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We study a non-interacting (perfect) Bose-gas in random external potentials (traps). It is shown that a gen-
eralized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in
the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free
Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is
relevant for justification of the Bogoliubov approximation in the theory of disordered boson systems.
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1. Introduction

The problem of the occurrence of the Bose-Einstein Condensation (BEC) in random media was
considered for the first time in the papers by Kac and Luttinger, see [1,2], and then by Luttinger
and Sy [3]. In the latter reference, the authors studied a non-interacting (perfect) one- dimensional
system with point impurities distributed according to the Poisson law. The authors conjectured a
macroscopic occupation of the random ground state, but this was not rigorously proved until [5,6].
Although the free Bose-gas (i. e., the perfect gas without external potential or traps) does not ex-
hibit BEC for dimension less than three, the randomness can enhance BEC even in one dimension,
see [4]. This striking phenomenon is a consequence of the exponential decay of the one particle den-
sity of states at the bottom of the spectrum, known as Lifshitz tails, or “doublelogarithmic” asymp-
totics, which is generally believed to be associated with the existence of localized eigenstates [12].

On the other hand, the BEC is usually associated with a macroscopic occupation of the lowest
one-particle kinetic-energy eigenstates, which are spatially extended (plane) waves. Therefore, it is
not immediately clear whether the phenomenon discovered in random boson gases, i. e. macroscopic
occupations of localized one-particle states, has any relation to the standard BEC. This is of
particular interest in view of the well-known Bogoliubov approximation [7] and its applications to
disordered boson systems, see e. g. [8,9], where the a priori assumption of the momentum-space
condensation is essential, and is far from trivial to check.

We prove that for the perfect Bose-gas and for a general class of non-negative random po-
tentials, the condensation in the random localized one-particle states and the generalized van
den Berg-Lewis-Pulé condensation of bosons in the lowest one-particle kinetic-energy states occur
simultaneously, and, moreover, the densities of the condensate fractions are equal. Our line of rea-
soning is also applicable to some non-random potentials, for example to the case of a perfect gas
in weak (scaled) traps studied in [18].

2. Model, notations and definitions

Let {Λl := (−l/2, l/2)d}l>1 be a sequence of hypercubes of side l in R
d, d > 1, centered at the

origin of coordinates with volumes Vl = ld. We consider a system of identical bosons, of mass m,
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Th. Jaeck, J.V. Pulé, V.A. Zagrebnov

contained in Λl. For simplicity, we use a system of units such that ~ = m = 1. First we define the
self-adjoint one-particle kinetic-energy operator of our system by:

h0
l := − 1

2 ∆D , (2.1)

acting in the Hilbert space Hl := L2(Λl). The subscriptD stands for Dirichlet boundary conditions.
We denote by {ψl

k, ε
l
k}k>1 the set of normalized eigenfunctions and eigenvalues corresponding to

h0
l . By convention, we order the eigenvalues (counting the multiplicity) as εl

1 6 εl
2 6 εl

3 . . . .
We define an external random potential v(·)(·) : Ω×R

d → R, x 7→ vω(x) as a random field on
a probability space (Ω,F ,P), satisfying the following conditions:

(i) vω, ω ∈ Ω, is non-negative;

(ii) p := P{ω : vω(0) = 0} < 1.

As usual, we assume that this field is regular, homogeneous and ergodic. Then the corresponding
random Schrödinger operator acting in H := L2(Rd) is a perturbation of the kinetic-energy
operator:

hω := − 1
2 ∆ u vω, (2.2)

defined as a sum in the quadratic-forms sense. The restriction to the box Λl, is specified by the
Dirichlet boundary conditions and for regular potentials one gets the self-adjoint operator:

hω
l := (− 1

2 ∆ + vω)D = h0
l u vω, (2.3)

acting in Hl. We denote by {φω,l
i , Eω,l

i }i>1 the set of normalized eigenfunctions and corresponding

eigenvalues of hl. Again, we order the eigenvalues (counting the multiplicity) so that Eω,l
1 6

Eω,l
2 6 Eω,l

3 . . . . Note that the non-negativity of the random potential implies that Eω,l
1 > 0. So,

for convenience we also assume that in the thermodynamic limit almost surely (a. s.) with respect
to the probability P, the lowest edge of this random one-particle spectrum is:

(iii) a. s.-liml→∞ Eω,l
1 = 0.

When no confusion arises, we shall omit the explicit mention of l and ω dependence. Note that
the non-negativity of the potential implies that:

(a) Q(hω
l ) ⊂ Q(h0

l ), Q being the quadratic form domain, (2.4)

(b) (ϕ, hω
l ϕ) > (ϕ, h0

lϕ), ∀ϕ ∈ Q(hω
l ).

