Вращение метильных групп и теплопроводность молекулярных кристаллов: этан

В.А. Константинов, В.П. Ревякин, В.В. Саган

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: konstantinov@ilt.kharkov.ua

Статья поступила в редакцию 18 октября 2005 г., после переработки 19 января 2006 г.

Исследована теплопроводность твердого этана (C_2H_6) для трех образцов разной плотности в температурном интервале от 35 К и до начала плавления. Во всех случаях изохорная теплопроводность в α - и β -фазах уменьшалась с ростом температуры по зависимости более слабой, чем $\Lambda \propto 1/T$. Такое поведение типично для ориентационно-упорядоченных фаз молекулярных кристаллов и не обнаруживает каких-либо явных особенностей, связанных с вращением метильных групп. Проводится сравнение теплопроводности этана с теплопроводностью некоторых фреонов этанового ряда. Экспериментальные результаты обсуждаются в рамках модели, в которой тепло переносится низкочастотными фононами, а выше границы подвижности — высокочастотными «диффузными» модами.

Досліджено теплопровідність твердого етану (C_2H_6) для трьох зразків різної густини у температурному інтервалі від 35 К і до початку плавлення. У всіх випадках ізохорна теплопровідність у α - та β -фазах зменшувалася з зростанням температури по більш слабкій залежності, ніж $\Lambda \propto 1/T$. Така поведінка типова для орієнтаційно-упорядкованих фаз молекулярних кристалів, і не виявляє явних особливостей, пов'язаних з обертанням метильних груп. Проводиться зіставлення теплопровідності етану з теплопровідністю деяких фреонів етанового ряду. Експериментальні результати обговорюються у рамках моделі, де тепло переноситься низькочастотними фононами, а вище границі рухомості — «дифузними» модами.

PACS: 66.70.+f, 63.20.Ls

Ключевые слова: изохорная теплопроводность, фононы, диффузные моды, перенос тепла.

Введение

Тепловые и механические свойства молекулярных кристаллов в значительной степени определяются характером вращательного движения молекул. С повышением температуры оно может в принципе проходить следующие этапы: возрастание амплитуды либраций — возникновение скачкообразных переориентаций молекул — увеличение частоты реориентаций — заторможенное вращение молекул и, наконец, — близкое к свободному вращение молекул.

Исследования изохорной и изобарной теплопроводности простых молекулярных кристаллов [1–5] позволили установить общие закономерности переноса тепла, обусловленные наличием вращательных степеней свободы молекул, при температурах порядка и выше дебаевских ($T \ge \theta_D$). Сильное трансляционно-ориентационное взаимодействие [6] обусловливает значительный вклад молекулярных либраций в тепловое сопротивление кристалла $W = 1/\Lambda$ [2,3]. В свою очередь это приводит к большим отклонениям изохорной теплопроводности от зависимости $\Lambda \propto 1/T$ вследствие приближения ее к своему нижнему пределу Λ_{min} [4,7]. При переходе к слабозаторможенному вращению либрационная составляющая полного теплового сопротивления резко уменьшается, так что изохорная теплопроводность, как правило, растет при увеличении температуры [2,5].

В органических молекулярных кристаллах широко распространенным видом движения является вращение фрагментов молекул, в частности одномерное вращение (колебания) метильных групп вокруг оси третьего порядка [8,9]. При низких температурах оно осуществляется путем квантового туннелирования. При высоких температурах вращение метильных групп становится термически активированным и может трактоваться классически. До настоящего времени влияние вращения фрагментов молекул на теплопроводность практически не изучалось, за исключением работы [10]. Авторы этой работы исследовали теплопроводность метилзамещенных бензола: метилбензола (толуола), 1,2-диметилбензола (ортоксилола), 1,3-диметилбензола (метаксилола), 1,4-диметилбензола (параксилола), и 1,3,5-триметилбензола (мезитилена) в интервале температур 80-270 К и при давлении насыщенных паров. В указанных соединениях установлен факт реориентации метильных групп относительно простых С-С связей с энергией активации порядка 2,1 кДж/моль (за исключением ортоксилола, для которого она составляет 8,4 кДж/моль). Только в ортоксилоле соблюдалась прямая пропорциональная зависимость теплового сопротивления от абсолютной температуры: W = AT. Для остальных образцов имелись существенные отклонения от этой зависимости, однако во всех случаях абсолютные значения теплосопротивлений лежали выше, чем у ортоксилола, и в определенном интервале температур они могли быть аппроксимированы линейными двучленами вида $W = A_1T + A_2$. Наличие постоянной составляющей теплового сопротивления метилзамещенных бензола (за исключением ортоксилола, где вращение метильных групп, находящихся в ортоположении, заторможено большим потенциальным барьером) авторы приписали дополнительному рассеянию фононов, причиной которого является реориентационное движение метильных групп относительно простых С-С связей. Ниже 90 К теплопроводность толуола, пара- и метаксилола резко возрастала; причина такого поведения, по мнению авторов, связана с вымораживанием вращений.

