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By considering the variation of the grand potential functional Ω with re-
spect to small density fluctuations δρα(1) we can determine the phase in-
stability of a system from the correlation functions. Using the reference hy-
pernetted chain (RHNC) approximation the correlation functions of an ion-
dipole mixture have been calculated. With the obtained correlation func-
tions the phase behaviour of ion-dipole mixtures has been investigated.
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1. Introduction

A mixture of charged hard spheres and dipolar hard spheres is a simple model
of an electrolyte. For such a model a series of statistical mechanical investigations
have been done with integral equations as well as with simulations. In the mean
spherical approximation (MSA) the analytic solution of the ion-dipole mixture can
be obtained [1,2]. Using the MSA results the phase transition in ion-dipole mixture
has been discussed by Høye et al. [3] and Harvey [4]. But it was known that MSA
results are not sufficient for the ion-dipole mixture because of the strength of the
interactions. The correlation functions of ion-dipole mixtures can also be calculated
in the so-called linearized, quadratic [5] and reference hypernetted-chain [6] (LHNC,
QHNC and RHNC) approximations with numerical iteration methods. Comparing
with the Monte Carlo simulation results [7–9] only the RHNC approximation works
very well [6,7], and here we will calculate the correlation functions in the RHNC
approximation.
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In the RHNC approximation, for moderate dipolar moments a convergent solu-
tion for ion-dipole mixtures cannot be obtained when the charge of the ions is still
smaller than an elementary charge. This was already recognized by Dong et al. [10].
Also the simulations encountered problems in this range of parameters [11].

By analyzing the phase stability of the system with respect to the small density
fluctuations of ions and dipoles we have shown that this problem is related to the
phase instability of the ion-dipole mixture [12]. In this article we will give a more
detailed investigation of the ion-dipole phase instability.

The article is organized as follows. In section 2 we define the ion-dipole mixture
model in detail. Section 3 discusses the calculation of the correlation functions. In
section 4 we describe the method for the phase instability analysis. We use the
calculated correlation functions to discuss the phase instability of the ion-dipole
mixture in section 5. Section 6 contains the conclusions. The appendix describes the
treatment of the long range tails of the interactions and the correlations.

2. The model

Our model electrolyte is a mixture of hard sphere ions and hard sphere dipoles.
The ions have the charge qi(q+ = q, q− = −q) and number density ρi. The dipoles
have dipole moment ~µ and number density ρd. Both ions and dipoles have the same
hard sphere diameter σ. The system is taken to be electrically neutral:

∑

i

qiρi = 0. (2.1)

The pair potential between two particles in the system can be written as

uij(12) = uHS(12) + qiqj/r, (2.2)

uid(12) = uHS(12)− (qiµ/r
2)(µ̂2 · r̂12), (2.3)

udd(12) = uHS(12)− (µ2/r3)D(12). (2.4)

The variables 1, 2 imply position and orientation (for the dipoles) with 2 ≡ (~r 2, µ̂2),
where µ̂2 is the unit vector in the direction of the dipole moment at ~r2 with the Euler
angles ω2 ≡ (θ2, ϕ2). r = |~r2−~r1| and r̂12 is the unit vector pointing from position 1
to position 2: r̂12 = (~r2 − ~r1)/r, with its Euler angles denoted as ωr. u

HS(12) is the
hard sphere interaction defined by

uHS(12) =

{
∞, r < σ
0, r > σ.

(2.5)

The function D(12) is the angle dependent part of dipole-dipole interaction and is
defined as

D(12) = 3(µ̂1 · r̂12)(µ̂2 · r̂12)− µ̂1 · µ̂2 . (2.6)
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3. The calculation of the correlation functions

The correlation functions of ion-dipole mixtures can be calculated with reliable
results by the Ornstein-Zernike (O.Z.) equation and the reference hypernetted chain
(RHNC) closure. This conclusion was reached by Caillol et al. [7]. They have done
Monte Carlo simulations for the ion-dipole mixture and have shown that the RHNC
approximation works well.

The Ornstein-Zernike equation gives the relation between the total correlation
functions hαβ(12) and the direct correlation functions cαβ(12)

hαβ(12) = cαβ(12) +
∑

γ

∫
d3 hαγ(13)ργ(3)cγβ(32) . (3.1)

Here ρα(1) is the number of the particles α at the position ~r1 pointing in the direction
ω1 per unit volume and unit space angle. The number density ρα(~r1) is obtained by
integrating ρα(1) over all orientations ω1. For the homogeneous isotropic system
we write simply ρα for the number density and ρα(1) = ρα/4π. For later angular
expansions (section 4) it is convenient to extend these definitions also to the ion
densities ρ+(1) and ρ−(1). We then have everywhere ρ±(1) = ρ±(~r1)/4π.