Now, we turn to the many-body problem. Let Fl := Fl(Hl) be the symmetric Fock space
constructed over Hl. Then Hl := dΓ(hω

l ) denotes the second quantization of the one-particle
Schrödinger operator hω

l in Fl. Note that the operator Hl acting in Fl has the form:

Hl =
∑

i>1

Eω,l
i a∗(φi)a(φi), (2.5)

where a∗(φi), a(φi) are the creation and annihilation operators (satisfying the boson Canonical

Commutation Relations) in the one-particle eigenstates {φi := φω,l
i }i >1 of hω

l . Then, the grand-
canonical Hamiltonian of the perfect Bose gas in a random external potential is given by:

Hl(µ) := Hl − µNl =
∑

i>1

(Eω,l
i − µ) Nl(φi), (2.6)

where Nl(φi) := a∗(φi)a(φi) is the operator for the number of particles in the eigenstate φi,
Nl :=

∑
iNl(φi) is the operator for the total number of particles in Λl and µ is the chemical
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potential. Note that Nl can be expanded over any basis in the space Hl, and in particular over
the one defined by the free one-particle kinetic-energy eigenstates {ψl

k, εk}k.
We denote by 〈−〉l the equilibrium state defined by the Hamiltonian Hl(µ) :

〈A〉l(β, µ) :=
TrFl

{exp(−βHl(µ))A}
TrFl

exp(−βHl(µ))
.

For simplicity, we shall omit in the following the explicit mention of the dependence on the thermo-
dynamic parameters (β, µ). Finally, we define the Thermodynamic Limit (TL) as the limit, when
l → ∞.

3. Generalized BEC in one-particle random eigenstates

In this section we consider the possibility of macroscopic occupation of the one-particle random
Schrödinger operator (2.3) eigenstates {φi}i>1. Recall that the corresponding limiting IDS, ν(E),
is defined as:

ν(E) := lim
l→∞

νω
l (E) = lim

l→∞

1

Vl
]{i : Eω,l

i 6 E}. (3.1)

Although the finite-volume IDS, νω
l (E), are random measures, one can check that for homogeneous

ergodic random potentials the limit (3.1) has the property of self-averaging [12]. This means that
ν(E) is almost surely (a. s.) a non-random measure. Let us define a (random) particle density
occupation measures ml by:

ml(A) :=
1

Vl

∑

i:Ew,l
i

∈A

〈Nl(φi)〉l, A ⊂ R. (3.2)

Then using standard methods, one can prove that this sequence of measures has (a. s.) a non-
random weak-limit m, see (3.8) below. Moreover, if the critical density

ρc := lim
µ→0

∫ ∞

0

1

eβ(E−µ) − 1
ν(dE) (3.3)

is finite, then one obtains a generalized Bose-Einstein condensation (g-BEC) in the sense that this
measure m has an atom at the bottom of the spectrum of the random Schrödinger operator, which
by (iii), section 2, is assumed to be at 0:

m({0}) = lim
δ↓0

lim
l→∞

∑

i:Ew,l
i

6δ

1

Vl
〈Nl(φi)〉l =

{
0 if ρ < ρc ,
ρ− ρc if ρ > ρc ,

(3.4)

where ρ denotes a (fixed) mean density [4,6]. Physically, this corresponds to the macroscopic
occupation of the set of eigenstates φi with energy close to the ground state φ1. However, we have
to stress that BEC in this sense does not necessarily imply a macroscopic occupation of the ground
state. In fact, the condensate can be spread over many (and even infinitely many) states.

These various situations correspond to classification of the g-BEC on the types I, II and III,
introduced in the eighties by van den Berg-Lewis-Pulé, see e. g. [13] or [7,14]. The most striking
case is type III when generalized BEC occurs in the sense of equation (3.4) even though none of
the eigenstates φi is macroscopically occupied. The realization of different types depends on how
the relative gaps between the eigenvalues Ei at the bottom of the spectrum vanish in the TL.
To our knowledge, analysis of this behaviour in random system has only been realised in some
particular cases, see [6] for a comprehensive presentation. The concept of generalized BEC is more
stable than the standard one-mode BEC, since it depends on the global low-energy behaviour of
the density of states, especially on its ability to make the critical density (3.3) finite. We also note
that, since the IDS (3.1) is not random, the same it true for the amount of the g-BEC (3.4).
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We can also obtain an explicit expression for the limiting measure m. Note that we have fixed
the mean density ρ, which implies that we require the chemical potential µ to satisfy the equation:

ρ = 〈Nl〉l(β, µ) =
1

Vl

∑

i>1

1

eβ(Eω,l
i

−µ) − 1
, (3.5)

for any l. Since the system is disordered, the unique solution µω
l := µω

l (β, ρ) of this equation is a
random variable, which is a. s. non-random in the TL [4,6]. In the rest of this paper we denote the
non-random µ∞ := a. s.- liml→∞ µω

l . By condition (iii), section 2, and by (3.7) it is a continuous
function of ρ :

µ∞(β, ρ) =

{
0 if ρ > ρc ,
µ < 0 if ρ < ρc ,

(3.6)

where µ := µ(β, ρ) is a (unique) solution of the equation:

ρ =

∫ ∞

0

1

eβ(E−µ) − 1
ν(dE) , (3.7)

for ρ 6 ρc.

Remark 3.1 Note that µ∞ is non-positive (3.6), which is not true in general for the random finite-

volume solution µω
l . Indeed, the only restriction we have is that µω

l < Eω,l
1 , which is the well-known

condition for the pressure of the perfect Bose gas to exist. We return to this question in section 4
for the case of random BEC in the free one-particle kinetic-energy operator eigenfunctions.

We also recall that for (3.6) the explicit expression of the weak limit for the general particle
density occupation measure is:

m(dE) =

{
(ρ− ρc)δ0(dE) + (eβE − 1)−1 ν(dE) if ρ > ρc ,

(eβ(E−µ∞) − 1)−1 ν(dE) if ρ < ρc .
(3.8)

We end this section with a comment about the difference between the model of the perfect Bose
gas embedded into a random potential and the free Bose gas. In the latter case, one should consider
the IDS of the one-particle kinetic-energy operator (2.1), which is given by the Weyl formula:

ν0(E) = CdE
d/2, (3.9)

where is Cd is a constant term depending only on the dimensionality d. It is known that for this
IDS, the critical density (3.3) is finite only when d > 2, and hence the fact that BEC does not
occur for low dimensions. On the other hand, a common feature of Schrödinger operators with
regular, stationary, non-negative ergodic random potentials is the so-called Lifshitz tails behaviour
of the IDS near the bottom of the spectrum. If the lower edge of the spectrum coincides with
E = 0 (condition (iii), section 2), this means that for the IDS one has the “doublelogarithmic”
asymptote, see [12]:

lim
E→0+

ln | ln(ν(E))|
lnE

= −d
2
. (3.10)

Here we consider a stronger form of this asymptotic behaviour, namely:

lim
E→0+

(−Ed/2) ln(ν(E)) > a > 0 , (3.11)

for some constant a. The technical conditions assumed throughout this paper are sufficient for
(3.11) to hold. Lifshitz tails in this form are in particular true in the case of Poisson random
potentials. In general, however, there can be a logarithmic correction to (3.11), so that one can
only expect the weak form (3.10). Hence, the critical density (3.3) is finite in any dimension, and
therefore enhances BEC in the sense of (3.4) even for d = 1, 2. This was shown in [4,6], where some
specific examples of one-dimensional Poisson disordered systems exhibiting g-BEC in the sense of
(3.4) were studied.
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4. Generalized BEC in one-particle kinetic energy eigenstates

4.1. Occupation measure for one-particle kinetic energy eigenstates

Similar to (3.2), we introduce the sequence of particle occupation measure m̃l for kinetic energy
eigenfunctions {ψk := ψl

k}k∈Λ∗

l
:

m̃l(A) :=
1

Vl

∑

k:εk∈A

〈Nl(ψk)〉l , A ⊂ R ,

but now in the random equilibrium states 〈−〉l corresponding to the perfect boson gas with Hamil-
tonian (2.5).

Note that, contrary to the last section, the standard arguments used to prove the existence
of a limiting measure in TL are not valid for m̃l, since the kinetic energy operator (2.1) and the
random Schrödinger operator (2.3) do not commute.

We also remark that even if we know that the measure m (3.8) has an atom at the edge of the
spectrum (g-BEC), we cannot deduce that the limiting measure m̃ (assuming that it exists) also
manifests g-BEC in the free kinetic energy eigenstates ψk.

Our motivation to study this problem is that in view of the well-known Bogoliubov approxi-
mation, it is the latter that is required, see [7–9]. Indeed, let the second-quantized form of the
interaction term be expressed in terms of creation/annihilation operators in states ψl

k, eigenfuncti-
ons of kinetic-energy operator (2.1). Then the so-called first Bogoliubov approximation (Bogoliubov
ansatz ) assumes that only terms involving creation and/or annihilation operators of particles in
the ground state ψl

1 are relevant. The Bogoliubov theory is nontrivial if there is macroscopic occu-
pation of this zero-mode kinetic-energy operator ground-state. Therefore, the g-BEC in the sense
(3.4) is not sufficient to apply the Bogoliubov ansatz.

