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Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of
quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic
field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous
phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper
we review our recent work on quantum phase transitions and novel quantum phases realized in disordered
quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their
universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conven-
tionally ordered phases to unconventional, quantum disordered ones – quantum Griffiths phases, magnetic
Bose glass phases – exhibiting gapless spectra associated with low-energy localized excitations.
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1. Introduction

Quantum phase transitions (QPTs) and related collective quantum phases represent one of the
most exciting research topics in condensed matter physics [1]. Contrary to thermal phase tran-
sitions, QPTs occur at zero temperature upon tuning a parameter of the system Hamiltonian.
The emergence of quantum collective phenomena opens the path towards quantum phases that
do not admit any classical counterpart. Quantum magnets provide a large showcase of materials
in which QPTs have been experimentally demonstrated. Quantum fluctuations, driving the sys-
tem through a QPT, can be continuously tuned by e. g. applying a magnetic field or by exerting
pressure on the sample to control the magnetic couplings among the spins. A well-known exam-
ple is represented by magnetic Bose-Einstein condensation (BEC) in spin-gap materials [2], such
as systems of weakly coupled S = 1/2 dimers. These magnetic insulators show a paradigmatic
quantum-disordered ground state, namely a total singlet state with a gap to all triplet excitations.
Application of a magnetic field can close the triplet gap, inducing the appearance of bosonic spin
triplets in the ground state of the system, forming a Bose condensate of magnetic quasiparticles.
This condensed state corresponds to a magnetically ordered state with spontaneous appearance of
a staggered magnetization transverse to the field.

A completely different route towards QPT transitions in quantum magnets is represented by
the effect of non-magnetic doping. Starting from a magnetically ordered state, a simple route
towards disordering the system is by diluting the lattice via site or bond removal. A genuine
quantum phase transition is realized if quantum fluctuations lead to the loss of magnetic order at
T = 0 before the lattice reaches the percolation threshold. Experimental studies on model magnets,
such as non-magnetically doped La2CuO4 [3], supported by extensive numerical studies [4] show
that fundamental quantum models like the two-dimensional quantum Heisenberg antiferromagnet
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do not develop strong enough quantum fluctuations for a quantum phase transition to occur. Yet,
increasing quantum fluctuations ad hoc, e. g. by explicit lattice dimerization [5–7] or by anisotropic
bond dilution [8], can lead indeed to disorder-induced quantum phase transitions (see figure 1).
And what better strategy could one envision to tune quantum fluctuations than to consider a
system which already exhibits a quantum phase transition in the clean limit?

(a) (b)

Figure 1. (a) Conventional percolation transition in a magnet: upon diluting the system the
magnetic order parameter is found to vanish at the percolation threshold p∗. (b) Disorder-
induced quantum phase transition: at a critical dilution pc < p∗ the magnetic order disappears,
leaving space to a novel quantum disordered phase.

This idea brings naturally to the investigation of the effect of disorder on quantum critical
phenomena in magnetic systems, and in particular on magnetic BEC as a paradigmatic magnetic
quantum phase transition [9–12]. Introducing disorder in the magnetically ordered phase imme-
diately close to the condensation QPT corresponds to exposing the dilute gas of spin triplets
induced by the field to a random potential: as in any system of weakly interacting quantum par-
ticles, this leads to Anderson localization for moderate (or even infinitesimal) disorder strengths
[13]. This property translates into the possibility of disrupting the field-induced magnetic order
by diluting the lattice well below the percolation threshold, accomplishing in this way a genuine
disorder-induced quantum phase transition.

A side effect of doping weakly coupled dimer systems is the appearance of unpaired S = 1/2
local moments, which are coupled through virtual excitations of the intact dimers [11,14,15] (see
figure 2a). The resulting random network of interacting local moments can support long-range
antiferromagnetic order in zero field, giving rise to a counter-intuitive phenomenon of order by
disorder (OBD). This ordered state is found to be disrupted by the application of a moderate mag-
netic field [11,12]. The resulting disordered phase shows short-range antiferromagnetic correlations
surviving on localized regions, which can be mapped onto Anderson localized quasiparticles.

