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We study non-universal critical properties of a symmetrical mixture using
the recently proposed approach and the method of layer-by-layer integra-
tion of a partition function. Both the gas-liquid critical point properties (tem-
perature and density) and the fluid-fluid demixing temperature of a sym-
metrical hard-sphere square-well mixture are calculated depending on its
microscopic parameters: the parameter r measuring the strength of in-
teractions between the particles of dissimilar and similar species and the
parameter λ measuring the width of the potential well.
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1. Introduction

It is known that the topology of the phase diagram of a one-component fluid is
relatively insensitive to the microscopic properties of the molecules and exhibits a
gas-liquid first-order line terminating at a critical point. The situation is significantly
different in the case of binary mixtures where a variety of phase behaviour is possible
according to the relative sizes of the molecules and the strengths of their interactions.

A comparison between theory and experiments in the critical region of simple
fluids and their mixtures has shown that the available liquid state theory and field
theory methods leave several open questions, mostly regarding non-universal quan-
tities. One of them is the accurate determination of the critical parameters.

In this paper we shall study the critical properties of the binary symmetrical
mixture (BSM). The BSM is the model mixture in which the two pure components
“a” and “b” are identical and only interactions between the particles of dissimilar
species differ. Due to the symmetry of such a system, its critical concentration
is xc = 0.5. Notwithstanding its simplicity, the BSM exhibits all three types of
two-phase equilibrium which are observed in real binary fluids: gas-liquid, liquid-
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liquid and gas-gas equilibria. This model have recently been studied using Monte
Carlo (MC) simulations in [1–4], where both the gas-liquid (GL) and fluid-fluid (FF)
critical point properties were calculated for a symmetrical mixture of hard spheres
interacting via square-well potentials.

We use the approach proposed recently for a non-symmetrical binary fluid mix-
ture (the system of different size particles interacting via different potentials) [5].
This approach is based on the functional representation of a partition function in
the collective variables (CV) space [6]. The proposed approach allows us to solve
the following tasks [7–9,5]: (1) to take into account both the short-range and the
long-range interactions simultaneously; (2) to introduce the order parameter in a
natural way; (3) to obtain the effective Ginsburg-Landau-Wilson (GLW) Hamilto-
nian explicitly related to the microscopic properties; (4) to integrate the partition
function in the neighbourhood of the phase transition point taking into account the
renormalization group symmetry.

2. Functional of the grand partition function of a binary mix -
ture. The HLW Hamiltonian

We consider a binary fluid mixture consisting of Na particles of species “a”
and Nb particles of species “b”. The interaction potential between particles can be
expressed as a sum of two terms:

Uγδ(r) = Ψγδ(r) + Φγδ(r),

where Ψγδ(r) is a potential of a short-range repulsion and Φγδ(r) is an attractive
part of the potential. The thermodynamic and structural properties of a system with
pair interaction Ψγδ(r) (reference system (RS)) are assumed to be known from some
other theory.

A functional of the grand partition function (GPF) of the binary homogeneous
system in the CV method with a RS can be presented as a product of two factors
[5]:

Ξ = Ξ0Ξ1,

where Ξ0 is the GPF of the RS. Ξ1 is the part of the GPF which is written in the
CV space:

Ξ1 =

∫

(dρ)(dc) exp
{

βµ+
1 ρ0 + βµ−

1 c0

− β

2V

∑

k

[

Ṽ (k)ρkρ−k + 2Ũ(k)ρkck + W̃ (k)ckc−k

]}

J(ρ, c). (2.1)

Chemical potentials µ+
1 and µ−

1 are determined from the conditions:

d lnΞ1

dβµ+
1

= 〈Na〉+ 〈Nb〉 = 〈N〉, d lnΞ1

dβµ−

1

= 〈Na〉 − 〈Nb〉.
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The functions Ṽ (k), W̃ (k) and Ũ(k) are combinations of Fourier transforms of the
initial interaction potentials Φ̃γδ(k):

Ṽ (k) = (Φaa(k) + Φbb(k) + 2Φab(k))/2,

Ũ(k) = (Φaa(k)− Φbb(k))/2,

W̃ (k) = (Φaa(k) + Φbb(k)− 2Φab(k))/2. (2.2)

J(ρ, c) is a Jacobian for the transition to the CV ρk, ck averaged on the RS:

J(ρ, c) =

∫

(dν)(dω) exp

{

i2π
∑

k

(ωkρk + νkck) +
∑

n>1

∑

in>0

D(in)
n (ω, ν)

}

,

where

D(in)
n (ω, ν) =

(−i2π)n

n!