Now we formulate the main result of this section. Let

ΩT
(x,x′) := {ξ : ξ(0) = x, ξ(T ) = x′}

be the set of continuous trajectories (paths) {ξ(s)}T
s=0 in R

d, connecting the points x, x′, and let
wT denote the normalized Wiener measure on this set.

Theorem 4.1 The sequence of measures m̃l converges a. s. in a weak sense to a non-random
measure m̃, which is given by:

m̃(dε) =

{
(ρ− ρc)δ0(dε) + F (ε)dε if ρ > ρc

F (ε)dε if ρ < ρc
(4.1)

with density F (ε) defined by:

F (ε) = (2ε)d/2−1

∫

S1
d

dσ g(
√

2εnσ) .

Here, S1
d denotes the unit sphere in R

d centered at the origin, nσ the unit outward drawn normal
vector, and dσ the surface measure of S1

d. The function g is as follows

g(k) =
1

(2π)d/2

∫

Rd

dx eikx
∑

n>1

enβµ∞
e−‖x‖2(1/2nβ)

(2πnβ)d/2
Eω

{ ∫

Ωnβ

(0,x)

wnβ(dξ) e−
∫

nβ

0
ds vω(ξ(s))

}
, (4.2)

with expectation Eω on the probability space (Ω,F ,P).

Note that since the Wiener measures wnβ on Ωnβ
(0,x) are normalized, we recover from (4.2) the

expression for the free Bose gas if we put vω = 0.
Before proceeding with the proof, we give some comments about these results.
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(a) First, the existence of a non-trivial limiting kinetic energy states occupation measure provides
a rigorous basis for discussing the macroscopic occupation of the free Bose gas eigenstates.

(b) Moreover, both occupation measures (3.8) and (4.1) do not only exhibit simultaneously an
atom at the bottom of the spectrum, but these atoms have the same non-random weights. It
is quite surprising that the generalized BEC triggered by the Lifshitz tail in a low dimension
disordered system produces the same value of the generalized BEC in the lowest free kinetic
energy states.

4.2. Proofs

We start by expanding the measure m̃ in terms of the random equilibrium mean-values of
occupation numbers in the corresponding eigenstates φi. Using the linearity (respectively conjugate
linearity) of the creation and annihilation operators one obtains:

m̃l(A) =
1

Vl

∑

k:εk∈A

〈a∗(ψk)a(ψk)〉l

=
1

Vl

∑

i,j

∑

k:εk∈A

(φi, ψk)(φi, (ψk) 〈a∗(φi)a(φj)〉l

=
1

Vl

∑

i

∑

k:εk∈A

|(φi, ψk)|2 〈a∗(φi)a(φi)〉l . (4.3)

In the last equality, we have used the fact that [Hl(µ), Nl(φi)] = 0 for all i, which implies that:

〈a∗(φi)a(φj)〉l = 0 if i 6= j.

This is the analogue of the momentum conservation law in the free Bose gas. Although, it has a
different physical sense: the conservation of the particle number in each random eigenstate φi.

We first prove two important lemmas. In neither of them we shall assume that the sequence m̃l

has a weak limit, instead we consider only some convergent subsequence. Note that at least one
such subsequence always exists, see [17].

The first result states that if there is condensation in the lowest random eigenstates {φi}i, then
there is also condensation in the lowest kinetic-energy states {ψk}k. Moreover, the amount of the
latter condensate density has to be not less than the former.

Lemma 4.1 Let {m̃lr}r>1 be a convergent subsequence. We denote by m̃ its (weak) limit. Then:

m̃({0}) > m({0}) =

{
ρ− ρc if ρ > ρc ,
0 if ρ < ρc .

Proof : Let γ > 0. Using the expansion of the functions ψk in the basis {φi}i>1 , we obtain:

m̃([0, γ]) = lim
r→∞

1

Vlr

∑

k:εk6γ

〈Nlr(ψk)〉lr

= lim
r→∞

1

Vlr

∑

k:εk6γ

∑

i>1

|(φi, ψk)|2 〈Nlr (φi)〉lr

> lim
r→∞

1

Vlr

∑

k:εk6γ

∑

i:Ei6δ

|(φi, ψk)|2 〈Nlr(φi)〉lr

for any δ > 0. The non-negativity of the random potential (2.4) implies:

∑

k:εk>γ

|(φi, ψk)|2 6
∑

k:εk>γ

εk

γ
|(φi, ψk)|2 6

1

γ

∑

k>1

εk|(φi, ψk)|2 =
1

γ
(φi, h

0
l φi) 6

1

γ
(φi, h

ω
l φi) =

Eω
i

γ
.
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We then obtain:

m̃([0, γ]) > lim
r→∞

1

Vlr

∑

i:Ei6δ

〈Nlr (φi)〉lr (1 −
∑

k:εk>γ

|(φi, ψk)|2)

> lim
r→∞

1

Vlr

∑

i:Ei6δ

〈Nlr (φi)〉lr (1 −Ei/γ)

> lim
r→∞

(1 − δ/γ)
1

Vlr

∑

i:Ei6δ

〈Nlr(φi)〉lr = (1 − δ/γ)m([0, δ]) > 0 .

But δ is arbitrary, and the lemma follows by letting δ → 0. �

In the next lemma, we show that the measure m̃ (4.1) can have an atom only at zero kinetic
energy.

Lemma 4.2 Let {m̃lr}r>1 be a convergent subsequence, and m̃ be its (weak) limit. Then, it is
absolutely continuous on R+ := (0,∞).

Proof : Let A be a Borel subset of (0,∞), with Lebesgue measure 0, and let a be such that
inf A > a > 0. Then:

m̃lr(A) =
1

Vlr

∑

k:εk∈A

〈Nlr(ψk)〉lr

=
1

Vlr

∑

k:εk∈A

∑

i

|(φi, ψk)|2 〈Nlr(φi)〉lr

=
1

Vlr

∑

k:εk∈A

∑

i:Ei6α

|(φi, ψk)|2 〈Nlr (φi)〉lr +
1

Vlr

∑

k:εk∈A

∑

i:Ei>α

|(φi, ψk)|2 〈Nlr (φi)〉lr (4.4)

for some α > 0. Next, we use (2.4) to get the following estimate:

Ei = (φi, h
ω
l φi) > (φi, h

0
l φi) =

∑

k

εk|(φi, ψk)|2 > a
∑

k:εk∈A

|(φi, ψk)|2 .

Since the equilibrium value of the occupation numbers 〈Nl(φi)〉l = {eEi−µ − 1}−1 are decreasing
with i, the estimate (4.4) implies:

m̃lr (A) 6
1

Vlr

1

a

∑

i:Ei6α

Ei〈Nlr(φi)〉lr + 〈Nlr(φiα
)〉lr

1

Vlr

∑

k:εk∈A

1 , (4.5)

where φiα
denotes the eigenstate of hω

l with the smallest eigenvalue greater than α. Using again
the monotonousness and the finite-volume IDS (3.1) we can get an upper bound for the mean
occupation number in the second term of (4.5), since:

ρ =
1

Vl

∑

i

〈Nl(φi)〉l >
1

Vl

∑

i:Ei6α

〈Nl(φi)〉l > 〈Nl(φiα
)〉l νω

l (α) . (4.6)

Combining (4.5) and (4.6) we obtain:

m̃lr(A) 6
αρ

a
+

ρ

νω
lr

(α)

∫

A

ν0
lr (dε) . (4.7)

Since the measure ν0 (3.9) is absolutely continuous with respect to the Lebesgue measure, and
ν(α) is strictly positive for any α > 0 the limit r → ∞ in (4.7) gives:

m̃(A) 6
αρ

a
.

But α > 0 can be chosen arbitrarily small and thus m̃(A) = 0. To finish the proof, note that any
Borel subset of (0,∞) can be expressed as a countable union of disjoint subsets with non-zero
infimum. Our arguments then can be applied to each of them. �
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Remark 4.1 Lemmas 4.1 and 4.2 are fairly general, since they require only the non-negativity of
the potential and in the random case, ergodicity. In particular, they apply to non-random (weak)
external potentials, that we consider below, as well as to some models of an interacting Bose gas, as
long as the many-particle Hamiltonian still satisfies the commutation relation [Hl(µ), Nl(φi)] = 0.
In particular this holds in the case of models with interactions, which are diagonal in the occupation
number operators.

Above we exploited the fact that the sequence {m̃l}l>1 has at least one accumulation point.
However, to prove the convergence, we need to make use of some particular and explicit features
of the perfect Bose gas, as well as a more detailed information about the properties of the external
(random) potential. In particular, we shall need some estimates of the (random) finite-volume
integrated density of states.

5. On the nature of the generalized condensates in the Luttinger-Sy model

In this section, we study the van den Berg-Lewis-Pulé classification of generalized BE conden-
sation (see discussion in section 3) in a particular case of the so-called Luttinger-Sy model with
point impurities [3].