Because the O.Z. equation contains two unknown functions, another relation
between direct and total correlation functions is needed to calculate the correlation
functions. This relation can be written as

1 + hαβ(12) = exp[−uαβ(12)/kBT + hαβ(12)− cαβ(12) + bαβ(12)], (3.2)

where bαβ(12) is the so-called bridge term. Usually the bridge term cannot be known
exactly and an approximation must be made. If we take bαβ(12) = 0 the hypernetted
chain (HNC) approximation is obtained. In the reference hypernetted chain approx-
imation (RHNC) [13], we approximate bαβ in equation (3.2) by the bridge term of
a reference system. Here we choose the hard sphere fluid as our reference system,
which is obtained by switching off the Coulomb and dipole interactions.

The bridge term of the reference system bRαβ(12) can be expressed as

bRαβ(12) = ln[1 + hHS(12)]− hHS(12) + cHS(12), r > σ, (3.3)

where hHS(12) and cHS(12) are the total and direct correlation function of hard
spheres and can be calculated using Verlet and Weis’s method [14].

Because of the angle dependence of the ion-dipole and dipole-dipole interactions
the correlation functions of the ion-dipole and dipole-dipole relations are also angle
dependent. To treat such correlation functions we will expand them by the so-
called spherical invariants Φl1l2l(ω1ω2ωr), which are linear combinations of spherical
harmonics [15–17]. We follow the notation of Gray and Gubbins [16]

fαβ(12) =
∑

l1l2l

f l1l2l
αβ (r12)Φ

l1l2l(ω1ω2ωr), (3.4)

Φl1l2lr(ω1ω2ωr) =
∑

µνλ

C(l1l2l;µνλ)D
l1
µ0(ω1)D

l2
ν0(ω2)Ylλ(ωr), (3.5)

681



X.S.Chen, F.Forstmann

where f = h or c and C(l1l2lr;µνλ) is a Clebsch-Gordan coefficient.

In some situations it is convenient to use the “~r-frame”, which corresponds to
choosing the polar axis along the intermolecular axis [16]. In ~r-frame the correlation
functions are expanded as

fαβ(12) =
∑

l1l2m

fαβ(l1l2m, r)Dl1
m0(ω

′
1)D

l2
m0(ω

′
2), (3.6)

ω′
i are Euler angles of the dipoles relative to ~r12 as polar axis. The ~r-frame coefficients

fαβ(l1l2m, r) are related to the space-fixed frame coefficients f l1l2l
αβ (r) via

fαβ(l1l2m, r) =
∑

l

(
2l + 1

4π

) 1

2

C(l1l2l;mm0)f l1l2l
αβ (r) . (3.7)

In the isotropic bulk problem, where the particle density ρα(1) doesn’t depend
on position and orientation, the Ornstein-Zernike equation is used usually after
Fourier transformation. After spherical harmonic expansion and Fourier transform
the Ornstein-Zernike equation can be written in a matrix form

H(m, k) = C(m, k) +H(m, k)C(m, k), (3.8)

where the matrices F (F = H,C) are defined by the ~k-frame coefficients [15–17]
of correlation functions, f̃αβ(l1l2m, k) (f = h, c) with

F (m, k)ij = (−)m(2l1 + 1)
1

2 (2l2 + 1)
1

2ρ
1

2

αρ
1

2

β f̃αβ(l1l2m, k). (3.9)

Here the indices i = (α, l1), j = (β, l2) are combinations of particle species index and

angular index. The ~k-frame coefficients f̃αβ(l1l2m, k) are calculated in the following
way from the ~r-frame coefficients

f̃αβ(l1l2m, k) =
∑

l

(
2l + 1

4π

) 1

2

C(l1l2l;mm0)f̃ l1l2l
αβ (k), (3.10)

f̃ l1l2l
αβ (k) = 4πil

∫ ∞

0

r2drjl(kr)f
l1l2l
αβ (r), (3.11)

where jl(kr) are the spherical Bessel functions.
In the closure equation (3.2) there are angular dependences in the exponent,

therefore we will have difficulty when using the expansion by spherical harmonics.
To overcome this difficulty Fries and Patey [6] proposed to differentiate the closure
with respect to the particle distance r = |~r2−~r1|. Writing equation (3.2) as 1+hαβ =
exp(hαβ − c′αβ) = exp[η′αβ] and differentiating it we get

∂c′αβ(12)

∂r
= hαβ(12)

∂η′αβ(12)

∂r
(3.12)
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with functions c′αβ(12) and η′αβ(12) defined as

c′αβ(12) = cαβ(12) + uαβ(12)/kBT − bαβ(12), (3.13)

η′αβ(12) = hαβ(12)− c′αβ(12) . (3.14)

Here we derive the equations in general. The RHNC approximation will be obtained
when setting bαβ(12) = bRαβ(12) according to equation (3.3). After harmonic expan-
sion the closure can be expressed with ~r-frame coefficients as

∂c′αβ(l1l2m, r)

∂r
=

∑

l3l4m1,l5l6m2

F l1l2m
l3l4m1,l5l6m2

hαβ(l3l4m1, r)
∂η′αβ(l5l6m2, r)

∂r
, (3.15)

where the factors F l1l2m
l3l4m1,l5l6m2

are the products of Clebsch-Gordan coefficients

F l1l2m
l3l4m1,l5l6m2

= C(l3l5l1;m1m2m)C(l4l6l2;m1m2m)