Hence we see in general that disorder-induced quantum phase transitions drive the system to
novel quantum disordered phases with rather exotic properties. A common denominator of these
phases is a gapless spectrum associated with the appearance of low-energy localized excitations, as-
sociated with exponentially rare regions in the disordered lattice. If the energy cost of the localized
excitation decreases algebraically with the inverse size of the region that hosts it, all conventi-
onal response functions remain non-singular in this phase down to T = 0. On the other hand, if
the same energy cost decreases exponentially when the size of the region increases, this leads to
quantum Griffiths singularities [16] with a non-universal, disorder-dependent divergent behavior in
measurable quantities such as the uniform susceptibility.

In this paper we review our recent progress in studying disorder-induced QPTs as well as
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(a) (b) (c)

Figure 2. (a) A square lattice decomposed into dimer and inter-dimer bonds. The dimer bonds
are shown in dark color with coupling J , and the inter-dimer bonds are shown in light color
with coupling J ′. Both J and J ′ are antiferromagnetic. (b) Site dilution of the dimer singlet
ground state releases random magnetic local moments which are coupled through long-range
coupling Jeff . The circles refer to the non-magnetic impurities, and arrows correspond to local
moments near the impurity sites. (c) Inhomogeneous bond dilution of the same lattice: the dimer
bonds (J) are populated with probability P , while the inter-dimer bonds (J ′) are populated with
probability P ′.

the effect of disorder on field-induced QPTs in two-dimensional quantum magnets. This topic is
particularly challenging from a technical point of view. Indeed conventional perturbation methods
are generally doomed to failure at quantum critical points; renormalization group schemes, while
generally successful for the study of critical points in clean systems, prove to be particularly hard for
critical points in presence of disorder [17]. A third way is provided by numerically exact methods,
which are particularly well developed for unfrustrated quantum spin systems. In particular we
make use of the stochastic series expansion quantum Monte Carlo method [18] which proves to
be a very powerful quantum Monte Carlo technique to investigate the low-temperature properties
of quantum spin systems on a large scale. The non-local nature of the update algorithm makes it
possible to circumvent critical slowing down and to investigate quantum critical phenomena in a
very accurate way. While disorder imposes the extra cost of averaging over disorder statistics, this
task can be accomplished on modern supercomputers.

The structure of the paper is as follows. In section 2 we show how the interplay between
anisotropic geometric randomness and quantum fluctuations gives rise to a new class of percolative
quantum phase transitions in an inhomogeneous bond-diluted antiferromagnet in two dimensions
(2D). This transition opens a novel quantum disordered phase which exhibits quantum Griffiths
singularities. In section 3, we analyze the very rich phase diagram of site-diluted weakly coupled
dimer systems in a magnetic field, showing the occurrence of an extended magnetic Bose glass
phase.

2. Percolative quantum phase transition in strongly fluctuating quantum
antiferromagnets

Our starting point is the quantum Heisenberg antiferromagnetic model defined on a regular
bipartite lattice, as illustrated in figure 2a, with Hamiltonian

H =
∑

〈ij〉

JijSi · Sj +
∑

〈lm〉

J ′
lmSl · Sm − gµbH

∑

i

Sz
i , (1)

where S are S = 1/2 spin operators. In the most general case, two sets of bonds with different
local strengths (Jij and J ′

lm) have been singled out. In the clean case one has Jij = J for all 〈ij〉
and J ′

lm = J ′ for all 〈lm〉. In the following we will focus our attention on 1) the case of a planar
array of dimers in a square lattice (as specifically illustrated by figure 2a) and 2) the case of a
bilayer system, in which the bonds of strength J ′ form two square lattices which are connected by
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the bonds of strength J . In the case 1) of a simple square lattice, the choice J = J ′ reproduces the
well-known limit of the two-dimensional quantum Heisenberg antiferromagnet (2DQHAF). In this
section we will consider the case of zero applied magnetic field H , while the effects of a finite field
will be accounted for in the next section.