С точки зрения современных представлений, такая аргументация не является достаточно убедительной. Во-первых, теория предсказывает зависимость $\Lambda \propto 1/T$ для относительно слабых процессов рассеяния с участием трех квазичастиц и изохорных условий. В отсутствие интенсивных реориентаций поведение изобарной теплопроводности молекулярных кристаллов при $T \ge \Theta_D$ определяется в основном двумя факторами: существенным ограничением длины свободного пробега высокочастотных мод [4] и смягчением всех колебательных мод при расширении кристалла [11]. Эти факторы действуют в противоположных направлениях и частично компенсируют друг друга. Во-вторых, указанные выше энергии активации характеризуют внутреннее вра-

щение молекул, в то время как фононное рассеяние и, соответственно, теплопроводность определяются в первую очередь параметрами межмолекулярного взаимодействия.

В настоящей работе в качестве объекта исследования был выбран твердый этан (C₂H₆). Молекула этана состоит из двух метильных групп, развернутых на 60° вокруг одинарной С-С связи. Потенциальный барьер внутреннего вращения (вращения метильных групп друг относительно друга вокруг оси С₃) составляет 12,2 кДж/моль [12]. На протяжении многих лет этан рассматривался как «неглобулярная» молекула, не образующая «пластическую» фазу [8]. Открытие фазового перехода в этане вблизи температуры плавления привлекло внимание к его структурным и динамическим свойствам [13-15]. Новая кристаллическая фаза была обнаружена вначале при давлениях Р выше 100 МПа [13], а затем найдена простирающейся до *P* = 0 [14–16]. В последующих измерениях теплоемкости методом адиабатической калориметрии были обнаружены два фазовых перехода: при T = 89,726 К, ранее не наблюдавшийся, и Т = 89,834 К, с энтальпией переходов 90 и 2050 Дж/моль. Температура тройной точки была определена как 90,352 К, а энтальпия плавления — 582 Дж/моль [17]. Низкая энтропия плавления (6,44 Дж/(моль-К)) и большая энтропия β-у перехода (22,82 Дж/(моль-К)) указывают на «пластический» характер у-фазы. В более поздних измерениях при высоких давлениях температуры фазовых переходов были найдены экстраполяцией к P = 0, $T_{\alpha-\beta} = 89,68$ K, $T_{\beta-\gamma} = 89,782$ K, а температура плавления T_m = 90,318 К [18]. Соответствующие скачки плотности составляют 0,2% при β-γ переходе, 6,8% при α-β переходе и 2,4% при плавлении.

Кристаллическая структура α - и β -фаз этана была определена рентгеновским методом [19]. При 90 К она кубическая, a = 5,304 Å, пространственная группа Im3m, Z = 2. Модификация при 85 К моноклинная, a = 4,226 Å, b = 5,623 Å, c = 5,845 Å, $\beta = 90,41^{\circ}$, пространственная группа $P2_1/n$, Z = 2. Структура β -фазы до сих пор не известна, однако малая энтальпия и скачок плотности при α - β переходе говорят в пользу упорядоченной модификации.