× C(l3l5l1; 000)C(l4l6l2; 000). (3.16)

Later Calliol [18] proposed to differentiate the closure with respect to the orientation
of the particles. For example we can differentiate the closure with respect to the
orientation of particle 2 by the angular momentum operator

J+(2) = Lx(2) + iLy(2) (3.17)

and obtain
J+(2)c

′
αβ(12) = hαβ(12)J+(2)η

′
αβ(12). (3.18)

Using the ~r-frame coefficients the closure can be expressed as

c′αβ(l1l2m, r) =
∑

l3l4m1,l5l6m2

Gl1l2m
l3l4m1,l5l6m2

hαβ(l3l4m1, r)η
′
αβ(l5l6m2, r) (3.19)

with the coefficients Gl1l2m
l3l4m1,l5l6m2

defined as

Gl1l2m
l3l4m1,l5l6m2

= C(l3l5l1;m1m2m)C(l4l6l2;m1m2m)C(l3l5l1; 000)

× C(l4l6l2; 01 1)[l6(l6 + 1)]
1

2 [l2(l2 + 1)]−
1

2 . (3.20)

The advantage of Caillol’s method is that we get a set of equations directly for the
expansion coefficients and not for their derivatives as in the procedure introduced
by Fries and Patey. But equations (3.18) and (3.19) fail to calculate the coefficient
belonging to l1 = l2 = 0. In our calculation here we use the combination of the two
methods. For the l1 = l2 = 0 term we use Fries’s method and for the other terms we
use Caillol’s method. Combining equations (3.8), (3.15) and (3.19) we can calculate
the correlation functions by iteration. We start with a guess for c, evaluate h from
(3.8) and get an improved c from (3.15) and (3.19).

Details of the treatment of the long range tails of interactions and correlation
functions can be found in the Appendix.
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4. The method for analysis of the instability

The grand potential functional of an ion-dipole mixture can be written as

Ω(T, V, {µα}; {ρα}) = Fid[ρ] + Fex[ρ] +

∫
d1
∑

α

Wα(1)ρα(1), (4.1)

where Fid[ρ] is the Helmholtz free energy functional of the ideal gas

Fid[ρ] = kBT

∫
d1
∑

α

ρα(1)
[
ln
(
4πΛ3

αρα(1)
)
− 1
]

(4.2)

with Λα = h/(2πmαkBT )
1/2 the thermal de Broglie wavelength. Fex[ρ] is the excess

Helmholtz free energy functional, which represents the contribution from the inter-
actions between the particles. The sum over α in equation (4.1) is done for plus ion,

minus ion and dipole. Wα(1) = W̃α(1)−µα with chemical potential µα and external

potential W̃α(1). The equilibrium density ρα(1) is determined by the minimum of
the grand potential functional for fixed T, V, µα [19,20].

To study the stability of the equilibrium state we consider the fluctuation of the
grand potential around the minimum caused by small density fluctuations δρα(1)
[17,21]. We use the functional Taylor expansion to the second order

δΩ = Ω[T, V, µα; ρα + δρα]− Ω[T, V, µα; ρα]

≈
1

2

∫ ∫ ∑

αβ

δ2Ω

δρα(1)δρβ(2)

∣∣∣∣
Equilib

δρα(1)δρβ(2)d1d2 . (4.3)

The second functional derivatives of Ω are related to the direct correlation functions
[22]

δ2Ω

δρα(1)δρβ(2)

∣∣∣∣
Equilib

= kBT
[δαβδ(1, 2)

ρα(1)
− cαβ(1, 2)

]
. (4.4)

In order to treat also angular dependent correlation functions, as we need for dipolar
interactions, we expand the particle density fluctuation δρα(1) as well as the direct
correlation functions cαβ(1, 2) in spherical harmonics

δρα(1) =
∑

lm

δρlmα (~r1)Ylm(ω1), (4.5)

cαβ(1, 2) =
∑

l1l2l

cl1l2lαβ (r12)Φ
l1l2l(ω1ω2ωr) . (4.6)

The integral in equation (4.3) is a convolution, so we get a product of the cor-
responding Fourier components after the Fourier transform. Using the expansions
(4.5) and (4.6) in equation (4.3) and finishing the angle integration over ω1 and ω2

we obtain

δΩ =
kBT

2

1

(2π)3

∫
d3k

∑

m

∑

αβ

∑

l1l2

4πδρ̃l1mα (k)ρ
− 1

2

α

[
δαβδl1l2

− (−1)mc̃l1l2mαβ (k) ρ
1

2

αρ
1

2

β (2l1 + 1)−
1

2 (2l2 + 1)−
1

2

]
ρ
− 1

2

β δρ̃l2mβ (k)∗ . (4.7)
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Equation (4.7) is a quadratic form of the fluctuations vector δρ(k) with δρµ(k) =

δρ̃l1mα (k)ρ
− 1

2

α (4π)
1

2 . The index µ = (α, l1m) is a combination of particle species index
and angular indices. The coefficients of the quadratic form yield the matrix M(k).
The k-integral can be replaced by a sum over discrete k-values if we imagine periodic
boundary conditions: 1