In the clean limit, the 2DQHAF is well known to support long-range Néel order[19]. As menti-
oned in the introduction, a central question of quantum magnetism is the response of magnetically
ordered systems to the dilution of their magnetic lattice, either in the form of bond or site dilu-
tion. From a geometric point of view, bond or site dilution reduce the connectivity of the lattice,
ultimately leading to a percolative phase transition [20] beyond which the system is broken up into
finite clusters. In a classical spin system, this percolation transition is coupled to a magnetic transi-
tion with the same critical exponents, since spontaneous magnetic order cannot survive beyond the
percolation threshold. In a quantum spin system, on the other hand, a progressive reduction of the
lattice connectivity enhances quantum fluctuations in a continuous fashion, raising the possibility
of quantum destruction of magnetic order before the percolation threshold is reached. Recently, the
evolution of the magnetic state of the 2DQHAF under site or bond dilution has been studied ex-
tensively both in experiment and theory. Experimentally, the effect of site dilution has been probed
in La2Cu1−p(Zn,Mg)pO4, in which magnetic Cu2+ ions are replaced randomly by non-magnetic
Zn2+ or Mg2+ ions [3]. The fundamental result of this study is that magnetic order at low tem-
perature disappears at a critical dilution p = pc which coincides with the percolation threshold
p∗ = 0.40725 [20]. This has been further confirmed by extensive numerical simulations both in the
case of site and bond dilution [4], showing that the percolating cluster supports long-range order
up to the percolation threshold; this means that magnetism can only be discarded geometrically
by fragmenting the percolating cluster beyond p∗.

An alternative scenario to the above classical percolation picture is offered by quantum perco-

lation, in which the geometric transition and the magnetic one are decoupled by quantum fluctu-
ations. This scenario invokes the fact that spins involved in locally strongly fluctuating quantum
states, such as dimer singlets and resonating valence bond states, are weakly correlated with the
remainder of the system. In a random network of spins, the local strongly fluctuating states cre-
ate weak links with small spin-spin correlations. If these weak links are part of the backbone of
the percolating cluster, they can prevent the percolating cluster from developing long-range order.
Therefore, if lattice dilution favors the local formation of such states, it is possible to drive the
system towards a quantum disordered state before the percolation threshold is reached, decoupling
percolation from magnetic ordering.

This quantum percolation scenario has been recently demonstrated for the S = 1/2 Heisenberg
model on the bilayer lattice under dimer dilution [5–7]. In this model quantum fluctuations can
be arbitrarily tuned by increasing the strength of the inter-layer coupling J with respect to the
intra-layer one J ′: indeed, even in the clean model, for J > Jc = 2.5J ′ the spins on each inter-layer
dimer form a singlet and long-range order is lost [21]. Randomly diluting the bilayer by taking away
a percentage p of whole dimers at once leads to the percolation of the bilayer lattice for p = p∗,
analogously to what happens on a simple square lattice. For J . J∗ = 0.16J ′ the bilayer shows
long-range order up to the percolation threshold [6]. The tuning knob of quantum fluctuations
offered by the inter-layer coupling allows to destroy long-range order on the percolating cluster for
J & J∗: beyond this value, geometric percolation of the lattice is no longer a sufficient condition
for long-range magnetic ordering, due to the extremely strong quantum fluctuations on dimers
with lower local connectivity. The quantum disordered phase appearing on a percolated lattice
of dimers still lacks a complete characterization, but it is legitimate to suspect that, for J < Jc,
rare but arbitrarily large regions which are devoid of dimer vacancies can support locally magnon-
like excitations similar to those of the clean system in its magnetically ordered phase. Hence the
spectrum of the system is expected to be gapless, but not leading to a singular contribution to
the response functions (as shown by the regular behavior of the uniform susceptibility in [6]).
A very similar picture of quantum percolation has been found by two of us in the anisotropic
S = 1 Heisenberg antiferromagnet with site dilution [22]: here the quantum disordered phase
has been identified with a Mott glass, namely a phase with a gapless spectrum and a vanishing
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compressibility.
In [8] we have shown that a similar quantum percolation scenario can be achieved in the standard

2DQHAF under inhomogeneous bond dilution. In our model all bonds are of equal strength J = J ′,
and quantum fluctuations are instead enhanced in a purely geometrical fashion by the lattice
randomness. As illustrated in figure 2a, a square lattice can be geometrically decomposed into
dimers and ladders (made of inter-dimer bonds) in such a way that there are no two adjacent
dimers or ladders. The inhomogeneous bond dilution is realized by assigning different occupation
probabilities to intra-dimer and inter-dimer bonds. Explicitly

dimer bonds Jij =

{

J with probability P,

0 with probability 1 − P,
(2)

ladder bonds J ′
lm =

{

J with probability P ′,

0 with probability 1 − P ′.
(3)

