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We study non-universal critical properties of a symmetrical mixture using
the recently proposed approach and the method of layer-by-layer integra-
tion of a partition function. Both the gas-liquid critical point properties (tem-
perature and density) and the fluid-fluid demixing temperature of a sym-
metrical hard-sphere square-well mixture are calculated depending on its
microscopic parameters: the parameter » measuring the strength of in-
teractions between the particles of dissimilar and similar species and the
parameter A measuring the width of the potential well.
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1. Introduction

It is known that the topology of the phase diagram of a one-component fluid is
relatively insensitive to the microscopic properties of the molecules and exhibits a
gas-liquid first-order line terminating at a critical point. The situation is significantly
different in the case of binary mixtures where a variety of phase behaviour is possible
according to the relative sizes of the molecules and the strengths of their interactions.

A comparison between theory and experiments in the critical region of simple
fluids and their mixtures has shown that the available liquid state theory and field
theory methods leave several open questions, mostly regarding non-universal quan-
tities. One of them is the accurate determination of the critical parameters.

In this paper we shall study the critical properties of the binary symmetrical
mixture (BSM). The BSM is the model mixture in which the two pure components
“a” and “b” are identical and only interactions between the particles of dissimilar
species differ. Due to the symmetry of such a system, its critical concentration
is x. = 0.5. Notwithstanding its simplicity, the BSM exhibits all three types of
two-phase equilibrium which are observed in real binary fluids: gas-liquid, liquid-
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liquid and gas-gas equilibria. This model have recently been studied using Monte
Carlo (MC) simulations in [1-4], where both the gas-liquid (GL) and fluid-fluid (FF)
critical point properties were calculated for a symmetrical mixture of hard spheres
interacting via square-well potentials.

We use the approach proposed recently for a non-symmetrical binary fluid mix-
ture (the system of different size particles interacting via different potentials) [5].
This approach is based on the functional representation of a partition function in
the collective variables (CV) space [6]. The proposed approach allows us to solve
the following tasks [7-9,5]: (1) to take into account both the short-range and the
long-range interactions simultaneously; (2) to introduce the order parameter in a
natural way; (3) to obtain the effective Ginsburg-Landau-Wilson (GLW) Hamilto-
nian explicitly related to the microscopic properties; (4) to integrate the partition
function in the neighbourhood of the phase transition point taking into account the
renormalization group symmetry.

2. Functional of the grand partition function of a binary mix -
ture. The HLW Hamiltonian

[P

We consider a binary fluid mixture consisting of N, particles of species “a
and N, particles of species “b”. The interaction potential between particles can be
expressed as a sum of two terms:

Uss(r) = Was(r) + ®a5(r),

where W.5(r) is a potential of a short-range repulsion and ®.5(r) is an attractive
part of the potential. The thermodynamic and structural properties of a system with
pair interaction W.s(r) (reference system (RS)) are assumed to be known from some
other theory.

A functional of the grand partition function (GPF) of the binary homogeneous
system in the CV method with a RS can be presented as a product of two factors

[5]:

(1]
(1]

—_—
— —
— —

0—1,

where = is the GPF of the RS. Z; is the part of the GPF which is written in the
CV space:

= = [ o exp{Bufm + B o
- % Z [f/(k)l)kﬂfk +2U (k) precx + W(k;)ckc,k] }J(p, c). (2.1)

Chemical potentials ™ and p] are determined from the conditions:

leEl

dBpy

A= vy 4 () = (),

Bt = (Na) — (V).
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The functions V (k), W (k) and U(k) are combinations of Fourier transforms of the
initial interaction potentials ®.5(k):

V() = (@ualk) + (k) + 200 (k) /2.
(k) = (Dualk) — Bu(k))/2,
W) = (Baalk) + Dp(k) — 2005 (k)) /2. (2.2)

J(p, c) is a Jacobian for the transition to the CV py, ¢ averaged on the RS:

J(p,c) = /(dl/)(dw) exp {127T Z(wkpk + ck) + Z Z D) (w, 1/)} ,

n=11,20

where

Di(wv) = =5 > MG (ki ks, . k)
’ ki..kn

X Vi, -« Vi wkinﬂ ce wkn5k1+m+kn. (23)

The variables wy and 1y are conjugated to the variables px and ¢y, respectively.
The cumulants Mgf”)(kl, ko, ..., k,) are linear combinations of the n-particle partial
structure factors of the RS (see [10] ).

CV pyx and ¢y are connected with the total density fluctuation modes and the
relative density (or concentration) fluctuation ones, respectively.

In order to derive the effective GLW Hamiltonian we perform the following pro-
gram:

e we determine the CV connected with the order parameter by diagonalizing the
square form in (2.1);

e after integration over irrelevant CV (which do not include the variable connect-
ed with the order parameter) with the Gaussian density measure we construct
the GLW Hamiltonian.