Динамика вращательного движения молекул в твердом этане изучалась методами ЯМР и неупругого рассеяния нейтронов [20–22]. Следует отметить, что оба метода не позволяют отличить внутреннее вращение от вращения молекулы вокруг оси C_3 как целого. Краткое резюме этих исследований состоит в следующем. Вследствие квантового туннелирования уже при гелиевых температурах наблюдается достаточно интенсивное движение метильных групп. Так, значение второго момента ЯМР при 4,2 К составляет 12,5 Γc^2 , в то время как теоретические оценки для случая полностью замороженного вращения дают величину 38,3 Гс². При последующем нагреве значение второго момента снижается от 12,0 до 11,0 Гс² между 30 и 40 К (теория для случая свободного вращения вокруг C_3 дает 10,9 Гс²); одновременно ширина линии уменьшается от 8,6 до 7,5 Гс. В этом же температурном интервале наблюдается небольшой «горб» на температурной зависимости теплоемкости [23]. Такое поведение может быть трактовано как переход от квантового туннелирования к термически активированному вращению. Предполагается аррениусовская зависимость времени спин-решеточной релаксации $\tau_{C_3} = 0.038 \cdot 10^{-12} \exp(5404/RT)$ с (из данных по нейтронному рассеянию) и $\tau_{C_3} =$ $= 0,0079 \cdot 10^{-12} \exp(7670/RT)$ c (из ЯМР данных), которые плохо согласуются между собой. Дальнейшее резкое уменьшение второго момента происходит выше 72 К. Вероятно, оно связано с появлением молекулярных реориентаций вокруг оси второго порядка С2. При наивысшей температуре в α-фазе (89,68 К) частота реориентаций вокруг оси С2 не превышает 6·10⁵ с⁻¹. Этот вклад значительно увеличивается во времени спин-решеточной релаксации ориентационно-упорядоченной β-фазы. В ориентационно-разупорядоченной у-фазе реориентации становятся многоосными, а беспорядок приобретает динамическую природу.

Экспериментальные результаты и их обсуждение

В интервале температур от 35 К и до начала плавления исследована изохорная теплопроводность твердого этана для трех образцов разной плотности. Чистота исследуемого газа была не хуже 99,96%. Измерения проведены на установке коаксиальной геометрии стационарным методом. Образцы выращены при различных давлениях от 140 МПа (образец №1) до 50 МПа (образец №3) при градиенте температуры вдоль измерительной ячейки порядка 1,5 К/см. По окончании выращивания капилляр напуска блокировался путем замораживания его жидким водородом и образцы отжигались 1-2 часа при предплавильных температурах для снятия градиентов плотности. После измерений образцы испарялись в тонкостенный сосуд, и их массу измеряли взвешиванием. Молярные объемы образцов определяли по известному объему измерительной ячейки и массе образца. Суммарная систематическая погрешность измерений не превышала 4% для теплопроводности и 0,2% для объема. Более подробно экспериментальная установка, процедура выращивания образцов и методика измерений описаны в [24].

Для идентификации изохорной теплопроводности образцов с той или иной кристаллической фазой необходимы сведения о V-T фазовой диаграмме. Хотя подобные данные для этана отсутствуют, с определенной степенью точности она может быть построена на основании данных работ [18,19,25,26] и настоящей работы (см. рис.1). Температурная зависимость молярного объема α-фазы при атмосферном давлении показана согласно усредненным данным нашей работы и рентгеновским данным [19], скачки молярного объема при фазовых переходах представлены согласно [18,19], температурная зависимость молярного объема жидкости изображена согласно данным [26]. Линии фазовых переходов были рассчитаны из Р-Т фазовой диаграммы [18] в предположении, что $(dP/dT)_V = \beta/\chi_T$ одинаково для всех трех фаз. Используя среднее значение коэффициента теплового расширения ниже α-β перехода $\beta = 11,5 \cdot 10^{-4} \text{ K}^{-1}$ и изотермической сжимаемо-сти $\chi_T = 0,3 \text{ ГПа}^{-1}$ [26], имеем $(dP/dT)_V = 3,85$ МПа/К. Каждый образец ниже определенной температуры T_0 является свободным, а выше нее термическое давление растет по приблизительно линейной зависимости до пересечения с кривой α-β перехода $P_{\alpha-\beta}(T)$. Величина этой температуры зависит от плотности образца. Дальше давление в двухфазной области меняется как $P_{\alpha-\beta}(T)$. Легко показать, что температурный интервал существования двухфазной области ΔT_b может быть определен как

$$\Delta T_b = \frac{\Delta V_f}{V} \chi_T^{-1} \left[\left(\frac{dP_f}{dT_f} \right) - \left(\frac{dP}{dT} \right)_V \right]^{-1}, \qquad (1)$$

где $\Delta V_f/V$ — относительный скачок объема при фазовом переходе, (dP_f/dT_f) — производная от давления по температуре вдоль линии фазового перехода. Такую же процедуру применяли для определения границ существования β - и γ -фаз. Линия

Рис. 1. Фазовая V-Т диаграмма этана.