As it is well-known, S = 1/2 spin ladders have a quantum disordered singlet ground state [23],
and the same applies to weakly connected dimer lattices, such as the comb lattice. This special
property of the S = 1/2 Heisenberg model on low-dimensional lattices is the key of our dilution
scheme. In fact, inhomogeneous bond dilution P 6= P ′ (see figure 2c) favors the appearance of ladder
segments (P < P ′) or of weakly connected dimers (P > P ′), both of which have the tendency to
support locally a strongly fluctuating quantum state with a significant singlet component, and
effectively decoupled from the rest of the percolating cluster. When such geometrical structures
appear on the backbone of the percolating cluster, they can effectively break it into sub-clusters
from the point of view of magnetic correlations, leading to a quantum-disordered ground state.
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Figure 3. Phase diagram of the inhomogeneously bond-diluted S = 1/2 antiferromagnet on the
square lattice. The colored area indicates the quantum-disordered region in which the system
has developed an infinite percolating cluster, but the magnetization m of the system vanishes
because of quantum fluctuations.

The phase diagram of this inhomogeneous bond dilution model, as resulting from an extensive
classical and quantum Monte Carlo study [8], is presented in figure 3. When the inhomogeneity is
weak (P ≈ P ′), the magnetic transition is found to coincide with the percolation one, both in terms
of the location of the transition and in terms of its critical exponents. This is in agreement with the
findings in the homogeneous limit P = P ′ already investigated in [4]. However, for strong enough
inhomogeneity the magnetic transition deviates from the geometric one, turning into a quantum
phase transition beyond two multi-critical points. The critical exponents, extracted from a finite-
size scaling analysis of the correlation length, confirm this crossover from classical to quantum

percolation: ν = 4/3 and z = 1.9 ≈ D = 91/48 (the fractal dimensions of the percolation cluster
at threshold [20]) are found for weak to intermediate inhomogeneity, while ν = 1 and z = 1 are
found for sufficiently strong inhomogeneity [8].

As seen in figure 3, the bifurcation of the magnetic transition line with respect to the perco-
lation transition line at strong enough inhomogeneity opens up two quantum disordered phases,
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characterized by the existence of an infinite percolating clusters but zero staggered magnetization
m. Real-space spin-spin correlations in this phase are short-ranged [24]. But the perfectly corre-
lated disorder in imaginary time allows for long-range correlations in this extra dimension, giving
rise to the so-called quantum Griffiths singularities [16]. As already mentioned in the introduction,
the dilution of the lattice introduces local S = 1/2 moments. If one dilutes a lattice developing a
spin-gapped singlet ground state with a finite correlation length ξ0 (as it will be the case in the
following section), or if dilution induces the local formation of such singlet states (as it is the case
in this section), the resulting local moments develop mutual effective interactions via the exchange
of virtual gapped excitations of the intermediate regions. The effective couplings, Jeff , decay expo-
nentially with the distance, as a result of the finite “mass” of the exchanged excitation. For two
sites i and j with positions ri, rj , we have that [11,14,15]

Jeff(i, j) ∼ J(−1)ri−rj exp(−|ri − rj |/ξ0). (4)

It is important to notice that the staggering prefactor eliminates any frustration effect. At variance
with site dilution (compare figure 2b), for bond dilution these local S = 1/2 moments always occur
in pairs. The effective interaction between two closeby moments is the strongest (∼ J), so that
the lowest-energy excitations are not associated with exciting a pair of neighboring moments, but
rather exciting two pairs of such moments lying far apart from each other by rotating one pair
with respect to the other (see figures 4a, 4b). According to equation (4), this excitation has an
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Figure 4. (a)–(b) Sketch of a low-energy excitation in the bond-diluted ladder system. (c)
Low-temperature uniform susceptibility of the percolating cluster only, χu,c, in the quantum-
disordered (ladder-like) regime. The solid lines are power-law fits of the form χu,c ∼ T−1+α, and
the resulting fit coefficients α are indicated. The percolating cluster is picked as the largest clus-
ter in a 64×64 lattice. The non-universal α values indicate the existence of Griffiths singularities
in this quantum-disordered phase.

