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The liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid with polydispersity in the hard-sphere

size and dipolar moment is calculated using extension of the recently proposed thermodynamic perturbation

theory for central force (TPT-CF) associating potential. To establish the connection with the phase behavior of

ferrocolloidal dispersions it is assumed that the dipole moment is proportional to the cube of the hard-sphere

diameter. We present and discuss the full phase diagram, which includes cloud and shadow curves, binodals

and distribution functions of the coexisting daughter phases at different degrees of the system polydispersity.

In all cases studied polydispersity increases the region of the phase instability and shifts the critical point to the

higher values of the temperature and density. The larger size particles always fractionate to the liquid phase and

the smaller size particles tend to move to the gas phase. At relatively high values of the system polydispersity

three-phase coexistence is observed.

Key words: TPT, associating fluid, polydispersity, ferrocolloids, phase diagram

PACS: 64.10.+h, 64.70.Fx, 82.70.Dd

1. Introduction

In this paper we consider the liquid-gas phase behavior of polydisperse dipolar hard-sphere mixture.

Recently, liquid-gas phase equilibria in monodisperse dipolar hard-sphere fluid, Yukawa dipolar hard-

sphere fluid and Shtockmayer fluid were studied using thermodynamic perturbation theory for central

force (TPT-CF) associating potential [1–4]. In this study we propose an extension of the TPT-CF, which en-

ables us to investigate the phase behavior of polydisperse mixture of the dipolar hard spheres with poly-

dispersity in both hard-sphere size and dipole moment. We call this extension as extended TPT-CF (ETPT-

CF). Similar to our previous study [5], ETPT-CF combines Wertheim’s TPT [7, 8] for associating fluid with

association due to off-center attractive sites, and TPT-CF [2, 6], which permits a multiple bonding of one

site. In our theory we have several Wertheim’s types of associating sites with the possibility for each site

to bemultiply bonded (inWertheim’s TPT each site is only singly bondable). Final expressions for thermo-

dynamical properties of polydisperse dipolar hard-sphere fluid is written in terms of the finite number

of distribution function moments, i.e., in the framework of ETPT-CF this system belongs to the family of

the so-called truncatable free energy models (see [9] and references therein). This property enables us

to calculate the full liquid-gas phase diagram (including cloud and shadow curves and binodals) and to

study the effects of fractionation on the level of the distribution functions of coexisting daughter phases.
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2. Extended thermodynamic perturbation theory for central force asso-

ciative potential

2.1. Analysis and classification of diagrams

We consider amulticomponent fluid mixture consisting of n species with a number density ρ =
∑n

a ρa

at a temperature T (β= 1/kBT ), where ρa is the density of the particles of a species. The particles of the

species a and b interact via the pair potential Uab(12), which can be written as a sum of the reference

U ab
ref

(12) and associative U ab
ass(12) parts

Uab(12) =U ab
ref (12)+U ab

ass(12), (2.1)

where 1 and 2 denote positions and orientations of the particles 1 and 2. We assume that the associative

part of the potential can be represented as a sum of Ma ×Mb terms, i.e.

U ab
ass(12) =

∑

K L

U ab
K L(12), (2.2)

where the lower indices K and L take the values A,B,C , . . .
︸        ︷︷        ︸

M a

and A,B,C , . . .
︸        ︷︷        ︸

Mb

, respectively. These values

specify the splitting of the total associating potential U ab
ass(12) into several particular pieces. For example

in the case of the models utilized by Wertheim [8] these indices denote off-center attractive sites and in

the case of the Mercedes-Benz (MB) type of models [10] or cone models [11] they stand for the type of

hydrogen bonding arms. Hereafter we will refer to these indices as the site indices, keeping in mind that

they may have a more general meaning. Here Ma and Mb are the number of such sites on the particles

of a and b species, respectively. According to (2.1) and (2.2) the Mayer function fab(12) for the total

potential (2.1) takes the following form:

fab(12) = f ab
ref (12)+eab

ref (12)

{

∏

K L

[

1+ f ab
K L (12)

]

−1

}

, (2.3)

where we use the usual notation:

e(12) = exp
[

−βU (12)
]

, f (12) = e(12)−1. (2.4)

For the sake of diagrammatic analysis we will followWertheim [8] and instead of circles we introduce

hypercircles to represent particles in diagrammatic expansions. Each hypercircle is depicted as a large

open circle with small circles inside denoting the sites. Corresponding cluster integrals are represented

by the diagrams built on a hypercircles connected by fref and eref bonds and site circles connected by the

associating bonds fK L . Due to the decomposition of the Mayer function fab (12) (2.3) we will have the fol-

lowing diagrammatic expressions for the logarithm of a grand partition function Ξ and for the one-point

density ρa (1) in terms of the activity z:

lnΞ = sum of all topologically distinct connected diagrams consisting of field z̃ hypercircles, fref, eref and

fK L bonds. Each bonded pair of z̃ hypercircles has either fref, or eref and one or more fK L bonds.

ρa(1) = sum of all topologically distinct connected diagrams obtained from lnΞ by replacing in all pos-

sible ways one field z̃ hypercircle by a z̃a (1) circle labeled 1.

Here z̃a(i ) = za exp
[

−βUa(i )
]

, i denotes position and orientation of the particle i , and Ua(i ) is an exter-

nal field. For a uniform system z̃a(1) ≡ za . Following [1, 2, 7, 8] we introduce the definition of the s-mer

diagrams. These are the diagrams consisting of s hypercircles, which all are connected by the network of

fK L bonds. The site circles, which are incident with more than ma
K f ab

K L bonds are called oversaturated

site circles. We consider now the set of oversaturated site circles with each pair connected by at least one

path formed by the circles from the same set. The subdiagram involving this set of circles, together with
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the site circles adjacent to them and fK L bonds connecting all these circles , we call the oversaturated

subdiagram. The set of all possible s-mer diagrams can be constructed in three steps: (i) generating the

subset of all possible connected diagrams with only fK L bonds, (ii) inserting combined bond eref = fref+1

between all pairs of hypercircles with the site circles, which belong to the same maximal oversaturated

subdiagram and (iii) taking all ways of inserting an fref bond between the pairs of hypercircles, which

were not connected during the previous two steps. As a result the diagrams, which appear in lnΞ and

ρ(1), can be expressed in terms of the s-mer diagrams:

lnΞ = sum of all topologically distinct connected diagrams consisting of s-mer diagrams with s = 1, . . . ,∞

and fref bonds between pairs of hypercircles in distinct s-mer diagrams.

The procedure for obtaining the expression for ρa (1) from lnΞ remains unchanged.

The diagrams appearing in the z̃ expansion of the singlet density ρa (1) can be classified with respect

to the number of f ab
K L bonds associated with the labeled z̃a(1) hypercircle. We denote the sum of the

diagrams with iK É ma
K

associating bonds connected to the site K (K = A,B,C , . . .), which belongs to the

particle of species a as ρa
Ai A

,BiB
,CiC

,...
(1). Any site K, which is connected to iK > ma

K
associating bons, will

be denoted as Kma
K
In what follows we will use also a condensed version of the notation, i.e.

