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The liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid with polydispersity in the hard-sphere
size and dipolar moment is calculated using extension of the recently proposed thermodynamic perturbation
theory for central force (TPT-CF) associating potential. To establish the connection with the phase behavior of
ferrocolloidal dispersions it is assumed that the dipole moment is proportional to the cube of the hard-sphere
diameter. We present and discuss the full phase diagram, which includes cloud and shadow curves, binodals
and distribution functions of the coexisting daughter phases at different degrees of the system polydispersity.
In all cases studied polydispersity increases the region of the phase instability and shifts the critical point to the
higher values of the temperature and density. The larger size particles always fractionate to the liquid phase and
the smaller size particles tend to move to the gas phase. At relatively high values of the system polydispersity
three-phase coexistence is observed.
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1. Introduction

In this paper we consider the liquid-gas phase behavior of polydisperse dipolar hard-sphere mixture.
Recently, liquid-gas phase equilibria in monodisperse dipolar hard-sphere fluid, Yukawa dipolar hard-
sphere fluid and Shtockmayer fluid were studied using thermodynamic perturbation theory for central
force (TPT-CF) associating potential ﬂ—@] In this study we propose an extension of the TPT-CF, which en-
ables us to investigate the phase behavior of polydisperse mixture of the dipolar hard spheres with poly-
dispersity in both hard-sphere size and dipole moment. We call this extension as extended TPT-CF (ETPT-
CF). Similar to our previous study [E], ETPT-CF combines Wertheim’s TPT [EL B] for associating fluid with
association due to off-center attractive sites, and TPT-CF , E], which permits a multiple bonding of one
site. In our theory we have several Wertheim’s types of associating sites with the possibility for each site
to be multiply bonded (in Wertheim’s TPT each site is only singly bondable). Final expressions for thermo-
dynamical properties of polydisperse dipolar hard-sphere fluid is written in terms of the finite number
of distribution function moments, i.e., in the framework of ETPT-CF this system belongs to the family of
the so-called truncatable free energy models (see ] and references therein). This property enables us
to calculate the full liquid-gas phase diagram (including cloud and shadow curves and binodals) and to
study the effects of fractionation on the level of the distribution functions of coexisting daughter phases.
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2. Extended thermodynamic perturbation theory for central force asso-
ciative potential

2.1. Analysis and classification of diagrams

We consider a multicomponent fluid mixture consisting of 7 species with a number density p =Y. p,
at a temperature T (8 = 1/kg T), where p, is the density of the particles of a species. The particles of the
species a and b interact via the pair potential U, (12), which can be written as a sum of the reference
Ur‘:ff’ (12) and associative Uff;(lZ) parts

Uap(12) = U%2(12) + UZL (12), 2.1)

T ass

where 1 and 2 denote positions and orientations of the particles 1 and 2. We assume that the associative
part of the potential can be represented as a sum of M, x M}, terms, i.e.

Ulhaz) =Y uskaz), 2.2)
KL

where the lower indices K and L take the values A,B,C,... and A, B,C,..., respectively. These values
— ~—

Ma My,
specify the splitting of the total associating potential UfSZ(IZ) into several particular pieces. For example
in the case of the models utilized by Wertheim [IQ] these indices denote off-center attractive sites and in
the case of the Mercedes-Benz (MB) type of models [10] or cone models [11] they stand for the type of
hydrogen bonding arms. Hereafter we will refer to these indices as the site indices, keeping in mind that
they may have a more general meaning. Here M, and M), are the number of such sites on the particles
of a and b species, respectively. According to (ZI) and the Mayer function f;;(12) for the total

potential 2.1 takes the following form:

Fap(12) = £72(12) + e%2(12) {]‘[ [1+ febaz)]| - 1}, 2.3)
KL

where we use the usual notation:
e(12) =exp[-pU12)], f(12)=e(12)-1. (2.4

For the sake of diagrammatic analysis we will follow Wertheim ] and instead of circles we introduce
hypercircles to represent particles in diagrammatic expansions. Each hypercircle is depicted as a large
open circle with small circles inside denoting the sites. Corresponding cluster integrals are represented
by the diagrams built on a hypercircles connected by fief and e ef bonds and site circles connected by the
associating bonds fxr. Due to the decomposition of the Mayer function f,;(12) (Z.3) we will have the fol-
lowing diagrammatic expressions for the logarithm of a grand partition function = and for the one-point
density p,(1) in terms of the activity z:

In= = sum of all topologically distinct connected diagrams consisting of field zZ hypercircles, fief, eref and
fxr bonds. Each bonded pair of Z hypercircles has either fy, or eyr and one or more fxr bonds.

pa(1) = sum of all topologically distinct connected diagrams obtained from InZ by replacing in all pos-
sible ways one field zZ hypercircle by a Z,(1) circle labeled 1.

Here Z,(i) = zgexp [—BU4(i)], i denotes position and orientation of the particle i, and Up(i) is an exter-
nal field. For a uniform system Z,(1) = z,. Following [EL B, EL B] we introduce the definition of the s-mer
diagrams. These are the diagrams consisting of s hypercircles, which all are connected by the network of
fxr bonds. The site circles, which are incident with more than mI“< I?f bonds are called oversaturated
site circles. We consider now the set of oversaturated site circles with each pair connected by at least one
path formed by the circles from the same set. The subdiagram involving this set of circles, together with
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the site circles adjacent to them and fx; bonds connecting all these circles , we call the oversaturated
subdiagram. The set of all possible s-mer diagrams can be constructed in three steps: (i) generating the
subset of all possible connected diagrams with only fx; bonds, (ii) inserting combined bond e;ef = frer+ 1
between all pairs of hypercircles with the site circles, which belong to the same maximal oversaturated
subdiagram and (iii) taking all ways of inserting an fi.r bond between the pairs of hypercircles, which
were not connected during the previous two steps. As a result the diagrams, which appear in In=Z and
p(1), can be expressed in terms of the s-mer diagrams:

InZ = sum of all topologically distinct connected diagrams consisting of s-mer diagrams with s =1,...,00
and fief bonds between pairs of hypercircles in distinct s-mer diagrams.

The procedure for obtaining the expression for p,(1) from In = remains unchanged.

The diagrams appearing in the Z expansion of the singlet density p,(1) can be classified with respect
to the number of fI?f bonds associated with the labeled Z,(1) hypercircle. We denote the sum of the
diagrams with ig < mI“< associating bonds connected to the site K (K = A, B, C,...), which belongs to the
particle of species a as piiA:BiB:Cicnu(l). Any site K, which is connected to ix > ml‘é associating bons, will
be denoted as Km% In what follows we will use also a condensed version of the notation, i.e.

PﬁiA,BiB,c )= p?A:iB:iCy-~-(l) = pfi}(l), (2.5)

i

where {i} = i4,ip,ic,.... The set {i} with all indices, except one index ig, equal 0, will be denoted as ik,
ie.{i}=0,...,0,ix,0,...,0 = i, so that for any quantity x{“l.} we have

a _ .a _ ..a a
Xy = %0,...,0,i,0,..,0 = *Ki = Xig - (2.6)

Thus p,(1) can be written as follows

mg,mg... {m}
pa) =Y 0% 5 c.. (D= oM. 2.7)
iaip.=0 AEC {i}=0

2.2. Topological reduction

The Erocess of switching from the activity to a density expansion goes in the same fashion as in
Refs. IEL ,]. However, to proceed it is convenient to use an operator form of notation. The operators
are introduced in a manner similar to that presented in references [EL ] to which we refer the reader for
more details. We associate with each labeled ! hypercircle an operator eg.} (1) with the following proper-
ties:
a — 3 H a
e{l.}(l) =0, if any ix >myg,
e?l.}(l) =1, if all ix=0, (2.8)
et (Det (=€ ., (D),
i D {]}( ) {H]}( )
where {i + j} =ia+ ja,ig+ j ic+ jc,.... The one-point quantities, which, for convenience, are denoted
by x{“i}, can be presented as illustrated below:
{m"}
2. — a a
%a(1) = {;oe{i}(l)x{i}(l). (2.9)
=