energy scaling exponentially to zero with the inter-pair distance l, but the probability of existence
of two pairs separated by a large distance is conditioned by the presence of a clean region in
between them, whose probability in a diluted system is also exponentially suppressed with its size.
In the case depicted in figures 4a, 4b, this probability is (P ′)nl = exp(−n| ln P ′|l) (where n is the
characteristic number of bonds present in a region of linear size l). The presence of an exponentially
rare local excitation with exponentially small energy leads to a cancellation of the two exponentials
in the calculation of the contribution of such excitations to fundamental response functions, such
as the uniform susceptibility. The result is a paradigmatic quantum Griffiths effect [24]. Indeed
the uniform susceptibility of the percolating cluster in the quantum disordered phase displays a
non-universal power-law divergence when T → 0, as presented in figure 4c. It is important to stress
that here we only consider percolating clusters with an even number of particles, which means that
the ground state on a finite-size system is expected to be a total spin singlet. Hence the presence of
a non-universal divergence of the uniform susceptibility is not due to the presence of paramagnetic
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dangling spins, but it is a genuine result of the fact that the spectrum over the singlet ground state
is gapless.

From an experimental point of view, bond dilution can be considered as a limit of bond disorder
introduced by doping the non-magnetic atoms/ions lying on the super-exchange paths responsible
for the occurrence of antiferromagnetic couplings. Hence inhomogeneous bond disorder can be
introduced in antiferromagnets in which super-exchange paths are mediated by different atomic
species along different spatial directions. This is the case of many spin-ladder compounds, such
as (C5H12N2)2CuBr4, in which intra-ladder and inter-ladder couplings between Cu2+ ions are
mediated by chemically different non-magnetic ions. From a more fundamental point of view, our
results, along with those on dimer-diluted lattices [5–7] and on diluted anisotropic S = 1 models
[22] show that disorder-induced magnetic transitions can be pushed arbitrarily far from percolation
thresholds.

3. Field-induced quantum disordered states in site-diluted lattices

In the previous section, we have seen that lattice dilution can locally enhance quantum fluctu-
ations in a quantum magnet, possibly discarding long-range order. In this section the critical role
of quantum fluctuations will be tuned arbitrarily by driving the system close through a quantum
phase transition in presence of disorder.

As already mentioned in the introduction, the quantum phase transition in question is repre-
sented by magnetic Bose-Einstein condensation in a system of weakly coupled S = 1/2 dimers in
a magnetic field. As in the previous section, we consider two different geometries leading to essen-
tially the same physics: a bilayer geometry with interlayer couplings J and intra-layer couplings J ′;
a planar dimer array (compare figure 2a), with dimer couplings J and inter-dimer couplings J ′. In
the absence of lattice dilution, for both geometries, a ratio of couplings J/J ′ overcoming a critical
value (J/J ′)c ( ≈ 2.5 for the bilayer system, ≈ 1.91 for the planar dimer system [25]) stabilizes
a quantum disordered ground state with dimer singlets on the strongest magnetic bonds. In both
systems, the application of a magnetic field h = gµbH/J (in reduced units) leads to condensation

of triplet excitations at a lower critical field h
(0)
c1 and to the appearance of staggered magnetic order

transverse to it [2]. Increasing the field up to an upper critical field h
(0)
c2 leads to full polarization

of the spins and to the destruction of spontaneous order.
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Figure 5. Ground-state phase diagram of the site-diluted bilayer Heisenberg antiferromagnet
with J/J ′ = 4 in the field-dilution plane. Ordered phases are indicated in orange, gapped
disordered phases are indicated in green, and gapless disordered phases in white and grey.