плавления представляет собой экстраполяцию данных работы [26].

Молярные объемы образцов V_m , температуры T_0 начала выполнения в эксперименте условия V == const, температуры начала и конца α - β и β - γ переходов ($T^b_{\alpha\beta}$, $T^e_{\alpha\beta}$ и $T^b_{\beta\gamma}$, $T^e_{\beta\gamma}$), а также температуры начала плавления образцов T_m представлены также в табл. 1.

Таблица 1. V_m — молярные объемы образцов, T_0 — температуры начала выполнения в эксперименте условия $V = \text{const}, T^b_{\alpha\beta}, T^e_{\alpha\beta}$ и $T^b_{\beta\gamma}, T^e_{\beta\gamma}$ — температуры начала и конца α — β и β — γ переходов соответственно, T_m — температуры начала плавления образцов.

№ образца	V _m , см ³ ∕моль	Т ₀ , К	$T^b_{\alpha\beta}, \\ \mathrm{K}$	τ ^e _{αβ} , Κ	<i>т</i> ^b _{βγ} , К	<i>Τ</i> ^{<i>e</i>} _{βγ} , K	Т _т , К
1	40,3	54	106	110	112	128	134
2	40,8	65	101	104	106	124	129
3	41,6	83	93	94	95	118	123

Температурные зависимости теплопроводности трех образцов приведены на рис. 2. Сглаженные значения теплопроводности показаны штриховыми линиями. Стрелки, направленные вниз, соответствуют температурам T_0 , а направленные вверх — температурам начала плавления образцов T_m . Коэффициент Бриджмена $g = -(\partial \ln \Lambda / \partial \ln V)_T$, рассчитанный по экспериментальным данным, при T = 88 К равен 5,5 ± 0,5.

Рис. 2. Температурные зависимости теплопроводности трех образцов твердого этана различной плотности (см. табл. 1). Штриховой линией показаны сглаженные значения теплопроводности. Стрелки, направленные вниз, показывают начало выполнения в эксперименте условия V = const, а направленные вверх — начало плавления образцов.

В α-фазе этана изохорная теплопроводность меняется по более слабой, чем $\Lambda_V \propto 1/T$, зависимо-сти, приблизительно как $\Lambda_V \propto T^{-0.85}$, что довольно типично для ориентационно-упорядоченных фаз молекулярных кристаллов [2,4] (для сравнения в твердом СО2 при температурах порядка и выше дебаевских $\Lambda_V \propto T^{-0,8}$). Температурная зависимость теплопроводности не выявляет каких-либо особенностей, связанных с вращением метильных групп, как, например, в бензоле, где при предплавильных температурах наблюдался слабый рост изохорной теплопроводности, связанный с вращением молекул в плоскости кольца [5]. Плавное уменьшение теплопроводности наблюдается также в области α-β перехода, что указывает на малое отличие теплопроводности α- и β-фаз этана из-за незначительного скачка плотности при α-β переходе.

При предплавильных температурах зависимость $\Lambda(T)$ всех трех образцов выходит на «плато», наиболее вероятной причиной которого является появление «пластической» γ -фазы. Увеличение изохорной теплопроводности с ростом температуры, как отмечалось раньше, характерно для ориентационно-разупорядоченных фаз молекулярных кристаллов [4,5].

Представляет интерес проследить, как меняется теплопроводность некоторых фреонов этанового ряда, для которых характер ориентационного движения молекул существенным образом меняется. Замена атома водорода в молекуле этана атомом галогена полностью исключает квантовое тунеллирование и, как правило, существенно затормаживает вращение соответствующего фрагмента молекулы вокруг оси С-С. Известны экспериментальные данные по теплопроводности при постоянном давлении для 1,1,1-трихлорэтана [27], 1,1,2-трихлорэтана [28], и 1,2-дихлорэтана [29]. К сожалению, имеющихся структурных и теплофизических сведений недостаточно для пересчета теплопроводности к постоянной плотности. В случае сложных молекул применимость метода приведенных координат [30] также ставится под сомнение. Поэтому для наглядности теплопроводность, измеренная при атмосферном давлении [29] и экстраполированная к нему из данных работ [27,28], представлена на рис. З в координатах $\Lambda(T/T_m)$, где T_m — температура плавления указанных веществ при P = 0.