(

1

2

)n/2
∑

k1...kn

M(in)
n (k1,k2, ...,kn)

× νk1
. . . νkin

ωkin+1
. . . ωkn

δk1+...+kn
. (2.3)

The variables ωk and νk are conjugated to the variables ρk and ck, respectively.
The cumulants M(in)

n (k1,k2, ...,kn) are linear combinations of the n-particle partial
structure factors of the RS (see [10] ).

CV ρk and ck are connected with the total density fluctuation modes and the
relative density (or concentration) fluctuation ones, respectively.

In order to derive the effective GLW Hamiltonian we perform the following pro-
gram:

• we determine the CV connected with the order parameter by diagonalizing the
square form in (2.1);

• after integration over irrelevant CV (which do not include the variable connect-
ed with the order parameter) with the Gaussian density measure we construct
the GLW Hamiltonian.

As a result we obtain (within the framework of the φ4-model):

Ξ = C

∫

exp[E4(η)](dη)
NB ,

where the GLW Hamiltonian has the form:

E4(η) = hη0 −
1

2〈NB〉
∑

~k

d2(k)η~kη−~k

− a4
4!〈NB〉3

∑

~k1...~k4

η~k1η~k2η~k3η~k4δ~k1+~k2+~k3+~k4
, |~ki| < B, (2.4)

d2(k) = a2 + P (k), (2.5)
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P (k) is a linear combination of the functions Ṽ (k), W̃ (k) and Ũ(k). The behaviour
of function P (k) in the neighbourhood of the phase transition point is similar to the
behaviour of the initial potentials Φ̃γδ(k). The radius B in (2.4) is found from the
condition P (k = B) = 0 and it is considered as the size of the first Brillouin zone of
a certain block lattice.

η~k=0 is the CV connected with the order parameter in the case of the GL critical
point, as well as in the case of the mixing-demixing phase transition [11]:

η0 = B(0)ρ0 +D(0)c0, (2.6)

where the coefficients B(0) and D(0) are certain functions of the microscopic pa-
rameters, temperature, density and concentration of the system (they can also be
expressed by the thermodynamic relations). As it is seen from (2.6) both the GL and
mixing-demixing phase transitions are accompanied by the total density fluctuations
as well as by the relative density (or concentration) fluctuations. The contribution
from each type of these fluctuation processes changes along the critical curve. In our
approach we can evaluate such contributions at each point of the critical curve.

As it is seen from (2.4), E4(η) has the form analogous to the basic density
measure of the 3D Ising model in an external field [7]. But the main difference is the
dependence of coefficients h, a2 and a4 on the microscopic parameters, temperature,
density and concentration of the system.

3. GL and FF critical properties of the symmetrical square-w ell
mixture

Using the expression for the GLW Hamiltonian (2.4)–(2.5) and the method of
layer-by-layer integration proposed for the 3D Ising model [7] we calculate the critical
parameters of the model binary symmetrical mixture.

We consider a symmetrical hard-sphere square-well binary mixture.The interac-
tion in the system is described by the potential

Uγδ(r) =







∞, r < σ
−ǫγδ, σ 6 r < λσ
0, r > λσ

,

where σ is a hard-sphere diameter, λ is a range of the potential, and ǫγδ is a well-
depth of the interaction between the particles of types γ and δ. The square-well
potential is the simplest model which includes the presence of attractive and repul-
sive forces. For a symmetrical mixture ǫaa = ǫbb = ǫ 6= ǫab. We introduce the free
model parameter r measuring the strength of the interaction between the particles
of dissimilar and similar species: r = ǫab/ǫ. The case r = 1 corresponds to a one-
component fluid. In our formalism a completely analytical treatment for general λ
is possible.
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Figure 1. The GL critical tempera-
ture (Tc = kT/ǫ) as a function of the
microscopic parameter r at λ = 1.5.

Figure 2. The critical density (ηc =
πρcσ

3/6) as a function of the micro-
scopic parameter r

We split the potential Uγδ(r) into short- and long-range parts using the Weeks-
Chandler-Andersen partition [12]. As a result, we have:

Ψγδ(r) =

{

∞, r 6 σ
0, r > σ

, (3.1)

Φγδ(r) =

{

−ǫγδ, 0 6 r 6 λσ
0, r > λσ

. (3.2)

In this case the RS is a one-component hard-sphere system with the diameter σ
(see (3.1)). The cumulants M(in)

n (0, ..., 0) are calculated according to the formulas
given in [13]. The Percus-Yevick approximation is used for M2(0).

We shall not dwell on the layer-by-layer integration method in this paper. We
shall only outline its main idea.