The operators e{“i} are straightforward generalization of the operators introduced earlier [E|, B, |E]. Thus,
the rules of manipulation with the new quantities X, are similar to that discussed before. In particular,
the usual algebraic rules apply to these quantities and analytical functions of %, are defined by the cor-
responding power series. Similar, as in references IEL E, ], it is convenient to use the angular brackets
to specify the operation

(Xa) = X{ppa - (2.10)
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In the case of several labeled circles the subscripts on the brackets denote the circle to which procedure
(2.10) is to be applied.
Analyzing the connectivity of the diagrams in p,(1), at a labeled Z,(1) hypercircle we have

0a(1)/Z4(1) = exp [Ca(D)], (2.11)

where c{“i}(l) with {i} # {0} denotes the sum of diagrams in p?l.}(l)/ pﬁ)}(l) for which the labeled 1 hyper-
circle is not an articulation circle. Similarly c{%} (1) denotes the sum of diagrams in pg)} (1)/z,(1) for which
hypercircle 1 is not an articulation circle. Elimination of the diagrams containing field articulation circles
can be achieved by switching from an activity to a density expansion. To do so we adopt the following
rule: each field hypercircle Z,, with bonding state of its sites represented by the set {I}, in all irreducible
diagrams ¢, is replaced by a O’?j} hypercircle, where jx = myg — Ix (K = A,B,...) for mg — Ig > 0 and
jx =0 for mI“< — Ig < 0. The new quantities U?l.} (1) are connected to the densities p{“l.} (1) via the following
relation:

{m}
Ga(l)=pa(l) ) €f(D). 2.12)
{i}=0
a -1
This relation can be inverted expanding [Z{{Zig eg.} (1)] into a power series, i.e.
pa) =6, TT [1-€,m]. 2.13)
K=A

Now the diagrammatic expansions for c{“l.} can be expressed in terms of the irreducible diagrams. To
present this result in compact and convenient form we introduce a sum of the diagrams ¢© defined as
follows:

c© = sum of all topologically distinct irreducible diagrams consisting of s-mer diagrams with s =1,...,00
and fier bonds between pairs of hypercircles in distinct s-mer diagrams. All hypercircles are field circles
carrying the o-factor according to the rule formulated above

a
{m®—i}

©)
a oc

ct = —.
{i} a
00 pa_iy

a .

Functional differentiation of ¢”’ with respect to & gives an expression for iy

(2.14)

2.3. Extended thermodynamic perturbation theory for central force associating
potential

Now we are in a position to rewrite the regular one-density virial expansion for the pressure P in
terms of the density parameters ¢ ,(1). Following the scheme, proposed earlier , B], EL ] we have expres-
sion for the pressure in operator form

ﬁPV:Z[(&a(l)[l—éa(l)])d(1)+c(0) (2.15)

and explicitly
{m}

prv=-3 [ [pa(l)— 2 Oy Dy ()
a

{i}=0

d) +c9, (2.16)

where V is the volume of the system. Similarly, as in [EL B] one can verify that these expressions satisfy the
regular thermodynamic relation p, = S0P /0,4, where o, = [ p,(1) d(1) and u? is the chemical potential.
This can be achieved by taking a variation of (or 2.18)) and combining .11), 2.13) and (Z.14). The
corresponding expression for Helmholtz free energy is

pl (1) {7
ﬁA:Zf pa(1)In + Y 0y Wk )] d) -, (2.17)
a Ao iz
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where A, is the thermal de Broglie wavelength. This expression is derived using the regular thermody-
namic expression for Helmholtz free energy A=Y, N,utq — PV together with relation

a (1)
2o d(), (2.18)
Aq

BNapia =fpa(1) - (D)

which follows from @.I1), written for pg)}. Here N, is the number of particles of species a in the system.
Helmholtz free energy in excess to its reference system value A, is obtained by subtracting corre-
sponding expression for Af from .17, i.e.