При замене трех атомов водорода на одном из концов молекулы этана атомами хлора получается 1,1,1-трихлорэтан (метилхлороформ), структурные и теплофизические свойства которого изучены довольно тщательно [31]. Метилхлороформ являет собой пример «глобулярной» молекулы. Он имеет переход первого рода при 224,8 К с относительной энтропией перехода $\Delta S_f/R = 4,01$ и плавится при

Рис. 3. Температурная зависимость теплопроводности этана, 1,1,1-трихлорэтана, 1,1,2-трихлорэтана и 1,2-дихлорэтана при атмосферном давлении.

243,1 К с изменением энтропии $\Delta S_f / R = 1,16$. Низкотемпературная фаза II – орторомбическая (Pnma) с Z = 4, высокотемпературная фаза подобно четыреххлористому углероду имеет две кристаллические модификации: метастабильную кубическую Іа и ромбоэдрическую Іb [32,33]. Исследования ЯМР показали, что первое уменьшение второго момента в метилхлороформе, связанное с переориентацией метильной группы, происходит между 120 и 150 К; энергия активации этого движения, полученная из измерений T₁ протонов, равна 19 кДж/моль [34,35]. Это эффективная энергия активации, которая не совпадает с высотой барьера V₀, тормозящего вращение метильной группы по отношению к группе CCl₃, поскольку переориентация метильной группы, по-видимому, происходит также и путем туннелирования через барьер [36].

Гутовски и Мак-Колл [34] обнаружили, что линии чистого квадрупольного резонанса на ядрах ³⁵Cl затухают и прослеживаются в 1,1,1-трихлорэтане только до 150 К, что является свидетельством появления молекулярных переориентаций. Резкое увеличение диэлектрической проницаемости твердого метилхлороформа при переходе II → I [37] и одновременное изменение T_1 протонов [35] свидетельствуют в пользу того, что при переходе в фазу I молекулы приобретают ориентационную свободу. Однако даже в фазе II, по-видимому, достигается значительная степень свободы вращательного движения молекул, так как длинноволновый инфракрасный спектр в области решеточных колебаний становится сильно размытым выше интервала температур 80-190 К [38].

Теплопроводность 1,1,1-трихлорэтана исследована Россом и Андерссоном при давлениях 110, 620 и 700 МПа [27]. Данные по теплопроводности, экстраполированные к атмосферному давлению, показаны на рис. 3. В ориентационно-упорядоченной фазе II теплопроводность меняется приблизительно пропорционально $T^{-1,1}$, в то время как в ориентационно-разупорядоченной фазе I она практически постоянна. Температурная зависимость изобарной теплопроводности упорядоченной фазы близка к наблюдаемой в этане, где она меняется приблизительно как $\Lambda_p \propto T^{-1,05}$, и четыреххлористом углероде, где $\Lambda_p \propto T^{-1,1}$ [5]. Учитывая, что абсолютная величина теплопроводности определяется в первую очередь значением дебаевской температуры, можно сделать вывод, что вращение метильных групп не сказывается явным образом на поведении теплопроводности в области «классического» вращения.

1,1,2- трихлорэтан исследован значительно менее подробно. Он кристаллизуется при 237,1 К с изменением энтропии $\Delta S_f/R$ равным 5,77, что указывает на отсутствие «пластической» фазы [37]. При дальнейшем охлаждении вблизи 175 К наблюдается фазовый переход I → II с большим температурным гистерезисом и малым скачком объема (~1%) [28,39]. Сведения о структуре фаз отсутствуют. Теплопроводность 1,1,2-трихлорэтана исследована Россом и Андерссоном при давлениях 110, 390 и 780 МПа [28]. Данные, экстраполированные к атмосферному давлению, показаны на рис. З. В отличие от 1,1,1-трихлорэтана, теплопроводность уменьшается с ростом температуры как в фазе I, так и в фазе II. Учитывая, что тепловое сопротивление W высокотемпературной фазы 1,1,2-трихлорэтана меняется линейно пропорционально температуре T, а низкотемпературной фазы содержит постоянную добавку $W = A_1T + A_2$, авторы [28] трактовали фазу I как

Рис. 4. Экспериментально измеренная теплопроводность образца №3, и подгоночная кривая к ней, а также рассчитанные вклады в теплопроводность низкочастотных фононов $\Lambda_{\rm ph}$ и «диффузных» мод $\Lambda_{\rm dif}$. Пунктирной линией показан нижний предел теплопроводности решетки $\Lambda_{\rm min}$, рассчитанный согласно [8]..