ρa
Ai A

,BiB
,CiC

,...(1) ≡ ρa
iA ,iB ,iC ,...(1) ≡ ρa

{i}(1), (2.5)

where {i } = i A , iB , iC , . . .. The set {i } with all indices, except one index iK , equal 0, will be denoted as iK ,

i.e. {i } = 0, . . . ,0, iK ,0, . . . ,0 ≡ ik , so that for any quantity xa
{i}

we have

xa
{i} = xa

0,...,0,iK ,0,...,0 ≡ xa
KiK

≡ xa
iK

. (2.6)

Thus ρa (1) can be written as follows

ρa (1) =

ma
A

,ma
B

,...
∑

iA ,iB ,...=0

ρa
Ai A

,BiB
,CiC

,...(1) ≡
{ma }∑

{i}=0

ρa
{i}(1). (2.7)

2.2. Topological reduction

The process of switching from the activity to a density expansion goes in the same fashion as in

Refs. [1, 2, 8]. However, to proceed it is convenient to use an operator form of notation. The operators

are introduced in a manner similar to that presented in references [1, 8] to which we refer the reader for

more details. We associate with each labeled l hypercircle an operator ǫa
{i}

(l) with the following proper-

ties:
ǫa

{i}
(l) = 0, if any iK > ma

K ,

ǫa
{i}

(l) = 1, if all iK = 0,

ǫa
{i}

(l)ǫa
{ j }

(l) = ǫa
{i+ j }

(l) ,

(2.8)

where
{

i + j
}

≡ i A + jA , iB + jB , iC + jC , . . .. The one-point quantities, which, for convenience, are denoted

by xa
{i}
, can be presented as illustrated below:

x̂a (1) =
{ma }∑

{i}=0

ǫa
{i}(1)xa

{i}(1). (2.9)

The operators ǫa
{i}

are straightforward generalization of the operators introduced earlier [1, 8, 12]. Thus,

the rules of manipulation with the new quantities x̂a are similar to that discussed before. In particular,

the usual algebraic rules apply to these quantities and analytical functions of x̂a are defined by the cor-

responding power series. Similar, as in references [1, 8, 12], it is convenient to use the angular brackets

to specify the operation

〈x̂a〉 = xa
{ma } . (2.10)
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In the case of several labeled circles the subscripts on the brackets denote the circle to which procedure

(2.10) is to be applied.

Analyzing the connectivity of the diagrams in ρa (1), at a labeled z̃a(1) hypercircle we have

ρ̂a (1)/z̃a(1) = exp[ĉa(1)], (2.11)

where ca
{i}

(1) with {i } , {0} denotes the sum of diagrams in ρa
{i}

(1)/ρa
{0}

(1) for which the labeled 1 hyper-

circle is not an articulation circle. Similarly ca
{0}

(1) denotes the sum of diagrams in ρa
{0}

(1)/ẑa(1) for which

hypercircle 1 is not an articulation circle. Elimination of the diagrams containing field articulation circles

can be achieved by switching from an activity to a density expansion. To do so we adopt the following

rule: each field hypercircle z̃a , with bonding state of its sites represented by the set {l}, in all irreducible

diagrams ĉa is replaced by a σa

{ j }
hypercircle, where jK = ma

K − lK (K = A,B, . . .) for ma
K − lK Ê 0 and

jK = 0 for ma
K
− lK < 0. The new quantities σa

{i}
(1) are connected to the densities ρa

{i}
(1) via the following

relation:

σ̂a (1) = ρ̂a (1)
{ma}∑

{i}=0

ǫa
{i}(1). (2.12)

This relation can be inverted expanding
[
∑{ma }

{i}=0
ǫa

{i}
(1)

]−1
into a power series, i.e.

ρ̂a (1) = σ̂a(1)
∏

K=A

[

1−ǫa
K1

(1)
]

. (2.13)

Now the diagrammatic expansions for ca
{i}

can be expressed in terms of the irreducible diagrams. To

present this result in compact and convenient form we introduce a sum of the diagrams c(0) defined as

follows:

c(0) = sum of all topologically distinct irreducible diagrams consisting of s-mer diagrams with s = 1, . . . ,∞

and fref bonds between pairs of hypercircles in distinct s-mer diagrams. All hypercircles are field circles

carrying the σ-factor according to the rule formulated above

Functional differentiation of c(0) with respect to σa
{ma−i}

gives an expression for ca
{i}
:

ca
{i} =

δc(0)

δσa
{ma−i}

. (2.14)

2.3. Extended thermodynamic perturbation theory for central force associating

potential

Now we are in a position to rewrite the regular one-density virial expansion for the pressure P in

terms of the density parameters σ̂a(1). Following the scheme, proposed earlier [2, 4, 7, 8] we have expres-

sion for the pressure in operator form

βPV =
∑

a

∫

〈σ̂a(1)[1− ĉa (1)]〉 d(1)+c(0) (2.15)

and explicitly

βPV =
∑

a

∫
[

ρa (1)−
{ma }∑

{i}=0

σa
{ma−i}(1)ca

{i}(1)

]

d(1)+c(0), (2.16)

where V is the volume of the system. Similarly, as in [7, 8] one can verify that these expressions satisfy the

regular thermodynamic relation ρ̄a =β∂P/∂µa , where ρ̄a =
∫

ρa (1) d(1) and µa is the chemical potential.

This can be achieved by taking a variation of (2.15) (or (2.16)) and combining (2.11), (2.13) and (2.14). The

corresponding expression for Helmholtz free energy is

βA =
∑

a

∫
[

ρa (1) ln
ρa

{0}
(1)

Λa
+

{ma}∑

{i},0

σa
{ma−i}(1)ca

{i}(1)

]

d(1)−c(0), (2.17)
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where Λa is the thermal de Broglie wavelength. This expression is derived using the regular thermody-

namic expression for Helmholtz free energy A =
∑

a Naµa −PV together with relation

βNaµa =

∫

ρa (1)

[

ln
ρa

{0}
(1)

Λa
−ca

{0}(1)

]

d(1), (2.18)

which follows from (2.11), written for ρa
{0}

. Here Na is the number of particles of species a in the system.

Helmholtz free energy in excess to its reference system value Aref is obtained by subtracting corre-

sponding expression for Aref from (2.17), i.e.

β(A− Aref)=
∑

a

∫
[

ρa (1) ln
ρa

{0}
(1)

ρa (1)
+

{ma }∑

{i},0

σa
{ma−i}(1)ca

{i}(1)

]

d(1)−
(

c(0)
−c(0)

ref

)

, (2.19)

where c(0)
ref

is the corresponding sum of the diagrams for the reference system. Ordering the virial expan-

sion (2.19) with respect to the number of associating fK L bonds and neglecting the terms with more than

one associating bond we have

c(0)
−c(0)

ref
=

1

2

∑

ab

∫

g ab
ref (12)〈σ̂a(1) f̂ab (12)σ̂b(2)〉12 d(1)d(2) (2.20)

and

ĉa(1)−ca
{0}(1) =

∑

b

∫

g ab
ref (12)〈 f̂ab (12)σ̂a(2)〉2 d(2), (2.21)

where g ab
ref

(12) is the reference system distribution function and

f̂ab(12) =
∑

K L

ǫa
K1

(1) f ab
K L (12)ǫb

L1
(2). (2.22)

Due to the single bond approximation ca
{i}

= 0 for all values of the set {i }, except for {i } = 0 and {i }= iK

with iK = 1. This property together with (2.11) yield the following relations:

ca
K1

(1) = ρa
K1

(1)/ρa
{0}(1) (2.23)

and
ρa

{i}
(1)

ρa
{0}

(1)
=

∏

K

1

iK !

