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The analytical solution of the Mean Spherical Approximation for a quite
general class of interactions is always a function of a reduced set of scal-
ing matrices I’ . We extend this result to systems with multipolar inter-
actions: We show that for the ion-dipole mixture the thermodynamic ex-
cess functions are a functional of this matrix. The result for the entropy is
S = —{kV/3n}(FTal)aey Where F is an algebraic functional of the scal-
ing matrices of irreducible representations y of the closure of the Ornstein-
Zernike. The result is also true for arbitrary electrostatic multipolar interac-
tions.
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1. Introduction

It is my pleasure to contribute to this issue dedicated to J.-P.Badiali a true
scientist and a gentleman.

The remarkable simplicity of the mean spherical approximation (MSA) [1-4] and
its extensions using Yukawa closures [5-7] can be summarized by the fact that the
entropy for a wide class of systems has a very simple functional form. The MSA
[8] is the solution of the linearized Poisson-Boltzmann equation, just as the Debye-
Hiickel (DH) theory. It shares with the DH theory the remarkable simplicity of a
one parameter description (the screening length k) of all the thermodynamic and
structural properties of rather diverse systems. The MSA shares this feature with
the DH theory [9]. The major difference is that in the MSA the excluded volume of
all the ions is treated exactly.

The MSA is attractive for chemists examining the thermodynamic properties of
real electrolyte solutions not only because the model gives simple analytical formulas,
but also satisfies exact asymptotic relations, such as the large charge, large density
limits of Onsager [10-13] and more recently, the large charge small density limits
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implied in the Wertheim-Ornstein-Zernike equation. Very recently [5,6] we have been
able to extend the MSA closure analytical solutions to any arbitrary closure that
can be expanded in damped exponentials (Yukawa functions), and to obtain explicit,
analytical forms of the excess thermodynamic functions in terms of a matrix of
scaling parameters (the EMSSAP, or Equivalent Mean Spherical Scaling Approach
7).

For systems with Coulomb and screened Coulomb interactions in a variety of
mean spherical approximations (MSA) it is known that the solution of the Orn-
stein Zernike (OZ) equation is given in terms of a single screening parameter I'.
This includes the ‘primitive’ model of electrolytes,in which the solvent is a contin-
uum dielectric, but also models in which the solvent is a dipolar hard sphere, and
much more recently the YUKAGUA model of water that has the correct tetrahedral
structure. The MSA can be deduced from a variational principle in which the energy
is obtained from simple electrostatic considerations and the entropy is a universal
function. For the primitive model it is

3
AS = —k:VF—,

3T

where I' is the MSA screening parameter and in general it will be of the form
AS = S5(D),
which is independent of the form of the cavity in this approximation and

r.

is now the scaling matrix. We have shown that in all known cases the scaling matrix
I is obtained from the variational principle

ey 0
or

Ionic solutions are mixtures of charged particles, the ions, and the neutral solvent
particles, most commonly water, which has an asymmetric charge distribution, a
large electric dipole and higher electric moments. Because of the special nature of
these forces the charge distribution around a given ion and the thermodynamics does
satisfy a series of conditions or sum rules. One remarkable property of mixtures of
classical charged particles is that because of the very long range of the electrostatic
forces, they must create a neutralizing atmosphere of counterions, which shields
perfectly any charge or fixed charge distribution. Otherwise the partition function,
and therefore all the thermodynamic functions, will be divergent [14]. The size of
the region where this charge shielding occurs depends not only on the electrostatics,
but also on all the other interactions of the system. For spherical ions this means:

1. The internal energy F of the ions is always the sum of the energies of capac-
itors. For spherical ions the capacitor is a spherical capacitor, and the exact
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form of the energy is

Z*

2
e ?
AE=-5% pizj—it—

(2)
where zF is the effective charge, f = 1/kT is the usual Boltzmann thermal
factor, e is the dielectric constant, e is the elementary charge, and ions ¢
have charge, diameter and density ez;, o;, p;, respectively. For the continuum
dielectric primitive model I'; = T" for all 7.

2. The Onsagerian limits. When the ionic concentration goes to infinity and at
the same time the charge diverges, then the limiting energy is bounded by

AE—_C S gt (3)
= - i%i
€7 P g;

obtained by setting I'; — oo

3. A further exact limit is the DH limiting law, which simply requires that for
all ions in the system

2 _ 47 fBe? L

Zl Py (4)

3 j=

2l = K with K

4. Finally in systems that are strongly associating in the limit of total association
the above equation still holds. This means that if component 1 forms a n-mer
the DH limiting law must satisfy

/i2 _ 477662 |:i pjz? i pl(nzl)2] ) <5>

e |is

This limiting law is not satisfied by any closure of the regular Ornstein-Zernike
equation, but only for closures of the Wertheim-Ornstein-Zernike equation
[15,16].