Let u(x) > 0, x ∈ R, be a continuous function with a compact support called a (repulsive)
single-impurity potential. Let {µω

λ}ω∈Ω be the random Poisson measure on R with intensity λ > 0:

P ({ω ∈ Ω : µω
λ(Λ) = n}) =

(λ |Λ|)n

n!
e−λ|Λ| , n ∈ N0 = N ∪ {0} , (5.1)

for any bounded Borel set Λ ⊂ R. Then the non-negative random potential vω generated by the
Poisson distributed local impurities has realizations

vω(x) :=

∫

R

µω
λ(dy)u(x− y) =

∑

xω
j
∈Xω

u(x− xω
j ) . (5.2)

Here the random set Xω corresponds to impurity positions Xω =
{
xω

j

}
j
⊂ R, which are the atoms

of the random point Poisson measure, i. e., ] {Xω � Λ} = µω
λ(Λ) is the number of impurities in

the set Λ. Since the expectation E (µω
λ(Λ)) = λ |Λ|, the parameter λ coincides with the density of

impurities on R.
Luttinger and Sy defined their model by restricting the single-impurity potential to the case of

point δ-potential with amplitude a→ +∞. Then, the corresponding random potential (5.2) takes
the form:

vω
a (x) :=

∫

R

µω
λ(dy)aδ(x− y) = a

∑

xω
j
∈Xω

δ(x− xω
j ) . (5.3)

Now the self-adjoint one-particle random Schrödinger operator hω
a := h0 u vω

a is defined in the
sense of the sum of quadratic forms (2.2). The strong resolvent limit hω

LS := s.r. lima→+∞ hω
a is the

Luttinger-Sy model.
Since Xω generates a set of intervals

{
Iω
j := (xω

j−1, x
ω
j )

}
j

of lengths
{
Lω

j := xω
j − xω

j−1

}
j
, one

gets decompositions of the one-particle Luttinger-Sy Hamiltonian:

hω
LS =

⊕

j

hD(Iω
j ) , dom(hω

LS) ⊂
⊕

j

L2(Iω
j ) , ω ∈ Ω , (5.4)

into random disjoint free Schrödinger operators
{
hD(Iω

j )
}

j,ω
with Dirichlet boundary conditions

at the end-points of intervals
{
Iω
j

}
j
. Then the Dirichlet restriction hω

l,D of the Hamiltonian hω
LS

to a fixed interval Λl = (−l/2, l/2) and the corresponding change of notations are evident: e. g.,
{
Iω
j

}
j
7→

{
Iω
j

}M l(ω)

j=1
, where M l(ω) is total number of subintervals in Λl corresponding to the set

Xω. For rigorous definitions and some results concerning this model we refer the reader to [6].
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Since this particular choice of random potential is capable of producing Lifshitz tails in the
sense of (3.11), see Proposition 3.2 in [6], it follows that such a model exhibits a generalized BEC
in random eigenstates, see (3.4). In fact, it was shown in [6] that only the random ground state

φω,l
1 of hω

l,D is macroscopically occupied. In our notations this means that

lim
l→∞

1

l
〈Nl(φ

ω,l
1 )〉l =

{
0 if ρ < ρc ,
ρ− ρc if ρ > ρc ,

(5.5)

lim
l→∞

1

l
〈Nl(φ

ω,l
i )〉l = 0, for all i > 1 .

According to the van den Berg-Lewis-Pulé classification this corresponds to the type I Bose-
condensation in the random eigenstates {φω

i }i>1.
Following the line of reasoning of section 4, we now consider the corresponding BEC in the

kinetic-energy eigenstates. We retain the notation used in that section and briefly explain the
minor changes required in applying our method to the Luttinger-Sy model.

We first state the equivalent of Theorem 4.1 for this particular model.

Theorem 5.1 Theorem 4.1 holds with the function g defined as follows

g(k) =
1

(2π)d/2

∫

Rd

dx eikx
∑

n>1

enβµ∞
e−‖x‖2(1/2nβ)

(2πnβ)d/2

×
∫

Ωnβ

(0,x)

wnβ(dξ) exp
(
− λ

(
sup

s
ξ(s) − inf

s
ξ(s)

))
.

The scheme of the proof is the same as the above, cf. section 4. First, we note that Lemmas 4.1
and 4.2 apply immediately. The positivity of the random potential has to be understood in terms
of quadratic forms, see (2.4).