Doping the system induces a very rich phase diagram at T = 0, as illustrated in figure 5. If
the precise location of the phase boundaries depends on the model parameter J/J ′ as well as on
the lattice geometry, the qualitative features of this phase diagram are actually independent of the
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value of J/J ′, as long as J/J ′ > (J/J ′)c, and of the specific geometry of the dimer array (either
bilayer or planar array or other unfrustrated lattices). For the specific case shown in figure 5 (bilayer
system with J/J ′ = 4), the clean limit p = 0 features Bose-Einstein condensation transitions at

h
(0)
c1 ≈ 0.5 and h

(0)
c2 = 2. Introducing site dilution of the bilayer lattice leads to an upward shift of

the lower critical field hc1 with respect to its clean value h
(0)
c1 , and a downward shift of the upper

critical field. This means that diluting the system at fixed field starting from its ordered phase

h
(0)
c1 < h < h

(0)
c2 leads to a disorder-induced transition into a novel quantum disordered phase.

This all happens well away from the geometrical percolation threshold p∗, which means that the
disorder-induced transition is a genuine quantum phase transition.

 m = 0.05  m = 0.05(b)

0.52 0.54 0.56 0.58 0.6 0.62

h
0

0.002
0.004
0.006
0.008
0.01

ϒ

(a)

(c)

Figure 6. (a)–(b): Real-space images of the dimer magnetization mi = 〈Sz
i,1 + Sz

i,2〉 on intact
dimers in a 40 × 40 × 2 bilayer with J/J ′ = 4, dilution p = 0.1 and at inverse temperature
βJ = 256, for h = 0.56 (a) and h = 0.6 (b). The radius of the dots is proportional to the
dimer magnetization. The magnetization of unpaired spins is omitted for clarity. The most
visible localized states are highlighted in (a), while the backbone of the percolating magnetized
network is highlighted in (b). (c) Superfluid density (spin stiffness) as a function of the field for
the specific sample considered.

The novel phase that opens up at the disorder-induced transition can be fully characterized in

terms of bosonic quasiparticles. In the case of h & h
(0)
c1 these quasi-particles (QPs) are represented

by the dilute triplet gas induced by the field, condensing in the magnetically ordered phase. The

case h . h
(0)
c2 is the (approximately) particle-hole symmetric one, in which singlet quasi-holes

(QHs) form a dilute gas that Bose condenses. The introduction of site dilution in the system
creates an effective random potential for QPs (analogous considerations apply to QHs). Indeed site
dilution leads to the disappearance of whole dimers hosting a QP, or to the appearance of dangling

spins (local moments) which are essentially all polarized in the field range h
(0)
c1 < h < h

(0)
c2 , and

hence act as impenetrable barriers to QPs (see below for a detailed discussion of the physics of
local moments). Therefore the problem of the response of the magnetic system to site dilution is
analogous to that of the evolution of a Bose-Einstein condensate upon increasing the strength of a
random potential in which the condensate is immersed. For a strong enough random potential the
bosonic system will be fragmented into Anderson-localized states, sitting in the rare regions which
are devoid of vacancies. This phase is called Bose glass in the literature of disordered interacting
bosons [26]. Given that we are effectively working in the grand-canonical ensemble, the transition
from a condensed phase to a Bose glass is accompanied by a decrease in the population, due
to the fact that disorder lowers dramatically the local chemical potential in the regions close to
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impurities. This same localization-condensation transition can be probed by varying the field at
fixed disorder strength: in this case the transition is clearly understood as a reduction of the density
of the QPs/QHs, induced by the decrease/increase of the magnetic field. When traversing this
transition in the reversed sense, by driving it with either a field or with disorder, we observe that
the region occupied by the QPs/QHs undergoes a quantum percolation transition from a localized
disordered phase, in which only disconnected rare clean regions host QPs/QHs, to a percolated
ordered phase, in which the regions hosting QPs/QHs connect to form a percolating network. This
geometric transition can be directly visualized by calculating the local magnetization profile, as
shown in figure 6. The novel, percolative nature of this transition with respect to the condensation
in the clean case reveals itself in the critical exponents, which can be determined numerically via
finite-size scaling [11,12]. The resulting values are quite different from those of the transition in
the clean system, and in particular it is found that the dynamical critical exponent z equals the
spatial dimension d, which is consistent with an early theoretical prediction [26].

