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Statistical theory of non-Markovian effects in turbulent transport is applied
to the description of plasma turbulence in a magnetoactive plasma in the
drift-kinetic approximation. Renormalized transition probability is calculated
with regard to non-Markovian effects and equations for the relevant kinetic
coefficients are derived. It is shown that memory effects can be important
for the description of transport under saturated turbulence.
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1. Introduction

In [1,2] we proposed statistical theory of turbulent transport giving the non-
Markovian version of the Dupree-Weinstock renormalization [3,4]. In the present
paper the transition probability approach is used to introduce non-Markovian gener-
alization of drift kinetic equations with regard to turbulent collisions. Derived equa-
tions include collision terms describing the transverse diffusion in the real space and
longitudinal diffusion in the velocity space. The main feature of the non-Markovian
description is the time-nonlocality of the collision terms, which leads to a frequen-
cy dependence of transport kinetic coefficients the real part of which describes the
modification of the growthrate while the imaginary part is responsible for coherent
wave interaction, in particular, for nonlinear frequency shift.

The proposed approach makes it possible to calculate the renormalized transi-
tion probability taking into account the influence of turbulent fields on the particle
trajectories. It is shown that non-Markovian effects could be important for turbu-
lence saturation. In the Markovian limit the Dupree-Tetreault renormalization [5] is
reproduced.
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2. Drift kinetic equation with turbulent collision term

We start from the equation for the microscopic phase density of guiding centers

N(X, ) = 38X - X,(1), X =(ry) (1)

i=1

which in the drift approximation is given by

0 0 0 0
— —F N(X,t) =0. 2
(G 4 ve) o g+ By b (X, 2)
Here vip = E_Z[Ei - ey, E = —grad ® is the microscopic electric field, v, is the

gravitation drift velocity, the other notation is conventional.
The kinetic equation for the distribution function f(X,t) = (N(X,t)) can be
obtained by statistical averaging of equation (2)

A 0 0 e 0
0 _J)9 (B — =
2700 = {4 (5 Vi) o i+ = E) e LA =1 ()
where
I=1 + [H ,
e 0O 0
I = —Ea—v”<5EII5N> I, = —E<5VE5N> (4)

The equation for fluctuations reduces then to

. 0 of(X,t) e If(X,t)
L0+ S5B (v, )2 LoN(X, 1) = — IRAY Csp (e, 1) 22
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The formal solution of equation (5) is given by
SN(X,T)=5NO(X,1)
t ! gl ! 4l
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(6)

where 0N (X, t) is the fluctuation of the microscopic phase density with no self-
consistent interaction generated by the general solution of homogeneous equation,
ie. 5

. e

LO 4+ —§E(r,

{ —OE)(r,t)5 - o

Wi (X, X';t,t') is the “microscopic” probability of particle transition from X' to X
during the time interval ¢ — ¢’. Obviously the equation for such probability is

{L(O —5E||< )8i

Y|

}5N°(X t) =0, (7)

} Wo(X, X1 t,8) =0 (8)
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with the initial condition W,, (X, X';¢,t') = (X — X’). The solution of equation (8)
is
Wi (X, X5 t,t") =0 (X — X' — AX(X', 1)), 9)

where AX (X', t';t) is the guiding center displacement in the course of particle mo-
tion in the microfield

Ary(X',t'5t) = vy (¢)(t = t') / ds / ds' By (x(s'), §') .
Ar) (X' tt) = vy(t =t +/dst r(s),s),
A’U” X, t; t /dSEH

We now assume that the distribution function slowly changes within the spatial
and velocity fluctuation scales. Then, combining equations (4), (6) and (8) it is
possible to introduce the following kinetic equation with the non-Markovian collision
term

t

LOF(X, 1) = /dt’ {; [UH <ﬁ(t t'v)) + 207 (¢, ¢ v”)afl) + %d(t t’,m)]

(
. ||

= (UP (o) + U/ (1, 0) % + Dyt v)) am_;m } FX. 1), (10)
where

Bt,tv)) = Bi(t, ', vp) + Ba(t, ¥, vy),

Bi(t.t vy) = 472;”/ (;:)3 g—:%m—t’wm,

, 1 0 reN? 1 dk , ,
ot o) =~ (1) [ OB IO Wo ),
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e 2 kJ_jk / /
UL (8,0 0) = ey (E) / (;7:3W””(5<1>(t)5<1>(t V(W (v, £58)),

et = () [ o ORI (Wl 50,

Dij@, t/;U”) =
B (%) /(Zd;s% (52# kLli:?) (0@ ()6P (") ) (Wonae (v, 5 ))  (11)
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and