нормальную, а фазу II как с замороженным беспорядком. Это, однако, противоречит факту резкого увеличения теплопроводности при переходе I → II.

Согласно [40–42], 1,2-дихлорэтан кристаллизуется в моноклинной решетке и содержит две молекулы в элементарной ячейке. Результаты рентгенографических исследований и данные по ядерному магнитному резонансу [43,44] свидетельствуют о непрерывном переходе в районе 175 К, который связывают с переходом к заторможенному вращению вокруг оси, отстоящей на 1° от направления Cl–Cl. Относительное изменение энтропии при фазовом переходе составляет 1,95; плавится 1,2-дихлорэтан при 237,6 К, с относительным изменением энтропии $\Delta S_f/R = 4,42$ [45].

Теплопроводность 1,2-дихлорэтана была исследована Могилевским и Суриным при атмосферном давлении, данные представлены на рис. 4. В низкотемпературной фазе II теплопроводность меняется приблизительно пропорционально $T^{-1,25}$, а в высокотемпературной фазе I она практически постоянна и должна увеличиваться при увеличении температурой при пересчете к постоянной плотности подобно тому, как это происходит в «пластических» фазах других молекулярных кристаллов.

Сопоставление температурных зависимостей теплопроводности этана и фреонов этанового ряда в ориентационно-упорядоченных фазах (см. рис. 3) дает дополнительные аргументы в пользу того, что «классическое» вращение метильных групп не приводит к каким-либо аномалиям переноса тепла в молекулярных кристаллах при температурах порядка и выше дебаевских.

Учитывая сказанное выше, теплопроводность α-фазы этана можно рассчитать в рамках модели, где тепло переносится низкочастотными фононами, а выше границы подвижности — «диффузными» модами, как это было сделано раньше для ориентационно-упорядоченных фаз других молекулярных кристаллов [4]. Используем выражение для теплопроводности в виде

$$\Lambda(T) = 3nk_B v \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} l(x) \frac{x^4 e^x}{(e^x - 1)^2} dx , \quad (2)$$

где $\Theta_D = v(\hbar/k_B) (6\pi^2 n)^{1/3}$, n — число атомов (молекул) в единице объема, v — усредненная по поляризациям скорость звука, l(x) — длина свободного пробега фононов. При $T \ge \Theta_D$ длина свободного пробега определяется в основном процессами переброса:

$$l(x) = \frac{1}{CT} \frac{h^2 v^2}{k_B^2 T^2 x^2} , \qquad (3)$$

где C — численный коэффициент. Учитывая, что длина свободного пробега фононов не может стать меньше половины длины волны: $l(x) = \alpha \lambda / 2$, где $\alpha \approx 1$, граница «диффузности» Θ^* определится как

$$\Theta^* = 2hv / \alpha k_B CT. \tag{4}$$

Под «диффузными» будем в дальнейшем подразумевать моды, длина свободного пробега которых достигла минимальной. (Предполагается, что $\Theta^* \leq \Theta_D$, в противном случае $\Theta^* = \Theta_D$.) Интеграл теплопроводности может быть разбит на две части, описывающие вклад в теплопроводность низкочастотных фононов и высокочастотных «диффузных» мод:

$$\Lambda = \Lambda_{\rm ph} + \Lambda_{\rm dif}, \qquad (5)$$

$$\Lambda_{\rm ph}(T) = 3nk_B v \left(\frac{T}{\Theta_D}\right)^3 \left[\int_{0}^{\Theta_* / T} l(x) \frac{x^4 e^x}{(e^x - 1)^2} dx\right], \qquad (6)$$

$$\Lambda_{\rm dif}(T) = 3nk_B v \left(\frac{T}{\Theta_D}\right)^3 \left[\int_{\Theta_*/T}^{\Theta_D/T} \alpha \frac{vh}{2k_B xT} \frac{x^4 e^x}{(e^x - 1)^2} dx \right].$$
(7)

Компьютерную подгонку проводили методом наименьших квадратов к сглаженным значениям теплопроводности образца №1 в α -фазе. При подгонке использовано значение $n = 1,49 \cdot 10^{22}$ см⁻³. Варьировались параметры C, v и α . Наилучшее согласие с экспериментом было получено при значениях $C = 1,06 \cdot 10^{-9}$ см/К, $v = 1,42 \cdot 10^3$ м/с и $\alpha = 1,84$. Подгоночная кривая к сглаженным значениям экспериментально измеренной теплопроводности и рассчитанные согласно (5)–(7) вклады в теплопроводнох мод Λ_{dif} показаны на рис. 4.