(2π)3

∫
d3k → 1

V

∑
k. Therefore we have

δΩ =
kBT

2

1

V

∑

k

δρ(k)M(k)δρ†(k). (4.8)

In the case of angle dependent interactions, M(k) is diagonal with respect to the
angular index m and the matrix has a block form. Therefore equation (4.8) can be
decomposed into a sum over submatrix products for separate m

δΩ =
kBT

2

1

V

∑

k

∑

m

δρ(m, k)M(m, k)δρ†(m, k) =
∑

k

∑

m

δΩ(m, k) . (4.9)

Now the index of vector and matrix is only a combination of particle species index
and angular index l1. The matrices M(m, k) are Hermitian and can be expressed
by the direct correlation function matrices M(m, k) = I−C(m, k) according to
equation (3.9). They become real, if in equation (4.6) there exist only terms with
even l-values. This is the case for pure dipolar systems or for mixtures of dipoles
and neutral particles, but not for mixtures of dipoles and ions.

The probability distribution P (δρ(m, k)) for fluctuations is Gaussian

P (δρ(m, k)) ∼ exp

(
−
δΩ(m, k)

kBT

)
= exp

(
−

1

2V
δρ(m, k)M(m, k)δρ†(m, k)

)

(4.10)
and the mean values of the fluctuation products are

〈δρµ(m, k)δρ†ν(m, k)〉 = V (M−1)µν(m, k) = V [I−C(m, k)]−1
µν . (4.11)

Since fluctuation δρ(m, 0) is proportional to V and C is independent of V , the

homogeneous density fluctuations 〈δρ2α〉
1

2 decay like V − 1

2 , as they should [23]. Using
the Ornstein-Zernike equation (3.8) the mean values of the fluctuation products can
also be expressed by the total correlation function matrices

〈δρ(m, k)δρ†(m, k)〉 = V [I+H(m, k)] . (4.12)

For complete insight into the phase instability of fluid mixtures we must diago-
nalize the matrix M(m, k) in equation (4.9). With the eigenvalues λσ(m, k) and the
normalized eigenvectors ~xσ(m, k) of M(m, k) we can write

δΩ =
kBT

2

1

V

∑

k

∑

m

∑

σ

λσ(m, k)|δρ′σ(m, k)|
2
, (4.13)

δρ′σ(m, k) =
∑

µ

x∗
σ,µ(m, k)δρµ(m, k) . (4.14)
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For stable phases all eigenvalues are positive and any fluctuation of a one-particle
density will increase the grand potential Ω. If one eigenvalue λσ(k) approaches zero,
then there is a fluctuation δρ′σ(m, k) which doesn’t increase Ω. In this case the system
becomes unstable and the mean value of this δρ′

σ(mk) becomes infinite.

For a pure gas-liquid phase transition the most unstable fluctuation δρσ(m, k)
should be the fluctuation of the total density and for a purely demixing phase
transition the most unstable fluctuation should be a concentration fluctuation. In
general the most unstable fluctuation δρ′

σ(m, k) (equation (4.14)) belonging to the
smallest eigenvector λσ, which eventually goes to zero,is a linear combination of all
kinds of density fluctuations. The phase instability is characterized uniquely [17,21]
by the eigenvector ~xσ(m, k) of the smallest eigenvalue. The essence of the derivation
is that after expansion into spherical harmonics, all the expansion coefficients can be
considered as independent fluctuating densities yielding a mixture with very many
“components”.

We now specialize more towards our case of the ion-dipole mixture. The di-
mension of the matrices M(m, k) depends on the truncation of the expansion in
equations (4.5) and (4.6). If we trucate the expansion with l1, l2 6 3, then M(0, k)
is a 6× 6 matrix. We introduce two new fluctuation variables

δρ̃ion(k) = δρ̃+(k) + δρ̃−(k),

δρ̃q(k) = δρ̃+(k)− δρ̃−(k), (4.15)

which describe respectively the total ionic density fluctuation and the charge fluctu-
ation. Using the new fluctuation variables the coefficient matrix of δΩ(0, k) becomes
of block form of two 3 × 3 matrices. The total ionic density fluctuation δρ̃ ion(k)
couples only with δρ̃00d (k) and δρ̃20d (k). The charge fluctuation δρ̃q(k) couples only
with δρ̃10d (k) and δρ̃30d (k).