The essence of the method consists in a subsequent integration over the layers
of the CV space, beginning with the CV ρ~k which correspond to short-wavelength
fluctuations. Integration is performed according to the following scheme. The region
(0, B) is divided into the intervals (B1, B), ..., (Bi+1, Bi), ..., by a division param-
eter S (Bn = B/Sn). Each interval corresponds to a layer of subscripts k in the
Brillouin zone and each layer of subscripts k corresponds to a layer in the phase
space of CV ρk. Integrating gradually over the layers we get a block lattice sequence
with an appropriately growing block period and with the Hamiltonian correspond-
ing to each block. Each Hamiltonian is characterized by a set of the coefficients

d2, a4; d
(1)
2 , a

(1)
4 ; d

(2)
2 , a

(2)
4 , etc. For the sequence of the block Hamiltonians

{

d
(n)
2 , a

(n)
4

}

the renormalization group symmetry holds and the fixed point is of a saddle type.
As a result of the integration we obtain recursion relations for the coefficients of
the GLW Hamiltonian. The analysis of these relations yields the equation for the
critical temperature:

A(βṼ (0))2 +B(βṼ (0)) +D = 0, (3.3)
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Table 1. Critical parameters of the symmetrical hard-sphere square-well mixture
(FF demixing temperatures are calculated at η = 0.268).

r λ TCV
c (Gauss) TCV

c (φ4) TMC
c

0 1.5 3.618 (FF) 2.908(FF) 2.770(44)a(FF)
0.72 1.5 1.09 (GL) 1.058 (GL) 1.06(1)b(GL)

1.0 2.0 3.002 (GL) 2.934 (GL) 2.684(51)c(GL)

(a) Reference [2], (b) Reference [3], (c) Reference [4].

where

A = 1− f0 −R(0)√ϕ0,

B = −a2,

D = a4R
(0)/

√
ϕ0.

f0, ϕ0 are coordinates of the reduced fixed point, R(0) is a universal function of
parameter S. We choose S = 3.4252 and the values of f0, ϕ0, R

(0) corresponding to
it are taken from [14].

3.1. GL critical point of the symmetrical square-well mixtu re
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Figure 3. The GL critical temperature
as a function of λ (r = 1.2).

We consider the hard-sphere square-
well binary fluid in the neighbourhood
of the GL critical point. In this case the
GLW Hamiltonian has the same form as
(2.4)–(2.5) but the main quantities are
reduced to the following ones [13]:

η~k = ρ~k, P (k) = Ṽ (k), h = µ∗.

From the condition

µ∗ = 0, (3.4)

we obtain the equation for the critical
density of the system. The solutions of equations (3.3)–(3.4) are found numerically
using a self-consistent procedure. The results are shown in figures 1 (critical temper-
ature) and 2 (critical density). Figure 3 depicts the dependence of the GL critical
temperature on the width of the potential well λ for r = 1.2.

3.2. FF demixing of the symmetrical square-well mixture.

We study the FF demixing critical temperature as a function of parameter r and
dimensionless density η. For the symmetrical mixture in the neighbourhood of the
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Figure 4. The FF critical curve of
the symmetrical square well mixture
(r = 0).

Figure 5. The FF demixing tempera-
ture (Tc = kT/ǫ) as a function of the
microscopic parameter r at η = 0.268.
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Figure 6. The FF demixing temperature as a function of λ (r = 0.0, η = 0.268).

FF demixing point the main quantities from (2.4)–(2.5) are reduced to the following
ones:

η~k = c~k, P (k) = W̃ (k), h = 0.

As a result we obtain a critical line of the FF demixing points T c(η) where
η = πρσ3/6 is the reduced density (see figure 4). The dependence of the FF demixing
temperature on the parameter r is shown in figure 5.

Figure 6 displays the results for FF demixing temperatures depending on the
width of the potential well λ for r = 0. We compare our results with the MC
simulation data in table 1.
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Неуніверсальні критичні властивості симетричної

флюїдної суміші

О.В.Пацаган, Р.С.Мельник, М.П.Козловський

Інститут фізики конденсованих систем НАН України,

79011 Львів, вул. Свєнціцького, 1

Отримано 21 серпня 2000 р.

Ми вивчаємо неуніверсальні критичні властивості симетричної бі-

нарної суміші, використовуючи недавно запропонований підхід і ме-

тод пошарового інтегрування статистичної суми. Для симетричної

суміші твердих сфер, які взаємодіють з потенціалом прямокутної

ями, обчислені властивості критичної точки газ-рідина (температура

і густина) і температура незмішування флюїд-флюїд залежно від мік-

роскопічних параметрів: параметра r , який вимірює силу взаємодії

між частинками неподібних і подібних сортів, і параметра λ , який ви-

мірює ширину потенціальної ями.

Ключові слова: неуніверсальні критичні властивості, критична

точка газ-рідина, незмішування флюїд-флюїд, бінарна суміш
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