phases.
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Figure 2. Regions where a first or-
der phase transition between nonpo-
lar phases take place at the change of
temperature (most of subregions are
of a line width in the picture scale).
Values of other parameters are j =
−0.05, a = −0.9, hvac = −0.4.

Here all parameters pertaining to energy
are expressed in dimensionless quantities
by normalization on j12(0) + j11(0). As a
rule the set of simultaneous equations (2.4)
has several solutions. It is necessary to take
those of them which correspond to the min-
imum value of the free energy F of the sys-
tem per site

F = η2 − aξ2 −
1

β

∑

n

pn ln
4

∑

k=1

exp(βλnk).

(2.5)
The ordinary Mitsui model has two

phases: a polar phase with noncompen-
sated average pseudospin projections from
different sublattices and a nonpolar phase
with mutually compensated ones (see [6–8]
and references therein). A new feature of
the model with random field hi considered
here is a possibility of appearing and co-
existing of nonequivalent nonpolar phases
(average projections of pseudospins in sub-
lattices are compensated in different ways:
e.g. |↑↓〉 or |↓↑〉 which corresponds to the
opposite signs of the average ξ).

The polar phase differs from the nonpo-
lar qualitatively because they correspond
to a different symmetry of the system.
They are separated by the first or the
second order phase transition line on the
phase diagram. Nonpolar phases are of
identical symmetry and differ only quan-
titatively. Thus, only the first order phase
transition ending at the critical point,
where this difference vanishes, is possible
between them and not the average ξ but
its deviation ∆ξ = ξ − ξc from the value
at the critical point has the meaning of a
Landau order parameter.
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Figure 3. The transition temperature Θc as a function of the concentration c at
various values of parameters a at j = 0 (a) and j at a = −1.1 (b). Values of other
parameters are h = 0.1, hvac = −0.4.

Depending on values of the system parameters the phase diagram can undergo
qualitative changes. The region of existence of the polar phase narrows not only
when j becomes negative but also at a→−1 and finally as it has been mentioned
above a line of a first order phase transition between nonpolar phases appears instead
(figure 1). Depending on the values of fields h and hvac either one (figure 1a) or two
(figure 1b,c) regions of polar phases (or lines of the first order phase transition)
can exist. A case, when at temperature Θ = 0 two nonpolar phases exist and the
parameter ξ is equal to − 1

2
(c < c∗

1
) or 1

2
(c > c∗

2
), is shown on the figure 1a. The

increase of the field h value leads to the appearance of an intermediate nonpolar
phase with ξ = c − 1

2
between them. Analysis of the phase diagram at Θ = 0 and

numerical calculation indicate that the increase of h at the fixed value of hvac extends
the distance between phase transition regions (figure 1b,c). In the vicinity of the
first order phase transition line each of the phases can exist as a metastable phase.
Boundaries of their stability regions can be obtained by locating the extrema of

Ω

µ

µ

Figure 4. Thermodynamical functions of
the system with equilibrium vacancies in
the cases µ = const (a) and c = const
(b). Values of parameters are j = −0.05,
a = −0.9, h = 0.08, hvac = −0.4, Θ =
0.21.

parameters η and ξ dependencies on the
concentration c (figure 1). These bound-
aries also indicate the regions of possible
hysteresis phenomena in real systems.

As one can see in figure 1, for the
fixed field h there is a certain region of
concentration values, where the system
has a first order phase transition at the
change of temperature. For a fixed con-
centration there is an analogical region
of the field h values. A joint diagram
(figure 2) shows that the regions of c and
h values, where phase transitions take
place at change of temperature, are nar-
row.

A subsequent increase of an absolute
value of the parameter a strengthens the acting on pseudospins mean field. As a
result a concentration region, where the phase transition exists, narrows which is
illustrated in figure 3a at j = 0 and a < −1 (j12 < 0). The increase of the parameter j
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absolute value has got a different effect on the shape of the phase diagram (figure 3b);
in this case the reentrant phenomena take place which is not surprising for the Mitsui
model.

3. Equilibrium vacancy distribution

Θ

µ

Figure 5. The transition temperature Θc

as a function of the chemical potential
µ. Values of other parameters are j =
−0.05, a = −0.9, hvac = −0.4.