[

ca
K1

(1)
]iK

=
∏

K

1

iK !

[
ρa

K1
(1)

ρa
{0}

(1)

]iK

, for iK ∈ {i } . (2.24)

The set of relations (2.20), (2.21) and (2.23) defined all the quantities needed to calculate the Helmholtz

free energy of the system (2.19), provided that the properties of the reference system are known.

Finally it is worth noting, that the ETPT-CF theory developed here reduces to the TPT1 proposed by

Wertheim [8], if for all sites single-bonding condition ma
K
= 1 is assumed. In the other limiting case of

only one site per particle the ETPT-CF will coincide with the TPT-CF developed earlier [1, 2, 4].

2.4. Extended TPT-CF for two sites with double-bonding condition

The theory presented in the previous section is quite general and can be applied to a number of

different situations. However, in the present study we are interested in the version of the theory for

the model with two sites both of which can be bonded twice. More specifically, we are interested in the

extension and application of the theory to the study of the phase behavior of polydisperse dipolar hard-

sphere mixture.

We assume that each of the particles in the system has two doubly bondable attractive sites, A and B ,

i.e. we have: Ma = 2 and ma
A = ma

B . We also assume that attractive interaction is acting only between the

sites of the same sort. Using these suggestions, relations (2.11) and (2.12), and taking into account that the

system is uniform, the density parameters σa
A2B2

= ρa σa
A1B2

≡ σ̃a
A1

and σa
A2B1

≡ σ̃a
B1

a can be expressed in

terms of ca
K1

ρa =
1

4
σa

A0B0

[

1+
(

κa
A1

)2
][

1+
(

κa
B1

)2
]

, (2.25)
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σ̃a
A1

=
1

2
σa

A0B0
κa

A1

[

1+
(

κa
B1

)2
]

, (2.26)

σ̃a
B1

=
1

2
σa

A0B0
κa

B1

[

1+
(

κa
A1

)2
]

, (2.27)

where K takes the values A and B and κa
K1

= 1+ca
K1

. These two equations give

σa
A0B0

= 4ρa

{[

1+
(

κa
A1

)2
][

1+
(

κa
B1

)2
]}−1

, (2.28)

and

σ̃a
K1

=
2ρaκ

a
K1

1+
(

κa
K1

)2
. (2.29)

In turn, using (2.21), for κa
K1

we have

κa
K1

= 1+
∑

b

I ab
K K σ̃a

K1
, (2.30)

where

I ab
K K =

∫

g ab
ref (12) f ab

K K (12) d(2). (2.31)

Combining (2.20), (2.29) and (2.30) the expression for the Helmholtz free energy (2.19) can be written in

terms of κa
K1

parameters

β
A− Aref

V
=

∑

a
ρa




ln

ρa
A0B0

ρa
−κa

A1

1−κa
A1

1+
(

κa
A1

)2
−κa

B1

1−κa
B1

1+
(

κa
B1

)2




 , (2.32)

which satisfy the following set of equations:

κa
K1

= 1+
∑

b

2ρbκ
b
K1

1+
(

κb
K1

)2
I ab

K K . (2.33)

Chemical potential ∆µa and pressure ∆P in excess of their reference system values can be obtained

using standard thermodynamical relations:

µa −µa
ref =

∂ [(A− Aref)/V ]

∂ρa
, P −Pref =

∑

a

ρa

(

µa −µa
ref

)

−
A− Aref

V
. (2.34)

Finally, the average size of the clusters, which appear in the system, can be characterized by the

average length of the chain LK formed by either A-bonded (K = A) or B -bonded (K = B) particles. Follow-

ing [13, 14] we defined this quantity by the following expression

LK =

∑

a

(

αa
K ,end

+αa
K ,mid

+αa
0

)

∑

a

(

αa
K ,end

/2+αa
0

) , (2.35)

where αa
K ,end

is the fraction of singly K -bonded particles (fraction of the chain ends), αa
K ,mid

is the frac-

tion of doubly K -bonded particles (fraction of the chain middles) and αa
0 is the fraction of nonbonded

particles. For these fractions we have

ραa
A,end = σ̃a

A1
−σa

A0B2
, ραa

A,mid = ρ− σ̃a
A1

, ραa
0 =σa

A0B0
. (2.36)

Substituting these expressions into expression for L A (2.35) and using (2.28), (2.29) and expression for

σa
A0B2

,

σa
A0B2

=
1

2
ρaσA0B0

[(

κa
B1

)2
+1

]

, (2.37)
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we get the final expression for L A in terms of κa
K1

:

LK =
∑

a

ρa

4−

[

1+
(

κa
K1

)2
][

1−
(

κa
K̃1

)2
]

[

1+
(

κa
A1

)2
][

1+
(

κa
B1

)2
]







∑

a

ρa

4−
(

1−κa
K1

)[

1+
(

κa
K̃1

)2
]

[

1+
(

κa
A1

)2
][

1+
(

κa
B1

)2
]







−1

, (2.38)

where if K = A then K̃ = B and if K = B then K̃ = A.

3. Liquid-gas phase behavior of polydisperse dipolar hard-sphere fluid

3.1. The model

We consider a polydisperse dipolar hard-sphere fluid mixture with a number density ρ and a poly-

dispersity in both the hard-sphere diameter σ and the dipolar moment dµ. We assume, that the dipole

moment is proportional to the particle volume, i.e., dµ ∼ σ3. Thus, the type of the particle is completely

defined by its hard-sphere size and hereafter we will be using σ instead of the indices a,b, . . . to denote

the particle species. We also assume that hard-sphere size of the particles is distributed according to a

normalized distribution function F (σ) Ê 0,

∞∫

0

F (σ) dσ= 1. (3.1)

Interaction between particles of species σ1 and σ2 in our system is described by the following pair poten-

tial:

U (r,σ1σ2) =Uhs(r,σ1σ2)+Udd(12,σ1σ2), (3.2)

where Uhs(r,σ1σ2) is the hard-sphere potential and Udd(r,σ1σ2) is the dipole-dipole potential, given by

Udd(12,σ1σ2) =−
dµ(σ1)dµ(σ2)

r 3

[

2cosϕ1 cosϕ2 − sinϕ1 sinϕ2 cos
(

φ1 −φ2

)]

. (3.3)

Here ϕ1 and ϕ2 denote the angles between the dipole vectors and the vector that joins the centers of

the two particles, and φ1 and φ2 are the azimuthal angles about this vector. To proceed we have to

split the total potential (3.2) into the reference and the associative pieces. We assume that the refer-

ence part of the potential is represented by the hard-sphere part Uhs(r,σ1σ2) and the associative part

by the dipole-dipole potential Udd(r,σ1σ2). At the contact distance σ12 = (σ1 +σ2)/2, the latter poten-

tial has two equal potential minima of the depth −2dµ(σ1)dµ(σ2)/σ3
12 at “nose-to-tail” configuration