As a result we obtain (within the framework of the ¢4-model):

(1]

B C/ exp| B (1)](dn)™?,

where the GLW Hamiltonian has the form:

Es(m) = hno— 2(71109) > da(k)mgn_;
i

Qy =
B 4!<NB>3 Z 7);21711227112377/;45;;1+;;2+;;3+;;4, |k:l| < B’ (24)

ki...kq

dy(k) = ay + P(k), (2.5)
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P(k) is a linear combination of the functions V (k), W (k) and U(k). The behaviour
of function P(k) in the neighbourhood of the phase transition point is similar to the
behaviour of the initial potentials ®.5(k). The radius B in (2.4) is found from the
condition P(k = B) = 0 and it is considered as the size of the first Brillouin zone of
a certain block lattice.

Ni—o 18 the CV connected with the order parameter in the case of the GL critical
point, as well as in the case of the mixing-demixing phase transition [11]:

1o = B(0)po + D(0)co, (2.6)

where the coefficients B(0) and D(0) are certain functions of the microscopic pa-
rameters, temperature, density and concentration of the system (they can also be
expressed by the thermodynamic relations). As it is seen from (2.6) both the GL and
mixing-demixing phase transitions are accompanied by the total density fluctuations
as well as by the relative density (or concentration) fluctuations. The contribution
from each type of these fluctuation processes changes along the critical curve. In our
approach we can evaluate such contributions at each point of the critical curve.

As it is seen from (2.4), E4(n) has the form analogous to the basic density
measure of the 3D Ising model in an external field [7]. But the main difference is the
dependence of coefficients h, a; and a4 on the microscopic parameters, temperature,
density and concentration of the system.

3. GL and FF critical properties of the symmetrical square-w ell
mixture

Using the expression for the GLW Hamiltonian (2.4)—(2.5) and the method of
layer-by-layer integration proposed for the 3D Ising model [7] we calculate the critical
parameters of the model binary symmetrical mixture.

We consider a symmetrical hard-sphere square-well binary mixture.The interac-
tion in the system is described by the potential

00, r<o
Ups(r) =4 —€4, o<L<r<io ,
0, r > \o

where o is a hard-sphere diameter, X is a range of the potential, and €5 is a well-
depth of the interaction between the particles of types v and . The square-well
potential is the simplest model which includes the presence of attractive and repul-
sive forces. For a symmetrical mixture €,, = €, = € # €4,. We introduce the free
model parameter r measuring the strength of the interaction between the particles
of dissimilar and similar species: r = €,,/€. The case r = 1 corresponds to a one-
component fluid. In our formalism a completely analytical treatment for general A
is possible.
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Figure 1. The GL critical tempera- Figure 2. The critical density (n. =
ture (T, = kT'/e) as a function of the 7peo®/6) as a function of the micro-
microscopic parameter r at A = 1.5. scopic parameter r

We split the potential U,s(r) into short- and long-range parts using the Weeks-
Chandler-Andersen partition [12]. As a result, we have:

00, T<0

\I]'Y(s<r> = { O r>og ) (31)
—€5, 0<r<Ao

D 5(r) = { 0?6 RV (3.2)

In this case the RS is a one-component hard-sphere system with the diameter o
(see (3.1)). The cumulants Sf”)((), ...,0) are calculated according to the formulas
given in [13]. The Percus-Yevick approximation is used for M(0).

We shall not dwell on the layer-by-layer integration method in this paper. We
shall only outline its main idea.

The essence of the method consists in a subsequent integration over the layers
of the CV space, beginning with the CV p; which correspond to short-wavelength
fluctuations. Integration is performed according to the following scheme. The region
(0, B) is divided into the intervals (By, B), ..., (Bi1, B;), ..., by a division param-
eter S (B, = B/S™). Each interval corresponds to a layer of subscripts k in the
Brillouin zone and each layer of subscripts k corresponds to a layer in the phase
space of CV py. Integrating gradually over the layers we get a block lattice sequence
with an appropriately growing block period and with the Hamiltonian correspond-
ing to each block. Each Hamiltonian is characterized by a set of the coefficients
ds, ay; dgl), afll); dgz), af), etc. For the sequence of the block Hamiltonians {dén), ai")}
the renormalization group symmetry holds and the fixed point is of a saddle type.
As a result of the integration we obtain recursion relations for the coefficients of
the GLW Hamiltonian. The analysis of these relations yields the equation for the
critical temperature:

A(BV(0))? 4+ B(BV(0)) + D = 0, (3.3)
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Table 1. Critical parameters of the symmetrical hard-sphere square-well mixture
(FF demixing temperatures are calculated at n = 0.268).

r A TEV(Gauss) TCV(¢h) T™C

0 15 3.618 (FF) 2.908(FF) 2.770(44)°(FF)
0.72 1.5 1.09 (GL) 1.058 (GL) 1.06(1)’(GL)
1.0 2.0 3.002 (GL) 2.934 (GL) 2.684(51)%(GL)
(a) Reference [2], (b) Reference [3], (c) Reference [4].

where

A = 1—fy—RY /gy,
B = —as,

D = (I4R(O)/\/g00.

fo, ¢ are coordinates of the reduced fixed point, R is a universal function of
parameter S. We choose S = 3.4252 and the values of fy, ¢y, R corresponding to
it are taken from [14].