For the coefficient matrix related to δρ̃ion(k), δρ̃
00
d (k) and δρ̃20d (k) we find the

first vanishing eigenvalue at k = 0, which indicates an instability with respect to
homogeneous density fluctuations. In this case, δρ̃ion(0) is only coupled with δρ̃00

d (0)
by a 2 × 2 matrix because the matrix elements Mion,(d20)(0, k) and M(d00),(d20)(0, k)
are proportional to k2 when k → 0. This 2×2 matrix later contains the smallest and
finally vanishing eigenvalue λ1. It is convenient to define the fluctuations of total
density and ionic concentration

δρ̄(0) = ρ−
1

2 (δρ̃ion(0) + δρ̃d(0)) ,

δc̄(0) = ρ−
3

2 (cioncd)
− 1

2 (ρdδρ̃ion(0)− ρionδρ̃d(0)) , (4.16)

where ρ = ρ+ + ρ− + ρd, cion = c+ + c− with ci = ρi/ρ and δρ̃d(0) = (4π)
1

2 δρ̃00d (0).
Using the new fluctuation variables the grand potential variations with respect to
fluctuations δρ̃ion(0) and δρ̃d(0) can be rewritten as

δΩ =
kBT

2

1

V
( δρ̄(0) δc̄(0) )

(
Mρρ(0) Mρc(0)
Mcρ(0) Mcc(0)

)(
δρ̄(0)
δc̄(0)

)
, (4.17)
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where the coefficient matrix M(0) is symmetric and defined as

Mρρ(0) = 1− ρ
[
c2ionc̃ion,ion(0) + c2dc̃

000
dd (0) + 2cioncdc̃

000
+d (0)

]
, (4.18)

Mcc(0) = 1− ρcioncd
[
c̃ion,ion(0) + c̃000dd (0)− 2c̃000+d (0)

]
, (4.19)

Mρc(0) = ρ(cioncd)
1

2

[
cdc̃

000
dd (0)− cionc̃ion,ion(0)− (cd − cion)c̃

000
+d (0)

]
(4.20)

with

c̃ion,ion(k) =
1

2
[c̃++(k) + c̃+−(k)] . (4.21)

Kirkwood and Buff have related the total correlation functions to thermodynamic
functions. With the help of the O.Z. equation their relations can be written into the
form

(ραρβ)
1

2V

kBT

∂µα

∂Nβ

∣∣∣∣
T,V,N ′

= B
−1
αβ = δαβ − (ραρβ)

1

2 c̃000αβ (0), (4.22)

where Bαβ = δαβ + (ραρβ)
1

2 h̃000
αβ (0). Using the thermodynamic relations

∂µα

∂Nβ

∣∣∣∣
T,V,N ′

=
∂µα

∂Nβ

∣∣∣∣
T,P,N ′

+
νανβ
κTV

, (4.23)

∑

α

Nα
∂µα

∂Nβ

∣∣∣∣
T,P,N ′

= 0 (4.24)

with the partial volume να = ∂V
∂Nα

∣∣∣
T,P,N ′

and the compressibility κT = − 1
V

∂V
∂P

|T,Ni
the

elements of the matrixM(0) can also be expressed by the thermodynamic functions:

Mρρ(0) = (ρkBTκT )
−1, (4.25)

Mρc(0) = (cioncd)
1

2 (ρkBTκT )
−1∆, (4.26)

Mcc(0) =
cioncd
V

(ρkBT )
−1 ∂2G

∂c2ion

∣∣∣∣
T,P,N

+ cioncd(ρkBTκT )
−1∆2 (4.27)

with the difference of the partial volumes ∆ = ρ[(ν++ν−)/2−νd] and ∂2G/∂c2ion|T,P,N
defined by

∂2G

∂c2ion

∣∣∣∣
T,P,N

=
1

2

(
∂2G

∂c2+

∣∣∣∣
T,P,N

+
∂2G

∂c+∂c−

∣∣∣∣
T,P,N

)
. (4.28)

After diagonalization of M(0) with the eigenvalues λi and the related eigenvectors
~xi, the δΩ(m = 0, k = 0) can be written as a sum of pure squares

δΩ =
kBT

2

1

V
[λ1|δρ̄

′
1(0)|

2
+ λ2|δρ̄

′
2(0)|

2
], (4.29)

where

δρ̄′i(0) = xi,1δρ̄(0) + xi,2δc̄(0), (4.30)

λ1,2 =
Mρρ(0) +Mcc(0)∓

√
(Mρρ(0)−Mcc(0))2 + 4M2

ρc(0)

2
. (4.31)
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The smallest eigenvalue λ1 decides the stability of the phase. The eigenvector ~x1

determines the softest fluctuation mode δρ̄′
1(0) = x1,1δρ̄(0)+x1,2δc̄(0) which has the

smallest restoring force (proportional to λ1). Therefore ~x1 characterizes properly
the phase instability [17,21]. The border of a stability region is indicated by λ 1

going to zero (from the positive side). In the case λ1 = 0 there is also DetM(0) =
λ1λ2 = (cioncd)V

−1(ρkBT )
−2κT

−1∂2G/∂c2ion|T,P,N = 0. There are two cases where

DetM(0) = 0. One is κT
−1 = 0. In this case M(0) is diagonal and the softest

fluctuation mode is just the total density fluctuation and the phase instability is
pure condensation. Another case is ∂2G/∂c2ion|T,P,N = 0. Here the softest fluctuation

mode δρ̄′1(0) = δc̄(0) − (cioncd)
1

2∆δρ̄(0) is generally a combination of total density
and concentration fluctuation. How strong the total density will change in the softest
fluctuation mode depends on the partial volume difference ∆. If ∆ = 0, the softest
fluctuation mode is just a concentration fluctuation and the phase instability is
pure demixing. When |∆| is large, the total density will fluctuate also. The sign
of ∆ decides if the total density will increase or decrease. We have seen a case
[21] where ∂2G/∂c2 = 0 and κ−1

T > 0 mark an instability with respect to essentially
pure total density fluctuations with negligible concentration change. Therefore there
exist instabilities, where ∆ is so large that ∂ 2G/∂c2 = 0 indicates a condensation
instability and not a demixing.