<ka(1)”, t t,)> = / dAXe_ikAr<W (X +AX, X;t, t,)>7

< mkw U” /dre Wk U|‘,t—|—7't)>

ek w) = 1— 4rre? /dv” Wingeo () {emzlﬂj of(X,t) iy af (X, t)} (12)

Q 871@ I 81]”

The kinetic coefficents given by equation (11) describe the influence of different
physical mechanisms on averaged (kinetic) particle dynamics. Namely, §1(¢,t';v))
and [a(t,t';v) describe the polarization friction and friction due to the particle
scattering by turbulent fields, respectively, UP(¢,¢;v|) and U/ (¢,t';v)) are associat-
ed with the polarization drift and zonal flows, d(t,t";v) and D(t,t';v) characterize
the velocity diffusion along the external magnetic field and the transverse diffusion
in the real space. Thus, we see that in the case under consideration the collision
term in equation (10) includes diffusion in the velocity space in longitudinal direc-
tion, diffusion in the real space in the transverse directions, drift generated by the
polarization forces and drift due to the field fluctuations. All kinetic coefficients are
expressed in terms of fluctuation potential correlation functions and averaged transi-
tion probability which describes particle transitions taking into account fluctuation
(in particular turbulent) field influence on particle trajectories.

3. Renormalized transition probability and dielectric res ponse
function

Since the equation for “microscopic” transition probability (equation (8)) coin-
cides with the equation for microscopic phase density (equation (2)), it is easy to
derive the equation for averaged transition probability given by

LYW, (X, X5 8, t)) =

; ) o\ o
— n) v no |l f " /.
t/dt {8’0” [U” (ﬁ(t,t , U ) + 2U (t,t ,U”) + —8I'l> 8’0” d(t t ,U”)l

9 o
(1P 4 Tt " 0p)) —— + Dy (¢, " o) —
(U (t,t vvl\) +U (t,t ,v”)) or, +Du(t,t ;U )871@'8713‘}

X (W (X, X5t 1)), (13)

This equation, as well as the kinetic equation (10) are non-Markovian. In various
particular cases solutions of equation (13) can be found explicitly. The examples of
solutions of the equation describing non-Markovian diffusion in the velocity space
are given in [1,2]. We generalize these results to the case under consideration, i.e.
to equation (13). However, in order to illustrate the basic points of the approach,
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we do not reproduce here the general solution but restrict ourselves to the case
when the dynamical friction, polarization and fluctuation drift, could be neglected
(8 =0, U" = U/ = 0). This approximation is valid in the case of wide k-spectrum
of turbulence and low level of turbulent fluctuations.

In this case equation (13) reduces to

LYW, (X, X5 8, t)) =

2 2

t
= /dt// |:d(t,t//,v||)8a—vﬁ + Dij@, t”;UH) ] (Wn(X, X/;t”,t/)>. (14)

or J_iaT 1j
It follows from the solution of this equation that in the case of stationary system
(Winkw(v))) =

ikﬁdw (U”)

2 731 ., (15)

/ T exp [ w — k”U” kJ_Vg + ikJ_ikJ_jDijUJ('U”)) T+
0
where
d U” /dTeMTd (t + 7,1 UH) DZJW U” /dTelm—DZ] (t + 7, U”)

In the Markovian limit these quantities should be replaced by their zero-frequen-
cy values. Equation (15) generalizes the renormalizations of the transition probabil-
ity for guiding centers due to the diffusion in the real and velocity spaces to the case
of non-Markovian diffusion.

The renormalized dielectric response function has the form

Amre> T
e(k,w) =1-1i e /dv”/dr
m 0
. . kido(vy)
X exp |1 (w — k”U” — kJ_Vg + 1klikJ_jDijw<'U”>) T+ TT

ki Of(X)  9f(X
x{eijzﬁ ];ii)+k|| ‘g;)}. (16)

Solutions of the equation £(k,w) = 0 define the renormalized spectra of eigenexci-
tations.