(ϕ1 = ϕ2 = 0, ϕ1 = ϕ2 = π). These minima are responsible for the formation of chains of particles in

the system. In addition, there are twice less deep minima
(

−dµ(σ1)dµ(σ2)/σ3
12

)

at antiparallel configura-

tion with ϕ1 =ϕ2 = π/2, φ1 −φ2 = π. The latter minima cause the formation of the network connecting

the chains. According to the earlier theoretical and computer simulation studies [15, 16] competition be-

tween the chain formation and network formation defines the existence of the liquid-gas phase transition

in the dipolar hard-sphere fluid. To account for this effect we propose the following splitting of the total

associative potential Uass(12,σ1σ2) =Udd(12,σ1σ2):

UBB (12,σ1σ2) = Θ
(

ϕ1

)

Θ
(

ϕ2

)

Udd(12,σ1σ2), (3.4)

UA A(12,σ1σ2) =
[

1−Θ
(

ϕ1

)

Θ
(

ϕ2

)]

Udd(12,σ1σ2), (3.5)

where Θ(ϕ) = H
(

π/2+ϕ0 −ϕ
)

H
(

π/2−ϕ0 +ϕ
)

and H(x) is the Heaviside step function. Here ϕ0 plays a

role of the potential splitting parameter. For ϕ0 = π/2 we have that UBB (12,σ1σ2) = Udd(12,σ1σ2) and

UA A(12,σ1σ2) = 0. On the other hand ϕ0 = 0 gives: UB (12,σ1σ2) = 0 and UA A(12,σ1σ2) =Udd(12,σ1σ2).

In both limiting cases the theory developed will treat the system as a polydisperse mixture of the hard-

sphere chains. For the intermediate values of ϕ0, the energy minima at “nose-to-tail” configuration are

included into UA A(12,σ1σ2) and network forming minima appear in UBB (12,σ1σ2). We have chosen

here ϕ0 = π/9. With this value of ϕ0, our results for monodisperse version of the model are in good

agreement with the results of the previous studies [2, 16].
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3.2. Thermodynamic properties

For a general multicomponent dipolar hard-sphere mixture, thermodynamic properties can be ob-

tained using the solution of a set of nonlinear equations (2.33) and an expression for the Helmholtz free

energy (2.32). However, even for the multicomponent case, solution of this equation rapidly becomes in-

volved as the number of components increases. As we proceed to the polydisperse case, solution of the

polydisperse version of equation (2.33) becomes intractable, since nowwe have to deal with the following

integral equation:

κK (σ1) = 1+2ρ

∞∫

0

F (σ2)
κK (σ2)IK K (σ1σ2)

1+κ2
K

(σ2)
dσ2 , (3.6)

where we have dropped the lower index 1, i.e. κK1 (σ) ≡ κK (σ). In order to solve this equation we pro-

pose here to interpolate the key quantity of the theory, the volume integral IK K (σ1σ2), using a sum of

NY Yukawa terms. Since the reference system pair distribution function gref(r,σ1σ2) is independent of

mutual orientation of the particles for the integral (2.31) we have

IK K (σ1σ2) = 4π

∞∫

0

r 2gref(r,σ1σ2) f̄K K (r,σ1σ2) dr, (3.7)

where f̄K K (r,σ1σ2) is an orientation averaged Mayer function for associative potential UK K (12,σσ). We

assume, that f̄K K (r,σ1σ2) can be represented in the following form:

f̄K K (r,σ1σ2) =
1

4πr

NY∑

n

A(n)
K

(σ1)A(n)
K

(σ2)e−z(n)
K (r−σ12). (3.8)

Parameters A(n)
K

(σ) and z(n)
K

are obtained using the interpolation scheme, which is presented and dis-

cussed in the appendix A. Using (3.7) and (3.8), we have

IK K (σ1σ2) =
NY∑

n

A(n)
K

(σ1)A(n)
K

(σ2)G(n)
K

(σ1σ2), (3.9)

where G(n)
K

(σ1σ2) =
∫
∞

0 r e−z(n)
K

r gref(r,σ1σ2)dr is the Laplace transform of the radial distribution func-

tion gref(r,σ1σ2). We will use here Percus-Yevick approximation for the hard-sphere radial distribution

function, since the analytical expression for its Laplace transform is known [17]

e−z(n)
K

σ12G(n)
K

(σ1σ2) =
∆

(z(n)
K

)2D(n)
K

[

z(n)
K

(

σ12 +σ1σ2
π

4∆
m2

)

+1+
π

2∆
m3

+
πz(n)

K

2∆

(

m(n)
K ,2

−2σ12m(n)
K ,1

+σ1σ2m(n)
K ,0

)]

, (3.10)

where

D(n)
K

= ∆
2
−

2π

z(n)
K

(

1+
1

2
πm3

)(

m(n)
K ,0

+
1

2
m2

)

− 2π

{

∆m(n)
K ,1

+
1

4
π

[

m(n)
K ,2

(

m2 +2m(n)
K ,0

)

−

(

m(n)
K ,1

)2
]}

, (3.11)

∆= 1−πm3/6. (3.12)

Here ml are the moments and m(n)
K ,l

are the generalized moments of the distribution function F (σ). Ex-

pression for these moments can be symbolically presented as follows:

m =

∞∫

0

m(σ)F (σ) dσ. (3.13)
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Hereafter all the quantities denoted as m with certain set of indices will represent the generalized mo-

ments defined by (3.13). Corresponding expressions for m(σ) are collected in the appendix B. Insert-

ing (3.9) into equation (3.6) and using (3.10), we find

κK (σ) = 1+ρ
NY∑

n

2∑

j=1

C (n)
K , j

Ω
(n)
K , j

(σ), (3.14)

where C (n)
K , j

satisfies the following set of equations:

C (n)
K , j

= 2

∞∫

0

σ j−1F (σ)A(n)
K

(σ)
1+ρ

∑

l

∑2
i=1 Ω

(l )
K ,i

(σ)C (l )
K ,i

1+
[

1+ρ
∑

l

∑2
i=1 Ω

(l )
K ,i

(σ)C (l )
K ,i

]2
dσ. (3.15)

Here

Ω
(n)
K ,1

(σ) = A(n)
K

(σ)
(

σP (n)
K ,1

+P (n)
K ,3

)

, Ω
(n)
K ,2

(σ)= A(n)
K

(σ)
(

σP (n)
K ,2

+P (n)
K ,1

)

, (3.16)

P (n)
K ,1

=
∆

2z(n)
K

D(n)
K

(

1−
π

∆
m(n)

K ,1

)

, (3.17)

P (n)
K ,2

=
π

2z(n)
K

D(n)
K

(
1

2
m2 +m(n)

K ,0

)

, (3.18)

P (n)
K ,3

=
∆

(

z(n)
K

)2
D(n)

K

[

1+
π

2∆

(

m3 + z(n)
K

m(n)
K ,2

)]

. (3.19)

Thus, solution of the integral equation (3.6) for the unknown function κK (σ) now is reduced to the solu-

tion of a set of equations for 4NY unknown constants C (n)
K , j

. This solution can be used to calculate κ(n)
K

(σ),

which in turn can be utilized to calculate thermodynamical properties of the system via Helmholtz free

energy (2.32). Generalizing the expression for Helmholtz free energy (2.32) for a polydisperse system, we

have

β
A− Aref

V
= ρ

∞∫

0

F (σ)