First, suppose that there is at least one impurity in the box, then the eigenvalues will be of the
form (for some j)

(n2π2)/(Lω
j )2, n = 1, 2, . . .

if Iω
j is an inner interval (that is, its two endpoints correspond to impurities), and

((n+ 1/2)2π2)/(Lω
j )2, n = 0, 1, 2, . . .

if Iω
j is an outer interval (that is, one endpoint corresponds to an impurity, and the other one to

the boundary of Λl). Therefore, Eω,l,N
1 > B/l2 since obviously Lω

j < l. Now, if there is no impurity

in the box Λl, then Eω, l,N
1 = 0 < B/l2. But due to the Poisson distribution (5.1) this happens

with probability e−λl.

Our next step is to split the measure m̃l into two, m̃
(1)
l and m̃

(2)
l , and to prove the following

statement:

Theorem 5.2 For any d > 1, the sequence of Laplace transforms of the measures m̃
(1)
l :

fl(t;β, µl) :=

∫

R

m̃
(1)
l (dε) e−tε

converges for any t > 0 to a (non-random) limit f(t;β, µ∞) , which is given by:

f(t;β, µ∞) =
∑

n>1

enβµ∞

∫

Rd

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

Ωnβ

(0,x)

wnβ(dξ) exp
(
− λ

(
sup

s
ξ(s) − inf

s
ξ(s)

))
.
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Proof: We can use the ergodic theorem to obtain:

lim
l→∞

al(n) = enβµ∞Eω

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∑

j

∫

Ωnβ

(0,x)

wnβ(dξ)χIj
ω ,nβ(ξ). (5.6)

We have used the fact that the Dirichlet boundary conditions at the impurities split up the space
Hl into a direct sum of Hilbert spaces (see (5.4)). This can be seen from the expression

lim
l→∞

al(n) = enβµ∞

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
Eω

∫

Ωnβ

(0,x)

wnβ(dξ) e
−

∫
nβ

0
ds a

∑
xω

j
∈Xω δ(ξ(s)−xω

j )

by formally putting the amplitude, a, of the point impurities (5.3) equal to +∞. Because of the
characteristic functions χIω

j
,nβ , which constrain the paths ξ to remain in the interval Iω

j in time

nβ, the sum in (5.6) reduces to only one term:

lim
l→∞

al(n) = enβµ∞

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
Eω

∫

Ωnβ

(0,x)

wnβ(dξ)χ(aω ,bω),nβ(ξ) , (5.7)

where (aω, bω), is the interval among the Iω
j ’s which contains 0.

The expression in (5.7) can be further simplified by computing the expectation Eω explicitly.
First, note that the Poisson impurity positions: aω, bω are independent random variables and by
definition, aω is negative while bω is positive. For the random variable bω the distribution function is:

P (bω < b) := P{(0, b) contains at least one impurity} = 1 − e−λb,

and, therefore, its probability density is λe−λb on (0,∞). Similarly for aω one gets:

P (aω < a) := P{(a, 0) contains no impurities} = e−λ|a| = eλa,

and thus its density is λeλa on (−∞, 0). Using these distributions in (5.7) we obtain:

lim
l→∞

al(n) = enβµ∞λ2

∫ 0

−∞

da eλa

∫ ∞

0

db e−λb

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

Ωnβ

(0,x)

wnβ(dξ)χ(a,b)(ξ)

= enβµ∞λ2

∫ 0

−∞

da eλa

∫ ∞

0

db e−λb

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

Ωnβ

(0,x)

wnβ(dξ)1(sup
s

(ξ(s)) 6 b)1(inf
s

(ξ(s)) > a)

= enβµ∞λ2

∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

Ωnβ

(0,x)

wnβ(dξ)

∫ infs(ξ(s))

−∞

da eλa

∫ ∞

sups(ξ(s))

db e−λb ,

and the Theorem 5.2 follows by explicit computation of the last two integrals. �

Proof of Theorem 5.1: Having proved Theorem 5.2, it is now straightforward to derive the cor-
responding result for the Luttinger-Sy model. Note that the line of reasoning remains unchanged,
since only the uniform convergence was used. With these observations, the proof of Theorem 5.1
follows in the same way as for Theorem 4.1. �
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We have proved, in Theorem 5.1, that the Luttinger-Sy model exhibits g-BEC in the kinetic
energy states. But, in this particular case, we can go further and determine the particular type of
g-BEC in the kinetic energy states. Recall that the g-BEC in the random eigenstates is only in
the ground state, that is, of the type I, see (5.5) and [6] for a comprehensive review. Here we shall
show that the g-BEC in the kinetic-energy eigenstates is in fact of the type III, namely:

Theorem 5.3 In the Luttinger-Sy model none of the kinetic-energy eigenstates is macroscopically
occupied:

lim
l→∞

1

l
〈Nl(ψk)〉l = 0 for all k ∈ Λ∗

l ,

even though for ρ > ρc there is a generalized BEC.