BA-Ae) =Y f pa(D)n ) 2.19)
a

pl (1) {m%}
B4 Y 0fey e )| d) = (@ -
pall)  iZo

where cr(gi is the corresponding sum of the diagrams for the reference system. Ordering the virial expan-
sion (2.19) with respect to the number of associating fx; bonds and neglecting the terms with more than

one associating bond we have

1 R
¢ —c% = 5 Y f 82126 a(1) fup (12)65(2))12 (1) (2) (2.20)
ab
and
Ca) = (D=3 f 82 (12)(fup(12)6 4(2))2 d(2), 2.21)
b

where gr‘z?(IZ) is the reference system distribution function and
far(12) = %eg (W fEPa2el @. 2.22)

Due to the single bond approximation c‘z. = 0 for all values of the set {i}, except for {i} =0 and {i} = ix
with ix = 1. This property together with @jﬁ]) yield the following relations:

cg, (1) = p, (D/pip (1) (2.23)
and .
el (D) 1 ' 1 [pg M]*
= [t ] =TT — | =2 , for  ixeli). @.24)

The set of relations (Z.200, (2.21) and defined all the quantities needed to calculate the Helmholtz
free energy of the system (2.19), provided that the properties of the reference system are known.

Finally it is worth noting, that the ETPT-CF theory developed here reduces to the TPT1 proposed by
Wertheim ], if for all sites single-bonding condition mg = 1 is assumed. In the other limiting case of
only one site per particle the ETPT-CF will coincide with the TPT-CF developed earlier [EL , .

2.4. Extended TPT-CF for two sites with double-bonding condition

The theory presented in the previous section is quite general and can be applied to a number of
different situations. However, in the present study we are interested in the version of the theory for
the model with two sites both of which can be bonded twice. More specifically, we are interested in the
extension and application of the theory to the study of the phase behavior of polydisperse dipolar hard-
sphere mixture.

We assume that each of the particles in the system has two doubly bondable attractive sites, A and B,
i.e. we have: M, =2 and mﬁ = mg. We also assume that attractive interaction is acting only between the
sites of the same sort. Using these suggestions, relations @.I1) and 2.12), and taking into account that the
system is uniform, the density parameters Uﬁz B, = Pa aﬁl B, = &ﬁl and Uﬁz B, = &gl a can be expressed in
terms of ¢,

a2
1+ (K Bl)

1+ (g, ) : (2.25)

_ - _a
Pa= 4UAOBO
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- 1 2
0a, = EUZOBokil 1+ (Kﬁl) : (2.26)
~a _ a a a 2
I8 = 594080 By 1+ (KAI) ' 2.27)
where K takes the values A and B and KI“<1 =1+ CI%' These two equations give
a a 2 a 2 !
0%, = 4pa ] |1+ (x5, ) | [1+(x8) |} (2.28)
and 5 B
PakKg
~a _ 1
Ok, = T (2.29)
1+ (KKI)
In turn, using 2.21), for 1<I“<1 we have
kg =1+ I 6%, (2.30)
b
where
¢k = f g*(12) f¢2(12) d(2). 2.31)

Combining (2.20), (2.29) and (2.30) the expression for the Helmholtz free energy (2.19) can be written in
terms of 1<I“<1 parameters

A= Aret PlhoB 1-x4 1-xj
,BTre:Zpa In ——= —«x§ — K ——= | (2.32)
a Pa 1+(1<Z) 1+(1<1‘§)
1 1
which satisfy the following set of equations:
2phkz
_ 1 rab
K =1+) ——Igx. (2.33)
b 1+ (th(l)