{

− ln
1

4

B∏

K=A

[

κ2
A (σ)+1

]

−

B∑

K=A

κK (σ)
1−κK (σ)

1+κ2
K

(σ)

}

dσ. (3.20)

Now we can use the standard relation between Helmholtz free energy and chemical potential (2.34),

generalized to polydisperse case

β
[

µ(σ)−µref(σ)
]

=
β

ρ

δ {A− Aref/V }

δ {F (σ)}
, (3.21)

where δ/δ {F (σ)} denote functional differentiation with respect to the distribution F (σ). We find

β
[

µ(σ)−µref(σ)
]

=
mµ

ρ
− ln

1

4

B∏

K=A

[

κ2
A(σ)+1

]

−

B∑

K=A

κK (σ)
1−κK (σ)

1+κ2
K

(σ)

+

NY∑

n

B∑

K=A





3∑

j−1

µ(n)
K , j

δP (n)
K , j

F (σ)
+

2∑

j=1

ν(n)
K , j

δC (n)
K , j

F (σ)



 . (3.22)

Here

µ(n)
K ,1

=
1

2

(

m
(n,0)
K ,0

C (n)
K ,2

+m
(n,0)
K ,1

C (n)
K ,1

)

, (3.23)

µ(n)
K ,2

=
1

2

(

m(n,0)
K ,1

−ρC (n)
K ,2

)

C (n)
K ,2

, µ(n)
K ,3

=
1

2

(

m(n,0)
K ,0

−ρC (n)
K ,1

)

C (n)
K ,1

, (3.24)

ν(n)
K ,1

=
1

2

[(

m(n,0)
K ,1

−ρC (n)
K ,2

)

P (n)
K ,1

+

(

m(n,0)
K ,0

−ρC (n)
K ,1

)

P (n)
K ,3

]

, (3.25)

ν(n)
K ,2

=
1

2

[(

m(n,0)
K ,0

−ρC (n)
K ,1

)

P (n)
K ,1

+

(

m(n,0)
K ,1

−ρC (n)
K ,2

)

P (n)
K ,2

]

, (3.26)
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functional derivatives δP (n)
K , j

/δF (σ) and δD(n)
K

/δF (σ) are presented in the appendix B and functional

derivatives δC (n)
K , j

/δF (σ) can be obtained from the solution of the set of linear equations, which follows

from (3.15) upon its functional differentiation with respect to F (σ), i.e.

2∑

j=1

M
(K )
i , j

δC
(K )
j

δF (σ)
= R

(K )
i

(σ), i = 1,2, K = A,B, (3.27)

where
[

δC
(K )
j

/δF (σ)
]

n
≡ δC (n)

K , j
/δF (σ) and the elements of the matrices M

(K )
i , j

and R
(K )
i

(σ) are collected in

the appendix B.

The pressure expression follows from (2.34), generalized to the polydisperse case

P −Pref = ρ

∞∫

0

F (σ)
[

µ(σ)−µref(σ)
]

dσ−
A− Aref

V
. (3.28)

Using this expression together with the expression for the chemical potential (3.22), we find

β(P −Pref) = mµ+ρ
NY∑

n

B∑

K+A

(
3∑

j=1

µ(n)
K , j

J (n)
K , j

+

2∑

j=1

ν(n)
K , j

S(n)
k , j

)

, (3.29)

where

J (n)
K , j

=

∞∫

0

F (σ)
δP (n)

K , j

δF (σ)
dσ, S(n)

K , j
=

∞∫

0

F (σ)
δC (n)

K , j

δF (σ)
dσ. (3.30)

Expression for the integral J (n)
K , j

is presented in the appendix B and integral S(n)
K , j

can be obtained from the

solution of the set of linear equations

2∑

j=1

M
(K )
i , j

S
(K )
j

= E
(K )
i

, i = 1,2, K = A,B, (3.31)

which follows from the set of equations (3.27). Here
[

S
(K )
j

]

n
≡ S(n)

K , j
and the elements of the matrix E

(K )
i

are presented in the appendix B.

Expressions for the chemical potential (3.22) and pressure (3.29) are the final expressions to be used

in the phase equilibrium calculations. The properties of the reference system (chemical potential µref(σ)

and pressure Pref) are described here using polydisperse versions of the Mansoori et al. [18] expressions

βµ(ex)
ref

(σ) =

[(

σ
m2

m3

)2 (

3−2σ
m2

m3

)

−1

]

ln∆+m2

(

1+
m2σ

m3∆

)

+
πσ

2∆

{

1

3
σ2

[

ρ−
m3

2

m2
3

1+∆

∆
+

π

∆
m2

(

1

2
m1 +

1

3

m2
2

m3∆

)]

+σm1

}

, (3.32)

βPref =
1

∆

[

ρ+
π

2∆
m1m2 +

π2

12∆2
m3

2 −

(π

6

)3 1

∆2
m3m3

2

]

, (3.33)

where µ(ex)
ref

(σ) is the reference system chemical potential in excess to its ideal gas value.

3.3. Phase equilibrium conditions

One can easily see that thermodynamical properties of the model at hand obtained above are defined

by the set of the finite number of the distribution function moments, i.e., four regular moments (ml ,

l = 0,1,2,3) and 1+ 10NY + 3NY (NY +1) generalized moments (mµ, m(n)
K ,i

m(n0)
K , j

m(nm)
K ,l

; i = 0,1,2; j =

0,1; l = 0,1,2; K = A,B). Note, that m(nm)
K ,l

= m(mn)
K ,l

. Thus, the polydisperse mixture of dipolar hard
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spheres treated within ETPT-CF belongs to the class of truncatable free energy models (see [9] and ref-

erences therein). This property allows us to map the phase coexistence relations onto a set of nonlinear

equations for the unknown moments of the daughter distribution functions [19].

We assume that at a certain density ρ0 and composition F0(σ) the system separates into two phases

with densities ρ1 and ρ2, and compositions F1(σ) and F2(σ). Hereafter the lower index 0 refers to the

parent phase and the lower indices 1 and 2 refer to the daughter phases. At equilibrium these quantities

take the values, which follows from the phase equilibrium conditions, i.e.: (i) conservation of the total

volume of the system, (ii) conservation of the total number of the particles of each species, (iii) equality

of the chemical potentials of particles of the same species in the coexisting phases, (iv) equality of the

pressure in the coexisting phases. These conditions finally lead to the following set of relations [19, 20]:

Fα(σ) = F0 (σ)Qα

(

σ;ρ0,ρ1,ρ2; [Fα]
)

, (3.34)

P1

(

ρ1; [F1]
)

= P2

(

ρ2; [F2]
)

, (3.35)

∞∫

0

Fα(σ) dσ= 1, for α= 1 or α= 2, (3.36)

where

ραQα

(

σ;ρ0,ρ1,ρ2; [Fα]
)

=
ρ0

(

ρ2 −ρ1

)[

1−δ1α+δ1α exp
(

β∆µ(ex)
)]

ρ0 −ρ1 −
(

ρ0 −ρ2

)

exp
(

β∆µ(ex)
) , (3.37)

∆µ(ex)
= µ(ex)

2

(

σ,ρ2; [F2]
)

−µ(ex)
1

(

σ,ρ1; [F1]
)

, (3.38)

µ(ex)
α is the excess (over the ideal gas) chemical potential of the particle of species σ in the phase α, and

[. . .] denote functional dependence. The relation between F0(σ) and daughter phase distribution function

Fα(σ), i.e., equation (3.34), follows from the phase equilibrium conditions (i)–(iii).