From the point of view of macroscopic observables, the Bose glass is fundamentally dominated
by the absence of a gap in its excitation spectrum. Indeed in this phase the system is fragmented
into droplets of QPs/QHs that are hosted on rare, but arbitrarily large regions, and which can
therefore support arbitrarily low-energy excitations, in the form of localized magnon excitations
analogous to those appearing in the ordered phase in the clean system. This means that the system
displays a finite response to an applied magnetic field, namely its uniform susceptibility remains
finite (corresponding to a finite compressibility of the QPs/QHs) even in the absence of long-range
coherence. This is clearly illustrated in figure 7.
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Figure 7. Zero-temperature field scan for the site-diluted Heisenberg bilayer with J/J ′ = 8 and
p = 0.2, from Roscilde et al., [11].

So far we have worked under the assumption that dangling spins left unpaired by site dilution are
fully polarized by the field. Actually the evolution of their magnetic state represents another very
fascinating aspect of the physics of these systems. Indeed, as already mentioned in the previous
sections, in zero field dilution liberates local S = 1/2 moments (LMs) which are exponentially
localized close to the site of an unpaired spin and which interact with each other via the effective
couplings of equation (4). These couplings, although weak, are sufficient for the LMs to order
antiferromagnetically at experimentally relevant temperatures [27]. Hence, at any finite dilution
concentration smaller than the classical percolation threshold, the zero-field ground state displays
long-range antiferromagnetic order (order-by-disorder phase), (see figure 8).

Yet the long-range order appearing in this phase can be easily destroyed by a small field in
a quite peculiar way [11,12]. Indeed the system of LMs features highly inhomogeneous couplings,
and hence the response to the field is equally diverse. In the case of low dilution (to which this
discussion is restricted) most of the LMs are weakly coupled to the other nearby LMs which sit at
a distance of the order of the average inter-vacancy spacing p−1/d; but a minority of the LMs might
be involved in a LM dimer (with probability ∼ p2), in a trimer (with probability ∼ p3), and so on.
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h

order−by−disorder disordered−free−moment

J J’

Figure 8. Sketch of the quantum phase transition between the order-by-disorder phase and the
disordered-local-moment phase in a diluted coupled-dimer system. Left panel : At zero applied
field, spins on intact dimers form singlets (solid ellipses), dimers of local moments (LMs) have a
strong singlet component (dashed ellipse), whereas the other LMs (blue arrows) participate in the
order-by-disorder state. Right panel : Upon applying a field, the LMs are mostly polarized, but
local singlets and localized down-spins can survive on clustered LMs, leading to the disordered
LM phase.

This means that when the field is strong enough to overcome the typical coupling energy between
two LMs, it polarizes a majority of LMs destroying thereby their long-range magnetic order. Yet,
in this disordered LM phase, a minority of strongly coupled LMs resist polarization, and they host
locally one or more spin which is polarized opposite to the field. In particular, a mapping of the
localized S = 1/2 spins which remain antiparallel to the field onto hardcore bosons, reveals for the
disordered LM phase a clear nature of a Bose glass, characterized by fragmentation of a Bose gas
into disconnected localized states. This can be quantitatively confirmed by a finite-size scaling study
of the transition between the order-by-disorder phase and the disordered LM phase: the extracted
critical exponents turn out to be fully consistent with those of the 2D superfluid-to-Bose-glass
transition [12]. In particular, as in a Bose glass, the disordered LM phase is not fully polarized,
and it remains gapless, given that all different clusters of strongly coupled LMs see a different
magnetic environment and hence exhibit a different local gap to further polarization. Nonetheless
the local gaps are distributed around some distinct values associated with LM dimers, trimers, etc.
These values manifest themselves in a special form of the magnetization curve, exhibiting pseudo-

plateaus which mark the accomplished polarization of one class of LM clusters, (see figure 9).

Figure 9. Magnetization and susceptibility curve of a planar array of dimers with J/J ′ = 4 and
dilution p = 1/8, showing a characteristic succession of pseudo-plateaus.

If the coupling ratio J/J ′ is large enough, or the disorder concentration is weak enough, upon

further increasing the field, the LMs can be fully polarized at a field h < h
(0)
c1 , namely before the

magnetization process of the intact dimers begins. Under this assumption, a gapped plateau phase
(characterized by a marked plateau of the uniform magnetization at the value m = p/2) appears,
completely separating the physics of the LMs from that of the intact dimers. On the other hand,
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for smaller J/J ′ ratios or strong dilution the plateau phase might be completely washed out, and
dimers start being magnetized in the Bose glass phase when LMs have not yet been fully polarized.
In this case disordered LM phase and Bose glass phase coexist: indeed the Bose glass phase will
show both localized triplet QPs in rare regions devoid of impurities, and localized anti-parallel
spins in the complementary regions exhibiting clustering of impurities.