In the following section we evaluate M(0) (equations (4.18)–(4.20)) from the
calculated correlation functions and find a demixing instability in our electrolyte
model.

5. Results for the hard sphere ion-dipole electrolyte.

We now present our calculations for the model electrolyte. The total density is
fixed at the high liquid value ρ∗ = ρ · σ3 = 0.8 and the ion concentration is changed
by exchange of ions versus dipoles. The dipolar interaction strength is chosen as
µ∗2 = µ2/(σ3kBT ) = 2.5 because below µ∗2 = 2.25 the interesting missibility gap
at very low ion charges and for neutral solutes does not appear [12]. The angular
expansions in equation (3.4) drastically increase the dimension of the correlation
function calculation (the number of independent functions). We limit ourselves to
l1, l2 6 3, which leads to 23 unknown functions to be determined. l takes then
values up to 6 due to l 6 l1 + l2. We proceed by fixing the ionic interaction q∗2 =
q2/(σkBT ) and varying the ionic concentration cion = (ρ+ + ρ−)/ρ. For each system,
we evaluate the correlation functions according to section 2, calculate the matrix
M(k = 0) (equations (4.18)–(4.20)) and determine the smallest of its eigenvalues λ1

(equation (4.31)) and the associated eigenvector ~x1. We have checked occasionally
that λ1(k = 0) < λi(k) for all k > 0.

In figure 1 we plot the smallest eigenvalue λ1 versus cion for growing q∗2. We find
two regions where the solution procedure becomes unstable and where λ1 strongly
indicates an abrupt decrease to zero. We roughly extrapolate to zero and draw the
“phase-diagram” in figure 2, where the lines mean spinodales separating stable or
metastable regions from unstable systems.
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Figure 1. The smallest eigenvalue λ1 as
function of ionic concentration for differ-
ent values of q∗2.

For two values of q∗2 we also give in-
formation about the eigenvector ~x1 rep-
resenting the most unstable fluctuation.
We show in figure 3 the angle which this
eigenvector forms in a δρ−δc-coordinate
system with the positive δc axis [17,21].
The angles are small and |α| < 10◦.
This means that we find predominant-
ly demixing instabilities.

The positive values of α for the small
ion interaction q∗2 = 0.2 indicate that
an increase of ion concentration is ac-
companied by a decrease of density for
the most unstable fluctuation with the
smallest restoring force. This shows that
the attraction between dipoles is the
driving force for the instability. We have
proposed in [12] that favorable dipole
structures are possible for certain con-
centrations of neutral solutes and that
this is the reason for the missibility gap.
It was later pointed out to us that indi-
cations of this mechanism had been seen
earlier in MC-simulations for a Stock-
meyer solvent (Lenard Jones plus dipole
interactions) [24].

The negative values of α for the high
ionic interaction q∗2 = 60 tell us that
together with an increase of ionic con-
centration goes an increase in density,
when the rise of the free energy should

be minimal. Therefore the instability is driven by the attraction of the ions. We be-
lieve that this instability is related to the “condensation” of the purely Coulombic
interacting fluid found in the restricted primitive model (RPM) (see discussion).

As explained in section 2, the fluctuations of ionic concentration and of net charge
density are decoupled. When the concentration fluctuations become unstable, the
charge fluctuations are still very strongly constrained, i.e. the related eigenvalues of
the matrix M(k) are very large. Homogeneous charge fluctuations (k = 0) are not
at all possible because the related eigenvalue is ∞. This can be seen from M q,q(k) =
1−ρ+c̃++(k)+ρ−c̃+−(k) and equation (A.8) in the appendix. At large distances cij(r)
is proportional to the Coulomb potential and therefore its Fourier transform c̃ ij(k)
at small k goes like k−2 as shown in equation (A.8). Then Mq,q(k) ∼ k−2 goes to
infinity when k → 0 which suppresses homogeneous charge fluctuations completely.
The total electrical neutrality of the system must be exactly satisfied.
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Figure 2. Regions of instablity and
“spinodal” curves for the ion dipole
mixture.

Figure 3. The angle α (in degrees) be-
tween the eigenvector ~x1 and the direc-
tion of pure concentration fluctuations
for q∗2 = 0.2 and q∗2 = 60.