Chemical potential Ay, and pressure AP in excess of their reference system values can be obtained
using standard thermodynamical relations:

o _OlA=Awp V]
Na_ﬂref_ T

A— Aref

) P_Pref:ZPa (l",’a_l'traef)_ v (2.34)
a

Finally, the average size of the clusters, which appear in the system, can be characterized by the
average length of the chain L formed by either A-bonded (K = A) or B-bonded (K = B) particles. Follow-
ing [Ié, [14] we defined this quantity by the following expression

a a a
_ Z“ (aK,end + aK,mid + aO)

Lk
Y., (al‘l(end/2+ ag)

) (2.35)

where aI“( end 18 the fraction of singly K-bonded particles (fraction of the chain ends), aI“( miq 1s the frac-

tion of dohbly K-bonded particles (fraction of the chain middles) and ag is the fraction of nonbonded
particles. For these fractions we have

a _ ~a a a — ~a a __ a
POend =04 ~940B>  P¥Amid =P ~T4» P =0 B, (2.36)
Substituting these expressions into expression for L, (2.35) and using (2.28), (2.29) and expression for

a
UAOBZ’

(«gl)z +1], @2.37)

a 1
UAOBZ - EanAOBO
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we get the final expression for L, in terms of KI“q:
a 2 a 2
L+ (x2,) ] [1_(%)

a 2 a 2
1+(1<A1) 1+(KB])

where if K = A then K = B and if K = B then K = A.

, (2.38)

LK:ZPa

a

3. Liquid-gas phase behavior of polydisperse dipolar hard-sphere fluid

3.1. The model

We consider a polydisperse dipolar hard-sphere fluid mixture with a number density p and a poly-
dispersity in both the hard-sphere diameter o and the dipolar moment d,,. We assume, that the dipole
moment is proportional to the particle volume, i.e., d, ~ o3, Thus, the type of the particle is completely
defined by its hard-sphere size and hereafter we will be using o instead of the indices a, b, ... to denote
the particle species. We also assume that hard-sphere size of the particles is distributed according to a
normalized distribution function F(o) = 0,

[e e}

fF(O') do=1. (3.1)
0

Interaction between particles of species o7 and o in our system is described by the following pair poten-
tial:
U(r,0102) = Uns(r,0102) + Uqa(12,01037), (3.2)

where Uyg(r,01072) is the hard-sphere potential and Ugq(r,01072) is the dipole-dipole potential, given by

d,u (Ul)dy (02)
3

Uga(12,0102) = — [2cos ¢ cos @y —sing; sing, cos (1 — ¢2)] . (3.3)

Here ¢ and ¢, denote the angles between the dipole vectors and the vector that joins the centers of
the two particles, and ¢; and ¢, are the azimuthal angles about this vector. To proceed we have to
split the total potential into the reference and the associative pieces. We assume that the refer-
ence part of the potential is represented by the hard-sphere part Uyg(r,0102) and the associative part
by the dipole-dipole potential Uyq4(r,0102). At the contact distance 012 = (01 + 02)/2, the latter poten-
tial has two equal potential minima of the depth —2c7lp(01)du(02)/0“;‘2 at “nose-to-tail” configuration
(p1 = @2 =0, @1 = @2 =m). These minima are responsible for the formation of chains of particles in
the system. In addition, there are twice less deep minima (—dH(O’l)dﬂ(O’g)/ 031‘2) at antiparallel configura-
tion with @1 = @2 =7/2, ¢1 —¢2 =m. The latter minima cause the formation of the network connecting
the chains. According to the earlier theoretical and computer simulation studies [IE, @] competition be-
tween the chain formation and network formation defines the existence of the liquid-gas phase transition
in the dipolar hard-sphere fluid. To account for this effect we propose the following splitting of the total
associative potential Uyss(12,0102) = Ugq(12,0102):