4. Non-Markovian transport and turbulence saturation

Substituting equation (15) into equations (11) it is possible to formulate equa-
tions for renormalized kinetic coefficients. For examples,

Dijo(v)) = (%)2/ (Qdk) O;; ];22 (‘% kl,jj“) (00%) i (17)
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B kﬁdw_w/ (UH ) 7_3 .

X /dT exp [i (w —w' + kv + kv + ikLikljDijw—w’(UH)) T 3
0

Within the approximation

oo .
/dTefaTSJriouT ~ 1
0

w + ial/3

equation (17) reduces to

eN2 ok pde B2 (L kuki\ o
Diju(v)) = <E) /(%)3 o 02 <5ij_Tj (6D )1

X ! . (18)

!4 oy + ik ko D K (1))
W — W + KU 1KLLk z’jwfw’(UH)"'_l -3

At d,(v)) = 0, kjv; = 0 equation (18) gives the non-Markovian generalization of
the result by Dupree-Tetreault [5]

Disu(vy) = <£>2/ dk o K1 (o Rk H0D2)
ijw Y| m (27r)3 20 02\ Y k:i w_wufiklikijDijw_w/'

(19)
In the case of one-mode turbulent spectrum equation (19) gives
2
1« ki Ak i) 09
kiikijDijw = 5 > Q—é T ( ) , (20)
f—t1 1L w— Bwi +ik 1k 1 Dije— g,

where k| and Ak are the wave number related to the maximum growthrate and the
turbulent spectrum width, wy is the eigenfrequency, 6®? is the turbulent spectrum
amplitude.
As follows from equation (20) low-frequency value of the diffusion coefficient is
given by ,
2 k
() g 200w o

kyik Dy = ~ :
W T g T aen

(21)

where i is the instability growthrate. When deriving (21) we assume that in the
saturated state renormalized growthrate is equal to zero, i.e. k;k,;D,, = . The
estimate (21) is in agreement with the results of mode-coupling simulations and
improved mixing length transport theory (see, for instance [6]).

5. Summary and conclusions

The microscopic derivation of the drift-kinetic equation with a non-Markovian
collision term is done for the case of turbulent plasmas in an external magnetic
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field. Renormalized non-Markovian kinetic coefficients are expressed in terms of
the transition probability calculated with regard to the time-nonlocal diffusion in
the real and velocity spaces. In the approximation of the time-local diffusion the
results of the quasilinear theory, as well as the Dupree-Tetreault renormalization
are reproduced. It is shown that memory effects are important for the estimates of
the diffusion coefficients for saturated turbulence.
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HemapkoBcbke nepeHOpMyBaHHSA KIHETUYHUX
KoediuieHTiB ana apendoBoi TYpOYyNEeHTHOCTI

A.3aropogHin ', 4.Belinang,?

IHCTUTYT TeopeTnyHOI Pi3vkm im. M.M. Boronto6osa HAH YkpaiHu,
03143 Kuie, Byn. MeTtpornoriyHa, 146

IHCTUTYT enekTpoMarHeTu3my,
YanmepcbKnii TEXHONOTIYHUIA YHIBEPCUTET,
S-41296 ete6opr, LLseuis

OTtpumaHo 29 cepnHsa 2001 p.

CraTucTnyHa Teopist HeMapkoBCbKUX ePeKTIB y npouecax TypOyneHTHO-
ro NnepeHeceHHs 3acTocoBaHa A0 ONUCY HaCUMYEHHS NniasmMoBoOi TypOy-
JIEHTHOCTI NjasMuy B 30BHILLHbOMY MarHiTHoOMy nosi. Po3paxosaHo ne-
pPEHOPMOBaAHY MMOBIPHICTb Nepexony 3 ypaxyBaHHAM HeMapKOBCbKUX
edexTiB i cHOPMYNbOBAHO PIBHAHHA A5 NEPEHOPMOBAHMX KIHETUYHUNX
koediujeHTiB. MNMokasaHo, Wo edekTn Nam’aTi MoXyTb BYTU CYyTTEBUMM
NP1 ONnci HAaCNYeHHs1 TYyPOYNEHTHOCTI.

KniouoBi cnoBa: 1ypby/sieHTHICTb niasmu, ApeioBe KiHeTUYHe
HabIMXKEeHHSs, HEMapKOBCbKi e(pekTun
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