1.1. Charge-charge interactions

For the primitive model of ionic solutions in the general case [9] the parameter
I' is determined from the equation

dre? 22
e Piz; _ 41—\2’ (6)

ewkpT Z (1 —+ F)2 N

i

where the ionic charge is z;e and number density p; = N;/V, where N; is the number
of ions and V' is the volume of the system. We have

HJ2

e 412, (7)
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where £ is defined by equation (5). The known analytical MSSA solutions for dimers
and polymers satisfy a ‘universality’ principle for the excess entropy

(MSA) I
AS = —kV—. 8
i (8)
Then I' is determined in every case by the simple variational equation (1)
O[BAE(T) +T'3/(3n)]
ar

This equation is also obtained by solving the MSA using the standard procedure.

—0. 9)

1.2. Dipole-dipole interactions

For a system of hard spheres with a permanent dipole moment 1, the MSA result
can be expressed in terms of a single parameter A. Following Wertheim [17], we have

N\ +2)? 1
=2t 2r (1 - _) 1
2 9 ew ) ( O)
where A )
d2 — ﬂ-ps,us 11

and p, is the solvent number density. Furthermore, the MSA dielectric constant €y,
of the solvent is given by
A2\ +1)*
16 '
As has been often done in the literature, the parameter A can be computed direct-
ly from the dielectric constant ey, using the above cubic equation. This parametriza-
tion defines an effective polarization parameter. Just as in the case of the ions, there
is a physically meaningful way of interpreting the MSA for point dipoles using the
variational principle (1). The dipolar system can be represented by a collection of
dipolar spheres [12].
A dipolar sphere in a dielectric continuum

)\ _ €in ’
€out

b2 _ eff

g = Gk >

where by is the dipole-dipole energy parameter defined below equation (23) and g¢t

is the effective Kirkwood parameter for this system. From here we calculate the
induced dipole
3ds

X, =
1T N2

= dsf3s

and the excess energy
BE = dyXy.
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So that the closure equation can be rewritten as

92 ) 16
LR L - 13
(A +2)2 (A4 1)4 (13)

This corresponds to exactly equation (1) in the form

oBE  m 0S |, 16

i | — 14
VoA Vk O\ A+ 1% (14)
which can be integrated to yield
s 1 2 \3
——S5 == |\ 2(—) — 1. 15
w3 l MRS ] (15)

Now if we define the scaling lengths for the irrep x = 0

Ty =\
and for y = £1 )
Mi=1"7
then - . ; ;
5 =3 [(To)® +2(1y)°] - 1. (16)

Notice that they satisfy the Wertheim ‘density’ of the irreps since they are obtained
by setting
p1=—(1/2)po.
Furthermore, observe that because of the structure of the equations the natural
assignment is

3

Xg= 2
T NF2

dy = Beds . (17)

1.3. Charge-dipole interactions

We summarize the results of the previous work [18-24]. We use the invariant
expansion formalism [25], in which the total pair correlation h(12) is expanded in
terms of rotational invariants

h(12) _ 3000(7’12)+ﬁ011(r12)<f>011+ﬁ101(r12)<i>101+i1110(r12)<i>110—1—3112(7“12)@)112, (18)

where 2™ (r15) is the coefficient of the invariant expansion, which depend only on
the distance rio between spheres 1 and 2. The rotational invariants prmnt depend
only on the mutual orientations of the molecules. For the present case the relevant
correlation functions are

e ion-ion:

his(r) = (1/2) [A90 () — W (r)] (19)
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e ion-dipole: R A
hin(r) = (1/2) [A0(r) = B0 ()| (7 - f2); (20)

e dipole-dipole:
hon(r) = —\/ﬁﬁi}f(r)ﬂl K2
154115 PN P A
o fon (1) B - ) (E - f12) — fia - fia] (21)
where fi is the unit vector in the direction of y. The solution of the MSA is given in
terms of the ‘energy’ parameters

e ion-ion:

by = 2mp; /OO drhg;(r)r; (22)
0
by = 2m [P /  drhan(r): (23)
0
RU2(p
= 37ps / dr (24)

which, as will be shown below are proportional to the ion-ion, ion-dipole and dipole-
dipole excess internal energy [21]. In the MSA they are functions of the ion charge
and the solvent dipole moment, through the parameters

e ion-dipole:

e dipole-dipole:

4me?
2
dO kBT ij ] (25)

and d3 is defined by equation (11) These parameters are required to satisfy the
following equations [18]

aj +a3 = dj, (26)
a1 Ko — a2[1 - Kn] = don, (27)
Ko+ 1=K = i +d;. (28)
where
D=1+5 (29)
with
bi b +2)?
B, = _ 30
1 — 4/86 36 ) ( )
b
Bo=1-%"
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A simple set of equations is obtained when we use the proper scaling lengths [22,23].