Видно, что «диффузность» в поведении колебательных мод начинает проявляться при температурах выше 70 К, а при 120 К половина тепла переносится «диффузными» модами Пунктирной линией показан нижний предел теплопроводности решетки Λ_{\min} , рассчитанный в предположении, что все моды имеют «диффузный» характер:

$$\Lambda'_{\min} = 3\alpha \left(\frac{\pi}{6}\right)^{1/3} n^{2/3} k_B v \left(\frac{T}{\Theta_D}\right)^2 \int_0^{\Theta_D/T} \frac{x^3 e^x}{(e^x - 1)^2} dx.$$
(8)

Выше 120 К теплопроводность приближается к своему нижнему пределу. Коэффициент α близок по абсолютной величине к наблюдавшимся раньше для линейных молекул и указывает на необходимость учета переноса вращательной энергии с узла на узел [4].

Выводы

Исследована теплопроводность твердого этана трех образцов разной плотности в температурном интервале от 35 К и до начала плавления. На основании наших и литературных данных построена фазовая *V*-*T* диаграмма. В α- и β-фазах этана изохорная теплопроводность уменьшается с ростом температуры по зависимости более слабой, чем 1/T. Такое поведение типично для ориентационно-упорядоченных фаз молекулярных кристаллов и не обнаруживает каких-либо особенностей, связанных с вращением метильных групп. При предплавильных температурах теплопроводность всех исследованных образцов выходит на «плато», наиболее вероятной причиной которого является появление «пластической» ү-фазы. Проведен сравнительный анализ поведения теплопроводности этана и 1,1,1-трихлорэтана, где имеются метильные группы, а также 1,1,2-трихлорэтана и 1,2-дихлорэтана, где они отсутствуют. Этот анализ также подтверждает вывод, что вращение метильных групп заметно не влияет на перенос тепла в области «классического» вращения. Экспериментальные результаты обсуждаются в рамках модели, в которой тепло переносится низкочастотными фононами и высокочастотными «диффузными» модами. Показано, что когда значительная часть тепла передается от молекулы к молекуле, необходимо учитывать возможность передачи вращательной энергии с узла на узел.

Настоящая работа поддержана Министерством образования и науки Украины в рамках проекта Ф7/286-2001 «Новые квантовые и ангармонические эффекты в растворах криокристаллов».

- 1. R.G. Ross, P.A. Andersson, B. Sundqvist, and G. Backstrom, *Rep. Prog. Phys.* 47, 1347 (1984).
- V.A. Konstantinov and V.G. Manzhelii, in: *Die Kunst* of *Phonons*, T. Paskiewizc and T. Rapsewizc (eds.), New York, London, Plenum Press (1994), p. 321.
- 3. V.B. Kokshenev, I.N. Krupskii, and Yu.G. Kravchenko, *Brazilian J. Phys.* 27, 510 (1997).
- 4. В.А. Константинов, ФНТ 29, 567 (2003).
- O.I. Purskii, N.N. Zholonko, and V.A. Konstantinov, *Fiz. Nizk. Temp.* 29, 1021 (2003).
- R.M. Lynden-Bell and K.H. Michel, *Rev. Mod. Phys.* 66, 721 (1994).
- D.G. Cahill, S.K. Watson, and R.O. Pohl, *Phys. Rev.* B46, 6131 (1992).