3.1. GL critical point of the symmetrical square-well mixtu re

We consider the hard-sphere square-
well binary fluid in the neighbourhood 104
of the GL critical point. In this case the
GLW Hamiltonian has the same form as
(2.4)—(2.5) but the main quantities are

1.03

o 1.02

T o'model

reduced to the following ones [13]: g\ Ll

=
TIE = pE, P(k) = V(k), h, = ,U/* 1.00 foooee . .. . .. . B : - —
From the Condition 0'991.5 2.Io 2.I5 3.Io 375 4.Io 4.I5 5.Io 575 s.lo 6?5 7.0

A

w =0 (3.4) Figure 3. The GL critical temperature

we obtain the equation for the critical as a function of A (r = 1.2).

density of the system. The solutions of equations (3.3)—(3.4) are found numerically
using a self-consistent procedure. The results are shown in figures 1 (critical temper-
ature) and 2 (critical density). Figure 3 depicts the dependence of the GL critical
temperature on the width of the potential well A for r = 1.2.

3.2. FF demixing of the symmetrical square-well mixture.

We study the FF demixing critical temperature as a function of parameter r and
dimensionless density 7. For the symmetrical mixture in the neighbourhood of the
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Figure 4. The FF critical curve of
the symmetrical square well mixture

(r=0).

1 1 1 1
0.15 020 0.25 0.30 0.35 0.40

40 T T T T T T

35 A=15 i
T Gaussian approx.

30 ' model approx. | -

Figure 5. The FF demixing tempera-
ture (T, = kT'/e) as a function of the
microscopic parameter r at n = 0.268.
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Figure 6. The FF demixing temperature as a function of A (r = 0.0, n = 0.268).

FF demixing point the main quantities from (2.4)—(2.5) are reduced to the following

ones:

Mg = Ci» P(k)

W(k), h=0.

As a result we obtain a critical line of the FF demixing points T.(n) where
n = mpo> /6 is the reduced density (see figure 4). The dependence of the FF demixing
temperature on the parameter r is shown in figure 5.

Figure 6 displays the results for FF demixing temperatures depending on the

width of the potential well A for r
simulation data in table 1.
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HeyHiBepcanbHi KPUTUYHI BIaCTUBOCTi CUMETPUYHOI
dnmoigHoT cyMmiLli

O.B.MauaraH, P.C.MenbHuk, M.IN.Ko3noBcbkui

IHCTUTYT ®i3ukn koHaeHcoBaHnx cuctem HAH Ykpainu,
79011 JibBiB, ByN. CBEHLjLBKOrO, 1

OtpumanHo 21 cepnnsa 2000 p.

Mwu BMBYAEMO HeyHiBepcasbHi KPUTUYHI BNACTMBOCTI CUMETPUYHOI Bi-
HaPHOI CyMiLLi, BAKOPUCTOBYIOHYM HEAABHO 3aMpPONoHOBaHWMM nigxig i me-
TOA, NOLLIAPOBOr0 iHTErPYBaHHSA CTAaTUCTUYHOI CyMuU. nsg CUMETPUYHOI
CcyMmiwi TBepamx cdep, AKi B3aEMOAIIOTb 3 MNOTEHLaNOM NPSMOKYTHOI
MK, 064YMCIEHI BNACTUBOCTI KPUTUYHOT TOYKM ra3-piamnHa (tTemnepaTtypa
i ryCTunHa) i Temnepartypa He3MmiwyBaHHsS patoig-datoig 3anexHo Big Mik-
POCKONIYHUX NapaMeTpIB: NapameTpa r , AKMn BUMIPIOE CUITy B3aEMOLi
MiXX YaCTUHKaMM HEMOAOHWX i NoAiGHMX COPTIB, i NnapameTpa A, KUl BU-
MIPIOE LUMPUHY MOTEHLiaNbHOI SMN.

KniouoBi cnoBa: HeyHiBepcasibHi KDUTUYHI BJIaCTUBOCTI, KDUTUYHA
TO4Ka ras-piavHa, HeamillyBaHHs pain-gaoin, 6iHapHa cymitll

PACS: 05.70.Fh, 05.70.Jk, 65.10.+h
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