To prove this theorem we shall exploit the finite-volume localization properties of the random
eigenfunctions φω,l

i of the Hamiltonian hω
l,D. Since the impurities split up the box Λl into a finite

numberM l(ω) of sub-intervals
{
Iω
j

}M l(ω)

j=1
, by virtue of the corresponding orthogonal decomposition

of hω
l,D, cf (5.4), the normalized random eigenfunctions φω,l

s are in fact sine-waves with supports
in each of these sub-intervals and thus satisfy:

|φω,l
s (x)| <

√
2

Lω
js

1Iω
js

(x) , 1 6 js 6 M l(ω) . (5.8)

We require an estimate of the size Lω
j of these random sub-intervals, which we obtain in the

following lemma.

Lemma 5.1 Let λ > 0 be a mean concentration of the point Poisson impurities on R. Then
eigenfunctions φω

j are localized in sub-intervals of logarithmic size, in the sense that for any κ > 4,
one has a. s. the estimate:

lim sup
l→∞

max16j6M l(ω) L
ω
j

ln l
6

κ

λ
.

Proof : Define the set

Sl :=

{
ω : max

16j6M l(ω)
Lω

j >
κ

λ
ln l

}
.

Let n :=
[
2λl/(κ ln l)

]
+
, and define a new box:

Λ̃l :=
[
−n

2
(
κ

2λ
ln l) ,

n

2
(
κ

2λ
ln l)

]
⊃ Λl .

Split this bigger box into n identical disjoint intervals {I l
m}n

m=1 of size κ(2λ)−1 ln l. If ω ∈ Sl, then
there exists at least one empty interval I l

m (interval without any impurities), and therefore the set

Sl ⊂
⋃

16m6n

{ω : I l
m is empty} .

By the Poisson distribution (5.1), the probability for the interval I l
m to be empty depends only on

its size, and thus

P(Sl) 6 n exp(−λ κ
2λ

ln l) 6

[
2λl

κ ln l

]

+

l−κ/2.

Since we choose κ > 4, it follows that

∑

l>1

P(Sl) < ∞.
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Therefore, by the Borel-Cantelli lemma, there exists a subset Ω̃ ⊂ Ω of full measure, P(Ω̃) = 1,

such that for each ω ∈ Ω̃ one can find l0(ω) <∞ with

P {ω : max
16j6M l(ω)

Lω
j 6

κ

λ
ln l} = 1

for all l > l0(ω). �

Now we can prove the main statement of this section.
Proof of Theorem 5.3: The atom of the measure m̃ has already been established in Theorem 5.1.
Concerning the macroscopic occupation of a single state, we have

1

l
〈Nl(ψk)〉l =

1

l

∑

i

|(φω,l
i , ψk)|2〈Nl(φ

ω,l
i )〉l

=
1

l

∑

i

〈Nl(φ
ω,l
i )〉l

∣∣∣∣
∫

Λl

dx ψk(x)φω,l
i (x)

∣∣∣∣
2

6
1

l

∑

i

〈Nl(φ
ω,l
i )〉l

1

l

(∫

Λl

dx |φω,l
i (x)|

)2

,

where in the last step we have used the bound |ψk| 6 1/
√
l . Therefore, by (5.8) and Lemma 5.1,

we obtain a. s. the following estimate:

1

l
〈Nl(ψk)〉l 6

1

l

∑

i

〈Nl(φ
ω,l
i )〉l

1

l

κ

λ
ln l ,

which is valid for large enough l and for any κ > 4. The theorem then follows by taking the
thermodynamic limit. �
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Бозе конденсацiя у (випадкових) пастках
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Отримано 15 червня 2009 р.

Проведено дослiдження iдеального газу Бозе-частинок у випадкових зовнiшнiх потенцiалах (паст-
ках). Показано, що узагальнена конденсацiя Бозе-Айнштайна у випадкових власних станах части-
нок спостерiгається тодi i лише тодi, коли це саме стосується i власних станiв одночастинкової
кiнетичної енергiї, якi вiдповiдають узагальненiй конденсацiї вiльного газу Бозе. Крiм того, доведено,
що значення густини конденсату є однаковим в обох випадках. Це твердження є важливим для
пiдтвердження застосовностi наближення Боголюбова в теорiї невпорядкованих систем бозонiв.

Ключовi слова: узагальнена конденсацiя Бозе-Айнштайна, випадковi потенцiали, iнтегрованi
густини станiв, “хвости” Лiфшиця
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