- 8. The Plastically Crystalline State (Orientationally -Disordered Crystals), Y.N. Sherwood (ed.), John Wiley & Sons, Chichester–New York–Brisbane–Toronto, (1979).
- 9. D. Cavagnat, J. Chim. Phys. 82, 239 (1985).
- Б.М. Могилевский, В.Г. Сурин, ФТТ 12, 3118 (1970).
- G.A. Slack, Proc. Int. Conf. on Phonon Scattering in Solids H.J. Abany (ed.), Saclay, (1972), p. 24.
- T. Kundu, B. Pradhan, and B. Singh, Proc. Indian Acad. Sci. (Chem. Sci.) 114, 623 (2002).
- 13. D.S. Webster and M.J.R. Hoch, *J. Phys. Chem. Solids* **32**, 2663 (1971).
- 14. D.F. Eggers, J. Phys. Chem. 79, 2116 (1975).
- 15. G.C. Straty and R. Tsmura, J. Chem. Phys. 64, 859 (1976).
- 16. H.M. Roder, J. Chem. Phys. 65, 1371 (1976).
- 17. F. Pavese, J. Chem. Thermodyn. 10, 369 (1978).
- H.M. Schutte, K.O. Prins, and N.J. Trappeniers, *Physica* B+C144, 357 (1987).
- G.J.H. van Nes and A. Vos, Acta Cryst. B34, 1947 (1978).
- F.L. Givens and W. D. McCormick, J. Chem. Phys. 63, 1150 (1977).
- 21. L.A. de Graaf, C. Steenbergen, and A. Heideman, *Physica* **B101**, 209 (1980).
- 22. H.M. Schutte, K.O. Prins, and N.J. Trappeniers, *Physica* **B+C153**, 7 (1988).
- R.K. Witt and J.D. Kemp, J. Am. Chem. Soc. 59, 273 (1937).
- 24. В.А. Константинов, С.А. Смирнов, В.П. Ревякин, *ПТЭ* **42**, 145 (1999).
- 25. J.W. Stewart and R.J. La Rock, *J. Chem. Phys.* 28, 425 (1958).
- В.В. Сычев, А.А. Вассерман, В.А. Загорученко, А.Д. Козлов, Г.А. Спиридонов, В.А. Цымарный, *Термоди*намические свойства этана, Изд-во стандартов, Москва (1982).
- R.G. Ross and P. Andersson, *Mol. Cryst. Liq. Cryst.* 69, 145 (1981).
- P. Andersson and R.G. Ross, *Mol. Cryst. Liq. Cryst.* 69, 157 (1981).
- 29. Б.М. Могилевский, В.Г. Сурин, *ФТТ* **13**, 1345 (1971).
- 30. J. de Bour, Physica 14, 139 (1948).
- 31. Н. Парсонидж, Л. Стейвли, Беспорядок в кристаллах, Мир, Москва (1982).
- 32. R. Rudman and B. Post, Mol. Cryst. 5, 95 (1968).
- L. Silver and R. Rudman, J. Chem. Phys. 57, 210 (1972).
- H.S. Gutowsky and D.W. McCall, J. Chem. Phys. 32, 548 (1960).
- H.M. McIntyre and C.S. Johnson, J. Chem. Phys. 55, 345 (1971).
- 36. J.J. Rush, J. Chem. Phys. 46, 2285 (1966).
- 37. R.W. Growe and C.P. Smyth, J. Am. Chem. Soc. 72, 4009 (1950).
- 38. J.R. During, S.M. Graven, K.K. Lan, and J. Bragin, J. Chem. Phys. 54, 479 (1971).

- 39. S.E. Babb and S.D. Christian, J. Chem. Phys. 66, 4713 (1977).
- 40. T.B. Reed and W.N. Lipscomb, *Acta Cryst.* **6**, 45 (1953).
- 41. M.E. Mieberg and W.N. Lipscomb, *Acta Cryst.* **4**, 369 (1951).
- 42. R. Boese, D. Blaster, and T. Haumann, Z. *Kristallogr.* **198**, 311 (1992).
- 43. J.L. Ragle and A.P. Caron, *J. Chem. Phys.* **40**, 3497 (1964).
- 44. T. Tokuhiro, J. Chem. Phys. 41, 338 (1965).
- 45. W.E. Railing, J. Am. Chem. Soc. 61, 3349 (1939).

Methyl group rotation and thermal conductivity of molecular crystals: ethane

V.A. Konstantinov, V.P. Revyakin, and V.V. Sagan

The isochoric thermal conductivity of solid ethane $-\ C_2H_6$ has been investigated on three samples of different densities in the temperature

interval from 35 K to the onset of melting. In all cases the isochoric thermal conductivity in the α - and β -phases of ethane exhibits a dependence weaker than $\Lambda \propto 1/T$. Such a behavior is typical of the orientationally ordered phases of molecular crystals and reveals no features, connected with the methyl group rotation. A comparison is made with some halogen derivatives of ethane. The experimental results are discussed in the context of a model in which heat is transfered by low-frequency phonons and by «diffusive» modes above the mobility edge.

Keywords: isochoric thermal conductivity, phonons, diffusive modes, heat transfer.