6. Discussion and conclusions

We are aware of several objections to the analysis of phase equilibria and stability
via correlation functions calculated from integral equations. Lovett has discussed
that finding the correct solution from integral equations is a “marginal” event and
that approximations to the kernel, which are always necessary, should lead into
the realm of no solution [25]. Belloni has demonstrated [26] that with pure HNC
equations one always meets a point of bifurcation of two solutions and no solutions
beyond, before the spinodal is reached where fluctuations or compressibilities become
infinite or in our language the smallest eigenvalue of the matrix M (equation (4.8))
goes to zero. But on the other hand experience shows that usually one gets very
resonable solutions from HNC or related equations with all kind of right physical
properties; and more important there is no case known to us, where the indication
of a phase transition by a sudden growth of fluctuations and related impossibility
of finding solutions of the integral equations by iteration was not related to a real

instability of the system. This can be seen for the cases discussed by Belloni [26].
For the dipolar system we found the missibility gap with neutral solutes [12,17], the
lower case in figure 1, which had been seen in simulations for dipoles and neutrals
with additional Lenard-Jones interactions. The phase transition was also caused
there by the dipole forces [24].

In recent years we also investigated the phase behaviour of the pure hard sphere
dipole fluid. From the instability of fluctuations in the low density dipole gas we
predicted the formation of aligned clusters or chains of dipoles [27]. Later on, this
phase was seen in simulations [28,29]. At higher densities all the characteristics of
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the unstable fluctuations could be related [30] to phases seen in simulations at lower
temperature [31–33] including the transition to a ferroelectric state. This transition
was of first order and the coexistence lines well framed the instability line which again
confirmed the interpretation of the no-solution-line as an indication of a spinodal.

Therefore there are good reasons to expect that in the near future there will
be a simulation showing the phase separation for our model electrolyte. The phase
instability of the ion-dipole mixture has also been found in a study using the mean
spherical approximation (MSA) for the calculation of the correlation functions [3].
This approximation underestimates the interactions and correlations and therefore
finds the instability at much higher q∗2 values or lower temperatures. It is also true
that the line separating a region of no solutions from one with physically reasonable
solutions of the integral equations is not simply related to the real spinodal of the
system (see the discussion in 25, also [34]). Therefore the critical point or the critical
behaviour cannot be safely determined via integral equations. So we consider as the
main result of our investigation, that the hard sphere ion dipole mixture is unstable
with respect to demixing, when the ion interactions get strong enough. We expect
that for a solvent with µ∗2 = 2.5 this instability is met before the ions have one
full charge. Recently there was intensive research on ionic solutions, which indeed
do show a demixing phase transition [35]. With these electrolytes, one discusses the
alternative of “hydrophobic” demixing or demixing due to condensation of the gas
of ions towards a liquid. We have discussed in relation to figure 3 that the most
unstable fluctuation indicates that the attractive forces between the ions lead to the
instability, which points to the second alternative. The mechanism is then the same
as in the pure Coulombic RPM of hard sphere ions. Belloni [26] shows the instability
region as predicted by HNC at very low densities and q∗2 above 7.35 (“critical point”
ρ∗ = 0.3 · 10−3, q∗2 = 7.35 or T ∗ = q∗−2 = 0.136). The ion dipole mixture in our
RHNC treatment has the minimum of the instability curve (figure 2) near ρ∗

ion = 0.4
and q∗2 = 56. When the dipole solvent is considered as a medium with dielectric
constant ǫ = 8, the effective interaction should be taken as q̃∗2 = q2/(ǫσkBT ) = 7
at the minimum. The simulations of the RPM yield the critical point at ρ ∗ = 0.03,
q∗2 = 17.2 (T ∗ = 0.058) [36].

Compared to the RPM our phase transition is found at higher densities and at
higher temperatures indicating that the solvation of the ions by the solvent dipoles
changes the phase transition strongly. As already seen for neutral solvents, with
the ions we can also expect that special dipole configurations which require certain
concentrations of ions and dipoles will play a role in the determination of the phase
diagram.
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A. The special treatment of the long range tail of correlation
functions

A.1. The direct correlation functions

The direct correlation functions have the asymptotic behaviour

cαβ(12) −→ −uαβ(12)/kBT, r12 → ∞. (A.1)

Therefore the direct correlation function cαβ(12) will become long range if the pair
potential uαβ(12) has a long range tail. In the numerical calculations the long range
part of direct correlation functions needs a special treatment.

We separate the direct correlation function into two parts

cαβ(12) = cSαβ(12) + cLαβ(12). (A.2)

cSαβ(12) and cLαβ(12) are the short range and the long range part of cαβ(12), re-
spectively. For the ion-dipole mixture we choose the long range part of the direct
correlation functions in the following way

cLij(12) = −qiqje(r)/kBT, (A.3)

cLid(12) = −qiµe
′(r)(µ̂2 · r̂)/kBT, (A.4)

cLdd(12) = −µ2[e′(r)− re′′(r)]D(12)/3r/kBT, (A.5)

where

e(r) =
erf(ar)

r
(A.6)

and e′(r) and e′′(r) are the first and the second derivatives of e(r).
erf(x) in equation (1.6) is the standard error function, which is equal to zero

at x = 0 and approaches 1 very fast when x becomes large. Therefore the cLαβ(12)
are finite at r12 = 0 and possess the complete long range tail when r12 → ∞.
The separation in this way leads to continuous functions. The function e(r) was
used by Ng [37] to solve the HNC equation for the classical one-component plasma
in a uniform background with a = 1.08. He had finished the calculation up to
q∗2 = q2/kBTσ = 7000 and shown the efficiency of this treatment. Now we generalize
this technique to the ion-dipole mixture.