Relations (3.34)–(3.36) represent a closed set of equations to be solved for the unknowns ρα and Fα(σ);

this set has to be solved for every value of the species variable σ. However, since thermodynamical

properties of the model at hand are defined by the finite number of the moments we can map this set of

equations onto a closed set of 10+28NY +6NY (NY +1) algebraic equations for ρα , C (n)(α)
K ,1

, C (n)(α)
k ,2

and

moments m(α)
k

, m(α)
µ , m(n)(α)

K ,i
, m(n0)(α)

K , j
, m(nm)(α)

K ,l
in the two coexisting phases (α= 1,2). We have

m(α)
k

= ρα

∞∫

0

mk (σ)F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ, k = 0,1,2,3, (3.39)

m(α)
µ = ρα

∞∫

0

m(α)
µ (σ)F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ, (3.40)

m(n)(α)
K ,i

= ρα

∞∫

0

m(n)(α)
K ,i

(σ)F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ, i = 0,1,2, (3.41)

m(n0)(α)
K , j

= ρα

∞∫

0

m(n0)(α)
K , j

(σ)F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ, j = 0,1, (3.42)

m(nm)(α)
K ,l

= ρα

∞∫

0

m(nm)(α)
K ,l

(σ)F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ, l = 0,1,2, (3.43)

where K = A,B and {Xα} represent the unknowns of the problem, i.e.

{Xα} =
{

ρα,m(α)
k

, m(α)
µ , m(n)(α)

K ,i
, m(n0)(α)

K , j
, m(nm)(α)

K ,l

}

, α= 1,2.

The remaining 2+8NY equations follow from the equality of the pressure in coexisting phases (3.35),

P1

(

ρ1; {X1}
)

= P2

(

ρ2; {X2}
)

, (3.44)
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from the set of equations for C (n)(α)
K ,1

and C (n)(α)
K ,2

(3.15) and from the normalizing condition (3.36) for either

phase α= 1 or α= 2,
∞∫

0

F0 (σ)Qα

(

σ,ρ0; {X1} , {X2}
)

dσ= 1. (3.45)

Solution of the set of equations (3.15), (3.39)–(3.45) for a given density ρ0 and distribution function F0(σ)

of the parent phase gives the densities ρα and distribution functions Fα(σ) of the two coexisting daughter

phases. The coexisting densities at different densities of the parent phase ρ0 defined binodals, which are

terminated when the density of one of the phases is equal to the parent phase density ρ0. These termina-

tion points form cloud and shadow coexisting curves. These curves intersect at the critical point, which

is characterized by the critical density ρcr = ρ1 = ρ2 = ρ0 and critical temperature Tcr. The cloud-shadow

curves can be obtained as a special solution of the general coexisting problem, when the properties of

one phase are equal to the properties of the parent phase: assuming that the phase α = 2 is the cloud

phase, i.e. ρ2 = ρ0, and following the above scheme we will end up with the same set of equations (3.15),

(3.39)–(3.45), but with ρ2 and F2(σ) substituted by ρ0 and F0(σ), respectively.

4. Results and discussion

In this sectionwe present our numerical results for a liquid-gas phase diagram of polydisperse dipolar

hard-sphere fluid at different degrees of polydispersity. For a size distribution function F (σ) we have

chosen the beta distribution given by

F (σ) =
Γ

(

ν+µ−1
)

Γ (ν)Γ
(

µ
)

(1− x)µ−1 xν−1

(σu −σd )
H (σu −σ) H (σ−σd ) , (4.1)

where

x =
σ−σd

σu −σd
, ν=

1− σ̃0

Dσ
− σ̃0 , µ=

(
1

σ̃0
−1

)

ν, σ̃0 =
σ0 −σd

σu −σd
, (4.2)

σ0 = 〈σ〉, Dσ =
〈σn〉

σ2
0

−1, 〈σn
〉 =

∫

dσnσF (σ). (4.3)

Here σu and σd define the range of values for σ. In our calculations we have chosen σu = 1.2947σ0 and

σd = 0.85σ0 .

T ∗

ρ∗

shadowcloud
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0.19

0.185
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0.175

0.17

0.165

0.16

0.155

0.15

0.145

0.14

Figure 1. Predictions of the ETPT-CF for the phase diagram of polydisperse dipolar hard-sphere mixture

including cloud and shadow curves (as labeled), and critical binodal (dashed line) at Dσ = 0.1 in ρ∗ vs T∗

coordinate frame. Dotted line and empty square represent ETPT-CF binodal and MC [16] critical point of

monodisperse dipolar hard-sphere fluid, respectively.
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shadowcloud

T ∗
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shadow
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Figure 2. The same as in figure 1 at Dσ = 0.2. Figure 3. The same as in figure 1 at Dσ = 0.3.

In figures 1–3 the liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid at different de-

grees of polydispersity Dσ= 0.1, 0.2, 0.3 is presented in T ∗vs ρ∗ coordinate frame. Here T ∗= kBT /d2
µ(σ0)

and ρ∗ = ρσ3
0. We show the cloud and shadow curves and critical binodal. In addition, for the reference

we include Monte-Carlo predictions for the critical point and ETPT-CF predictions for the phase diagram

of monodisperse version of the model [16]. One can see that upon increasing the Dσ, the region of the

phase instability increases with the critical point shifting to higher temperatures and densities. For larger

values of Dσ (Dσ = 0.2, 0.3), the low density part of the cloud curve and the high density part of the

shadow curve become almost vertical. For Dσ = 0.3 the cloud and shadow curves do not intersect. At

T ∗ = 0.1715 the cloud curve has a cusp (denoted by the arrow in figure 3) and shadow curve has a jump

discontinuity. We believe that at this temperature there is a three-phase equilibria, when the mother

phase is in equilibrium with two phases on two branches of the shadow curve, one with slightly lower

density and the other with slightly higher density, respectively. The cloud and shadow curves for the

whole set of values for Dσ are collected in figure 4. In figures 5 and 6 we present the average A-size L A

T ∗

ρ∗
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0.155
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Figure 4. ETPT-CF cloud and shadow curves for polydisperse dipolar hard-sphere mixture at Dσ = 0.1

(solid lines), Dσ = 0.2 (dashed lines) and Dσ = 0.3 (dotted lines).

and B -size LB of the clusters, respectively, along the cloud and shadow curves and along the binodals

for both monodisperse and polydisperse (with Dσ = 0.2) versions of the model. For LK we have used the

expression (2.38), extended to account for polydispersity, i.e.

LK =

∫

dσF (σ)
4−

[

1+κ2
K1

(σ)
][

1−κ2
K̃1

(σ)
]

[

1+κ2
A1

(σ)
][

1+κ2
B1

(σ)
]







∫

dσF (σ)
4−

(

1−κK1 (σ)
)[

1+κ2
K̃1

(σ)
]

[

1+κ2
A1

(σ)
][

1+κ2
B1

(σ)
]







−1

. (4.4)
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Figure 5. Average A-size of the clusters along

the cloud and shadow curves (as labeled), along

the critical binodal (dashed line) for polydisperse

dipolar hard-sphere fluid at Dσ = 0.2 and along

the binodal formonodisperse version of themodel

(dotted lines).