In this case one should explicitly
take into account the third sublattice.
The longitudinal internal field hi de-
pends here on the occupation number
ni of the particle on the site i:

hi = hni + hvac(1− ni). (3.1)

Going to the grand canonical ensemble
we add to the Hamiltonian (2.1) a term

H ′ = H − µ
∑

i

ni, (3.2)

where µ is the chemical potential of par-
ticles.

The basis of states in the cell
|Sz

1iS
z
2ini〉 here additionally includes a particle occupation number. Hence it expands

to eight states:

|1〉 = |++1〉, |2〉 = |+−1〉, |3〉 = |−+1〉, |4〉 = |− −1〉, (3.3)

|1̃〉 = |++0〉, |2̃〉 = |+−0〉, |3̃〉 = |−+0〉, |4̃〉 = |− −0〉.

After calculations similar to those made in section 2 the set of equations for param-
eters η and ξ looks like
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Average number of particles per site is expressed as

c = [exp(βλ1) + exp(βλ2) + exp(βλ3) + exp(βλ4)]

[

∑

k

exp(βλk)

]

−1

. (3.5)
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θ

Figure 6. The transition temperature
Θc as a function of the concentration c

(solid lines) at various values h ( a) h =
0.04; b) h = 0.08; c) h = 0.12). Val-
ues of other parameters are a = −0.9,
j = −0.05, hvac = −0.4. Dashed lines
indicate boundaries of phase separation
region.

Hereinafter the two main cases will
be considered: µ = const, c is calculated
from expression (3.5) and c = const, re-
lation (3.5) becomes an additional equa-
tion in the set (3.4). Solutions of the set
(3.4) with the lowest value of grand ther-
modynamical potential Ω per site

Ω = η2 − aξ2 −
1

β
ln

∑

k

exp(βλk) (3.6)

corresponds to the ground state of the
system in the case of µ = const while for
c = const the set (3.4) after substitution
of µ from equation (3.5) becomes iden-
tical to the set (2.4) and the criterium
of the minimal free energy F = Ω + µn

is applied.

The basic features of thermodynam-
ics in those cases are illustrated in fig-
ure 4. For µ = const the system has a
first order phase transition at the change
of µ or h (figure 5; the dependence of Θc

on h is very similar) or at the change of
temperature at certain values of these
parameters. For c = const the possibil-
ity of the phase transitions at the change
of c also exists but they are located in-
side the phase separation region (fig-
ure 6) and hence do not take place (the
limits of this region [c1, c2] can be ob-
tained by applying the Maxwell rule to
the dependence µ(c) or by investigating the values of c at which the free energy
F (c) for a phase separated system is lower than for a homogeneous one). Similar
behaviour has been reported for the one–sublattice pseudospin–electron model [11].

4. Conclusions

Unlike the ordinary Mitsui model the system with the bimodal random field can
have various possible phases which correspond to different arrangements of pseu-
dospins: nonequivalent nonpolar phases with mutually compensated pseudospins of
different sublattices and polar phase with noncompensated pseudospins.

In the case of nonequilibrium vacancy distribution for certain regions of vacancy
concentrations the system has got one or two first order phase transitions between
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nonpolar phases. This first order type of phase transitions leads to a bistable be-
haviour in real systems. In the case of equilibrium vacancy distribution, c = const
the system becomes phase separated in a certain region of parameters.

This model is of practical interest due to the description of the apex oxygen –
chain oxygen subsystem in nonstoichiometric YBa2Cu3O7−x high–Tc superconduc-
tor.

This work was supported in part by the International Soros Science Education
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Investigations of Ukrainian Ministry in Affairs of Science and Technology, project
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Фазові переходи нового типу в моделі Міцуї в

бімодальному випадковому полі

І.В.Стасюк, О.В.Величко

Інститут фізики конденсованих систем НАН Укpаїни,

79011 Львів, вул. Свєнціцького, 1

Отримано 25 грудня 1998 р.

Термодинамічні функції моделі Міцуї в бімодальному випадковому

полі отримано в наближенні середнього поля для далекосяжних вза-

ємодій при точному врахуванні взаємодії псевдоспінів у межах комір-

ки. Вивчаються умови появи фазового переходу першого роду між

нееквівалентними неполярними фазами та явища фазового розша-

рування.

Ключові слова: модель Міцуї, випадкове поле, вакансії, фазові

переходи, ВТНП
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