The Fourier transform of e(r) is

ẽ(k) =
4π

k2
exp(−k2/4a2). (A.7)

Correspondingly the Fourier transforms of cLαβ(12) are expressed by ẽ(k) as

c̃Lij(k) = −qiqj ẽ(k)/kBT, (A.8)

c̃Lid(12) = qiµkẽ(k)(µ̂2 · k̂)/kBT, (A.9)

c̃Ldd(12) = −µ2k2ẽ(k)Dk(12)/3kBT, (A.10)

where Dk(12) is defined by replacing r̂12 of D(12) in equation (2.6) with the unit
vector k̂.
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A.2. The total correlation functions

From the total correlation functions hαβ(12) the potential of mean force

Wαβ(12) = −kBT ln[1 + hαβ(12)] (A.11)

can be defined. Høye and Stell [38] have given the long range tails of Wαβ(12) in
ion-dipole mixtures

Wij(12) = qiqje1(r), (A.12)

Wid(12) = qiµeff µ̂2 · ~∇2e1(r), (A.13)

Wdd(12) = µ2
eff µ̂2 · ~∇2[µ̂1 · ~∇1e1(r)] (A.14)

with

e1(r) =
1

ε|~r2 − ~r1|
exp(−λ|~r2 − ~r1|), (A.15)

µeff =
ε− 1

3y
µ, (A.16)

where ε is the dielectric constant of the fluid and y = 4πρµµ
2/9kBT . The screening

parameter λ is the inverse of the Debye-Hückel length and is related to the ion
charges and densities by λ =

√
4π
∑

i ρiq
2
i /kBTε.

The potentials of mean force Wαβ(12) are related to the pair potentials uαβ(12)
in the way that uαβ(12) are obtained when replacing e1(r) by 1/r and µeff by µ
in Wαβ(12). Usually the inverse of the Debye-Hückel length λ is large enough that
Wαβ(12) and hαβ(12) decay very fast to zero when the distance is large. In some
situation, for instance when the ion density is very small, the inverse of the Debye-
Hückel length is small and hαβ(12) decay not fast. Then the long range tail of the
total correlation functions hαβ(12) should also be treated specifically.

We divide hαβ(12) also into short and long range parts

hαβ(12) = hS
αβ(12) + hL

αβ(12) . (A.17)

Instead of the function e(r) for cαβ(12), the long range tails of the total correlation
functions hl

αβ(12) are defined by function e2(r)

e2(r) =
1

εr

1

2

(
[1 + erf(αr −

λ

2α
)] exp(−λr) + [−1 + erf(αr +

λ

2α
)] exp(λr)

)

(A.18)
which approaches the function e1(r) for large distance and has no singularity at
r = 0. The Fourier transform of the function e2(r) is

ẽ2(k) =
1

ε

4π

k2 + λ2
exp[−(k2 + λ2)/4α2] . (A.19)
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With the function e2(r) the long range tails of total correlation function hL
αβ(12) are

defined as follows

hL
ij(12) = −(qiqj/kBT )e2(r), (A.20)

hL
id(12) = −(qiµeff/kBT )e2(r)

′(µ̂2 · r̂), (A.21)

hL
dd(12) =

µ2
eff

kBT

re2(r)
′′ − e2(r)

′

3r
D(12)

+
µ2
eff

kBT

re2(r)
′′ + 2e2(r)

′

3r
µ̂1 · µ̂2 . (A.22)

The Fourier transforms of hL
αβ(12) have the following form

h̃L
ij(12) = −(qiqj/kBT )ẽ2(k), (A.23)

h̃L
id(12) = i(qiµeff/kBT )kẽ2(k)(µ̂2 · k̂), (A.24)

h̃L
dd(12) = −

µ2
eff

kBT
k2ẽ2(k)(µ̂1 · k̂)(µ̂2 · k̂) . (A.25)
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Фазова нестійкість незмішування в іонно-дипольній

суміші

Ч.С.Шен 1 , Ф.Форстман 2

1 Інститут теоретичної фізики, Академія Сініка, Бейжінг, Китай
2 Інститут теоретичної фізики, Берлінський вільний університет,

Берлін, Німеччина

Отримано 2 листопада 2001 р.

Розглядаючи варіацію функціоналу великого потенціалу Ω по від-

ношенню до малих флуктуацій густини δρα (1), ми можемо визна-

чити фазову нестійкість системи з кореляційних функцій. Обчисле-

но кореляційні функції іонно-дипольної суміші, використовуючи ба-

зисне гіперланцюгове наближення. На основі отриманих кореляцій-

них функцій була досліджена фазова поведінка іонно-дипольних су-

мішей.

Ключові слова: фазовий перехід, незмішування, нестійкість,

іонно-дипольна суміш, інтегральні рівняння

PACS: 61.20.Gy, 64.60.-i, 64.75.+g, 64.70.-p, 64.30.+t, 61.20.Q
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