Figure 6. Average B -size of the clusters along

the cloud and shadow curves (as labeled), along

the critical binodal (dashed line) for polydisperse

dipolar hard-sphere fluid at Dσ = 0.2 and along

the binodal formonodisperse version of themodel

(dotted lines).

From these figures one can see that clusters of larger sizes occur in the liquid phase, in comparison with

the gas phase. A decrease of the temperature causes an increase of the cluster sizes in the liquid phase and

a decrease in the gas phase. With an increase of polydispersity, LK along the cloud curve does not change

much. However, corresponding changes along the shadow curve are more substantial, here the cluster

sizes increase with an increase of polydispersity. In figure 7 we show the ratio of A- and B -sizes L A/LB .

As one would expect L A is substantially larger than LB , thus a chain structure of the formed clusters

prevails, with chains mutually connected via B -bonds. This difference in L A and LB is larger in the liquid

phase and increases with polydispersity increase. Similarly, as before, the temperature decrease causes

L A/LB decrease in the gas phase and increase in the liquid phase. Figures 8–10 and 11 show distribution

functions of the shadow curve and on the critical binodal at different temperatures. According to these

figures the larger size particles always fractionate to the liquid phase and smaller particles tend to move

to the gas phase. With an increase of Dσ and a decrease of the temperature, these fractionation effects

become more pronounced. Finally in figure 12 we show distribution functions of the two branches of the

shadow curve at T ∗ = 0.1715 and mother phase distribution function.

T ∗

A − size/B − size

shadowcloud

1000100101

0.175

0.17

0.165

0.16

0.155

0.15

0.145

0.14

Figure 7. The ratio of the average A and B sizes of the clusters along the cloud and shadow curves (as

labeled), along the critical binodal (dashed line) for polydisperse dipolar hard-sphere fluid at Dσ = 0.2.
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Figure 8. Distribution functions of the gas (dotted lines) and liquid (dashed lines) phases along the shadow

curve for T∗ = 0.16, 0.15, 0.14 and mother phase distribution function (solid line) at Dσ = 0.1. With the

temperature decrease distribution functions of the liquid phase shifts in the direction of larger σ and

distribution functions of the gas phase shifts in the direction of smaller σ.
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Figure 9. The same as in figure 8 for T∗ =

0.17, 0.16, 0.15, 0.14 and Dσ = 0.2.

Figure 10. The same as in figure 8 for T∗ =

0.18, 0.17, 0.16, 0.15, 0.14 and Dσ = 0.3.
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Figure 11. Distribution functions of the gas (dotted lines) and liquid (dashed lines) phases along the critical

binodal for T∗ = 0.16, 0.15, 0.14 andmother phase distribution function (solid line) at Dσ = 0.2. With the

temperature decrease, distribution functions of the liquid phase slightly shifts in the direction of larger

σ (almost coinciding with the mother phase distribution function) and distribution functions of the gas

phase shifts in the direction of smaller σ.
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Figure 12. Distribution functions on a shadow curves at T∗ = 0.1715 for three phases at equilibria for

Dσ = 0.3.

5. Conclusions

In this paper we propose an extension of our TPT-CF approach to account for several associating

sites with the possibility of each site to be multiply bonded. The theory is applied to the study of the

liquid-gas phase behavior of a polydisperse dipolar hard-sphere fluid with polydispersity in both hard-

sphere size and dipole moment. It is assumed that the dipole moment is proportional to the volume of

the particle. We present a full phase diagram, which includes cloud and shadow curves, binodals and

distribution functions of coexisting phases and discuss the effects of polydispersity on their behavior.

According to our analysis, polydispersity extends the region of the phase instability shifting the critical

point to higher values of temperature and density. For lower values of temperature, polydispersity causes

strong fractionation effects, with the larger size particles always tending to the liquid phase and the

smaller size particles tending to the gas phase. At relatively high values of polydispersity, three-phase

coexistence was observed.

Appendix A

Orientationally averaged Mayer function f̄K K (r,σ1σ2) was fitted empirically as a sum of Yukawa-like

terms

fm (r,σiσ j ) =
N∑

n=1

Ã(n)
m (σi ,T ) Ã(n)

m

(

σ j ,T
) e−z(n)

m (T )
(

r−σi j

)

z(n)
m (T )r

, (A.1)

where f1 = f̄ A A and f2 = f̄BB , i , j denotes the species of the particles, σi j =
(

σi +σ j

)

/2, N = 6, and

Ã(n)
m (σ,T ) = 1

2

√

z(n)
m (T )/πA(n)

M
(σ,T ). The latter quantities depend on the particle size and temperature

and were fitted by “polynomially-exponential” functions of different forms for first and second integrals.

The fitting was performed for the following range of parameters: σ ∈ [0.85,1.2947] and T ∈ [0.13,0.2].

The functional dependence of Ãn
m (σi ,T ) and z(n)

m (T ) was chosen differently for first and second integrals.

For the first integral

Ã(n)
1 (σ,T ) = a(1)

n,1 (T )+a(1)
n,2 (T ) x +a(1)

n,3 (T ) x2
+a(1)

n,4 (T ) x3

+a(1)
n,5 (T )exp

[

a(1)
n,6 (T ) x +a(1)

n,7 (T ) x2
+a(1)

n,8 (T ) x6
+a(1)

n,9 (T ) x8
]

, (A.2)

where x = (σ−σmin)/(∆σ), σmin = 0.85, ∆σ = 1.2947−σmin = 0.4447 and a(1)
n,1 (T ) , . . . , a(1)

n,9 (T ) are given

below

a(1)
n,i

(T ) = e
b(1)

n,i ,1
y
(

b(1)
n,i ,2

+b(1)
n,i ,3

y +b(1)
n,i ,4

y2
)

, for i = 1,2,3,4,

a(1)
n,i

(T ) =

(

b(1)
n,i ,1

+b(1)
n,i ,2

y +b(1)
n,i ,3

y2
+b(1)

n,i ,4
y3

)

, for i = 5,6,7,8,9, (A.3)
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where y = Tmin/T and Tmin = 0.13.

The temperature dependence of z(n)
1 (T ) reads

z(n)
1 (T ) =

(

ω(1)
n,1 +ω(1)

n,2 y +ω(1)
n,3 y2

+ω(1)
n,4 y3

)

. (A.4)

For the second integral, the functional dependence of A(2)
n (σ,T ) and z(2)

n (T ) is as follows:

A(n)
2 (σ) = a(2)

n,1 +a(2)
n,2x +a(2)

n,3x2
+a(2)

n,4x3
+a(2)

n,5 exp
[

a(2)
n,6x +a(2)

n,7x2
+a(2)

n,8x6
+a(2)

n,9x8
]

,

z(n)
2 (T ) =

(

ω(2)
n,1 +ω(2)

n,2 y +ω(2)
n,3 y2

+ω(2)
n,4eω

(2)
n,5 y

)

, (A.5)

where

a(2)
n,i

= e
b

(2)
n,i ,1

y
(

b(2)
n,i ,2

+b(2)
n,i ,3

y +b(2)
n,i ,4

e
b

(2)
n,i ,5

y
)

, for i = 1,2,3,4 (A.6)

and

a(2)
n,i

=

(

b(2)
n,i ,1

+b(2)
n,i ,2

y +b(2)
n,i ,3

y2
+b(2)

n,i ,4
e

b(2)
n,i ,5

y
)

, for i = 5,6,7,8,9. (A.7)

The x and y are the same as for the first integral.