4. Conclusions

In conclusion, large-scale quantum Monte Carlo simulations give access to the vast wealth of
novel quantum phases appearing in quantum magnets when quantum fluctuations are tuned to
a critical strength in the presence of disorder in the magnetic lattice. These novel phases are the
result of the separation, induced by quantum fluctuations, between the geometric percolation of the
lattice and the loss of long-range magnetic order. Their common denominator is a rich structure of
the low-energy spectrum, with the absence of a gap and a possibly anomalous role of the low-energy
excitations in the response functions.

This rich physics enjoys the availability of a large family of S = 1/2 compounds exhibiting
strongly fluctuating quantum magnetism, and which are amenable to dilution of the magnetic
lattice by non-magnetic doping. In particular, candidate systems are spin-ladder materials such as
Cu12(C5H12N2)2Cl4 [28] and (C5H12N2)2Cu Br4 [29], planar dimer systems such as Sr2Cu(BO3)2
[30], magnetic bilayer compounds such as BaCuSi2O6 [31]. In all these compounds the S = 1/2
spins is carried by a Cu2+ ion, which can be replaced by non-magnetic Mg2+ and Zn2+ to give site
dilution of the lattice. Alternatively bond disorder can be realized by chemical substitution of the
non-magnetic ions bridging the magnetic couplings [32,33] . As concerns specifically the physics
of magnetic BEC in the presence of disorder, analogous phenomena to those observed in S = 1/2
compounds can be also recovered with S = 1 Haldane chains, or with S = 1 antiferromagnets with
strong single-ion anisotropy [34]. We therefore believe that quantum magnets under static doping
offer the possibility of tremendously deepening our understanding of quantum many-body physics
in a controlled random environment.
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Виявлення нових квантових фаз у квантових

антиферомагнетиках на випадкових гратках

Р. Йу1,2, С. Гаас3, Т. Рошiльд4

1 Вiддiл фiзики i астрономiї, Унiверситет Теннессi, Ноксвiлл, TN 37996, США
2 Вiддiлення матерiалознавства i технологiї, Нацiональна лабораторiя в Оук Рiдж,

Оук Рiдж, TN 32821, США
3 Вiддiл фiзики i астрономiї, Унiверситет Пiвденної Калiфорнiї, Лос-Анджелес, CA 90089–0484, США
4 Лабораторiя фiзики, Еколь нормаль Сюпер’єр в Лiонi, алея д’Iталi 46, 69003 Лiон, Францiя

Отримано 5 травня 2009 р.

Квантовi магнетики є iдеальним майданчиком для контрольованої реалiзацiї нових квантових фаз i
квантових фазових переходiв. З гамiльтонiаном системи можна справдi манiпулювати, прикладаю-
чи магнiтне поле або тиск до зразка. Коли допувати систему немагнiтними домiшками, з’являються
новi неоднорiднi фази через конкуренцiю мiж геометричною випадковiстю i квантовими флуктуа-
цiями. У цiй статтi ми робимо огляд нашої недавньої працi з квантових фазових переходiв i нових
квантових фаз, якi реалiзуються у невпорядкованих квантових магнетиках. Виявлено, що неоднорi-
днiсть системи сильно впливає на фазовi переходи, змiнюючи їх клас унiверсальностi, i приводить
до нової квантово-перколяцiйної природи переходу. Такi переходи пов’язують звичайнi впорядко-
ванi фази з незвичайними квантовими невпорядкованими фазами – квантовими фазами Грiфiтса,
фазами магнiтного бозе-скла, якi мають безщiлинний спектр, зв’язаний з низькоенергетичними ло-
калiзованими збудженнями.

Ключовi слова: антиферомагнетики Гайзенберга, квантовий безлад, геометрична випадковiсть,
перколяцiя, бозе-скло

PACS: 75.10.Jm, 75.10.Nr, 75.40.Cx, 64.60.Ak
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