In terms of the excess energy parameters by, b; and by of equations (22-24):

T
by = —— +BD
0 1—|—F+ 1A

= VEE-?A

and 1
by = 60—
2T 24
The entropy can be computed using [21,26]
S B
2 _Pip_a
kV V[ I

which leads to
S 1
kV 127

The contact pair correlations are [21-23]

e ion-ion

/o 3 2 .
Qi = D{[T] + Bi};

e ion-dipole
2B,
D

Qia = {[L+ LDy — 1]}

e dipole-dipole

Qu = 2V -1+BD%, -1}
, _ (=1 +3)

=1).
We also get
2
a; = 5F(1+F),
2vVB
ay; = — \’/D_l (1 + F),D)\g
with

DAQ = 1+[F+)\]7
+ 3I
24\

(bodo® — 4 bydody — 6bad3 + 2™ + Q" +2 Q" +[Q

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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1 1
Dy = 43
S T {2 n )\} | (43)
Bs b2+ M)
D — |1 R m— 44
TR R G ’ (44)
b2+ M)\
B, = <M> . (45)
6
We have
24 A
1 - Ky = =5 {AN+[1+T]B,D,,Dy} (46)
and
2+ N)VB; [ { 1 H
Kiog=———014+D)|(14+1)Dp — ¢ ——¢1|. 4
10 sp LTI A+ DDy — 5 (47)
Our main result is the new expression for the MSA excess entropy
kV
S == — <3—7T> {80 + 81} (48)
with
16D 16[(D(1 — 2T'2) + A2 — 1]
= T3 31— 55— 41 49
” [TJ{ F%(HA)“}{ i TE(L+ V) )
32 D
= l———| -3 50
o = ot - mm) o
and
2 14+1) (14 A
PT:\/P2+>\2+ Bi(1+D) (1+4) (51)
D
The excess pressure can also be computed [26]. The expression is [22]
P/kgT = S/Vkg. (52)
Then,
G=F (53)

still holds.

It is easy to see that this expression yields the correct asymptotic results when
either the ions or the dipoles are turned off. Another interesting limit is that of very
large dielectric constant. Then we get

S = <%> {r3.3. (54)

A full discussion of these results will be done in a future publication.
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CkenniHr y sapsig)xeHux ¢nioigax: no3a npocTtumm
ioHamMmu

J1.Bniom

®disnyHnin dakyneTeT, yHiBepcuTeT MyepTo Piko,
Pio Menpac, PR 00931-3343

OTpumaHo 28 BepecHs 2001 p.

AHaniTMYHUI PO3B’A30K cepenHbOCPEPUNHHOro HaBNMXKEHHS NS [0-
CTaTHbO 3arajbHOro Kjlacy B3aeMO/il € 3aBXan QYHKLUIE penykoBa-
HOro HabOpPY CKenniHropux mMatpuib. Mu po3LUMPIOEMO LEen pesyrb-
TaT Ha BMNAAOK CUCTEM 3 MYNbTMMNONbHUMMK B3aemogiamn. Mun noka-
3YEMO, WO ANS iOHHO-OMNOJIbHOI CyMilli TepMOAMHAMIYHI HaOINLLKO-
Bi OYHKUIT € YyHKUigMK uiel maTpuui. Pe3dynstar ona eHtponii e S =
—{kV/37}(FITal)acy » A€ F — anrebpaidHunin PpyHKLiOHAN CKENNiHroBMX
MaTpuub He3BiOHMX MpeacTaBfieHb 3amukaHHa OpHuwTeriHa-LlepHike.
PesynbTaT AincHWMIA TakoX i 4151 AOBiNTbHUX ENEKTPOCTATUYHUX MYTbTUMNO-
JIbHNX B3aEMOSIN.

Knio4oBi cnoBa: KyJ/10HIBCbKi CUCTEMU, CEPEnHBbOCHEPUNIHE
HaBIVKEHHS, EHTPOIIS, IOHHO-ANMOJIbHI CYMilLLli

PACS: 61.20.Gy
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