The fitting procedure consisted in finding suitable bn,i , j and ωn, j parameters for first and second in-

tegrals by means of differential evolution optimization algorithm [21, 22]. The objective function in both

cases was a sum of square deviations of the area under fm(r,σiσ j ) as a function of r , and contact value

fm (r =σi j ,σiσ j ), from their fitting representations for different values ofσi ,σ j and T . The deviations in

the objective function were calculated for ten different temperature values (uniformly distributed from

0.13 to 0.2) and twenty different σ values (also uniformly distributed from 0.85 to 1.2947). For illustra-

tion purposes in figure 13 we present a comparison of the exact values of the orientation averaged Mayer

functions f̄ A A (r,σ1σ2) and f̄BB (r,σ1σ2) with their fitted versions at T ∗ = 0.153 and four different values

for the hard-sphere size: σ1 =σ2 = 0.884σ0 , 1.021σ0 , 1.158σ0 , 1.26σ0 . The numerical values of the fitting

parameters bn,i , j and ωn, j can be obtained from the authors upon request.

·
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Figure 13. Comparison of the exact values of the orientation averaged Mayer functions f̄ A A(r,σ1σ2) (up-

per panel) and f̄BB (r,σ1σ2) (lower panel) with their fitted counterparts at T∗ = 0.153 and σ1 = σ2 =

0.884σ0 (diamonds), 1.021σ0 (triangles), 1.158σ0 (squares), 1.26σ0 (circles).
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Appendix B

ml (σ) = σl , (B.1)

m(n)
K ,l

(σ) = σlϕ
(

z(n)
K

,σ
)

, (B.2)

m(n0)
K ,l

(σ) = −
2σl A(n)

K
(σ)

1+κ2
K

(σ)

[

1−
2κ2

K (σ)

1+κ2
K

(σ)

]

[1−κK (σ)] , (B.3)

m(nm)
K ,l

(σ) =
2σl A(n)

K
(σ)A(m)

K
(σ)

1+κ2
K

(σ)

[

1−
2κ2

K (σ)

1+κ2
K

(σ)

]

, (B.4)

mµ(σ) =

B∑

K=A

[

1+2κ2
K (σ)

1−κK (σ)

1+κ2
K

(σ)

]

1−κK (σ)

1+κ2
K

(σ)
, (B.5)

δP (n)
K ,1

δF (σ)
= −

ρ

2z(n)
K

D(n)
K

{

πσ
[

σ2
+ϕ

(

z(n)
K

,σ
)]

+2z(n)
K

P (n)
K ,1

δD(n)
K

δF (σ)

}

, (B.6)

δP (n)
K ,2

δF (σ)
=

ρ

4z(n)
K

D(n)
K

{

π
[

σ2
+2ϕ

(

z(n)
K

,σ
)]

−4z(n)
K

P (n)
K ,2

δD(n)
K

δF (σ)

}

, (B.7)

δP (n)
K ,3

δF (σ)
=

ρ

(2z(n)
K

)2D(n)
K

{

πσ2

[
2

3
σ+ z(n)

K
ϕ

(

z(n)
K

,σ
)]

−2
(

z(n)
K

)2
P (n)

K ,3

δD(n)
K

δF (σ)

}

, (B.8)

δD(n)
K

δF (σ)
=

1

6
πσ3

{

m(n)
K ,1

−
3

z(n)
K

(

m(n)
K ,0

+
1

2
m2

)

−∆σ

[
1

6
σ2

+ϕ
(

z(n)
K

,σ
)]

−

[
1

2
σ2

+ϕ
(

z(n)
K

,σ
)]

[

1

z(n)
K

(

1+
1

2
πm3

)

+
1

2
πm(n)

K ,2

]

−
1

4
πσ2ϕ

(

z(n)
K

)(

m2 +2m(n)
K ,0

)

+
π

2
σm(n)

K ,1
ϕ

(

z(n)
K

,σ
)}

, (B.9)

ϕ(z,σ)=
1

z

(

1− zσ−ezσ
)

, (B.10)

[

M (K )
1,1

]

nm
= δnm −P (m)

K ,1
m(nm)

K ,1
+P (m)

K ,3
m(nm)

K ,0
,

[

M (K )
1,2

]

nm
= −P (m)

K ,1
m(nm)

K ,0
+P (m)

K ,2
m(nm)

K ,1
,

[

M (K )
2,1

]

nm
= −P (m)

K ,1
m(nm)

K ,2
+P (m)

K ,3
m(nm)

K ,1
,

[

M (K )
2,2

]

nm
= δnm −P (m)

K ,1
m(nm)

K ,1
+P (m)

K ,2
m(nm)

K ,2
.
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Фазова поведiнка рiдина-газ полiдисперсної сумiшi

дипольних твердих сфер: узагальнена термодинамiчна

теорiя збурень для асоцiативного потенцiалу типу

центральних сил

Ю.В. Калюжний1, С.П. Глушак1,2, П.T. Каммiнгс2,3

1 Iнститут фiзики конденсованих систем, Україна, 79011 Львiв, вул. Свєнцiцького, 1

2 Унiверситет Вандербiльда, Теннесi, 37235 Нешвiл

3 Iнститут теорiї наноматерiалiв, Центр наук по нанофазних матерiалах, Нацiональна Лабораторiя в Оук

Рiджi, Оук Рiдж, Теннесi, 37830

Проведений розрахунок фазової дiаграми рiдина-газ полiдисперсної сумiшi дипольних твердих сфер з

полiдисперснiстю як по розмiрах твердих сфер, так i по величинi дипольних моментiв, використовуючи

узагальнення термодинамiчної теорiї збурення для систем з центральним характером асоцiативної взає-

модiї. Для того, щоб встановити зв’язок з фазовою поведiнкою фероколоїдних дисперсiй, було зроблено

припущення про те, що дипольний момент частинки є пропорцiйний до кубу її дiаметра. Ми представи-

ли та обговорили повну фазову дiаграму, яка включає кривi ‘хмари’ та ‘тiнi’, бiнодалi та функцiї розподiлу

спiвiснуючих дочiрнiх фаз при рiзних значеннях полiдисперсностi системи. У всiх випадках, якi дослiджу-

валися, полiдисперснiсть збiльшує область фазової нестабiльностi та змiщує критичну точку в область ви-

щих температур та густин. Частинки бiльшого розмiру завжди фракцiонують у рiдинну фазу, а частинки

меншого розмiру вiддають перевагу газовiй фазi. У випадку вiдносно високого значення полiдисперсно-

стi системи було вiдмiчено наявнiсть спiвiснування трьох фаз.

Ключовi слова: ТТЗ, асоцiйована рiдина, полiдисперснiсть, фероколоїди, фазова дiаграми
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