Upp(12,0102) = O (p1)O(p2) Uga(12,0102), (3.4)
[1-0(p1)O(p2)] Uaa(12,0102), (3.5)

where O(¢) = H (/2 + @o — @) H (m/2 - o + ¢) and H(x) is the Heaviside step function. Here ¢, plays a
role of the potential splitting parameter. For ¢¢ = m/2 we have that Upp(12,0102) = Ugq(12,0102) and
Uaa(12,0102) = 0. On the other hand ¢¢ =0 gives: Up(12,0102) =0 and Us4(12,0102) = Ugq(12,0102).
In both limiting cases the theory developed will treat the system as a polydisperse mixture of the hard-
sphere chains. For the intermediate values of ¢, the energy minima at “nose-to-tail” configuration are
included into Uga(12,0102) and network forming minima appear in Ugg(12,0102). We have chosen
here ¢ = n/9. With this value of ¢y, our results for monodisperse version of the model are in good
agreement with the results of the previous studies , l161.

Uaa(12,0107)

23605-7



Yu.V. Kalyuzhnyi, S. Hlushak, P.T. Cummings

3.2. Thermodynamic properties

For a general multicomponent dipolar hard-sphere mixture, thermodynamic properties can be ob-
tained using the solution of a set of nonlinear equations and an expression for the Helmholtz free
energy (2.32). However, even for the multicomponent case, solution of this equation rapidly becomes in-
volved as the number of components increases. As we proceed to the polydisperse case, solution of the
polydisperse version of equation (2.33) becomes intractable, since now we have to deal with the following
integral equation:

Kk (02)Ikk(0102)

do,, (3.6)
1+ ‘K%(O’g) 2

Kk (01) =1+ZPfF(Uz)
0

where we have dropped the lower index 1, i.e. kg, (0) = kg (0). In order to solve this equation we pro-
pose here to interpolate the key quantity of the theory, the volume integral Ixx(0102), using a sum of
Ny Yukawa terms. Since the reference system pair distribution function g.(r,0102) is independent of
mutual orientation of the particles for the integral Z.31) we have

o0
Ixk(0102) = 471[ 12 gret(1,0102) frcx (1,0102) dr, 3.7
0

where _f[(K(r,O'lo'z) is an orientation averaged Mayer function for associative potential Ugx(12,00). We
assume, that fxx (r,0102) can be represented in the following form:

- 1 Ny (n)
frx(rono2) = —3_ AP (o) AP (0p)e™ % T7012), (3.8)
Tr 4

Parameters Agf) (o) and zg‘) are obtained using the interpolation scheme, which is presented and dis-
cussed in the appendix A. Using (3.7) and (3.8), we have

Ny

Ixk(o102) =Y. AP (01) AL (02)GY (0102), (3.9)
n

(n)
where Gg‘) (0102) = f0°° re %x " gep(r,0102)dr is the Laplace transform of the radial distribution func-
tion gref(r,0102). We will use here Percus-Yevick approximation for the hard-sphere radial distribution
function, since the analytical expression for its Laplace transform is known ]

(n) T /A
e & 26 (gioy) = —0—— z(")(a +0,0 —m)+1+—m
x (0102) 2D Kk (012 + 0102721 oA
(n)
nz
ﬁ (m%)z —2012m%f)1 + 0'10'277’1%2)) , (3.10)
where
27 1 1
(n)  _ 2 (n)
DK = A —m(l-’rzﬂmg) (mK,0+Emz)
2K
m 1 ) (n) )2
-2 AmK1 + Zn My (mg + ZmK,O) - (mel) , (3.11)
A=1-mmgs/6. 3.12)

Here m; are the moments and mg)l are the generalized moments of the distribution function F(o). Ex-
pression for these moments can be symbolically presented as follows:

m:fm(a)F(U) do. (3.13)
0
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Hereafter all the quantities denoted as m with certain set of indices will represent the generalized mo-
ments defined by (3.13). Corresponding expressions for mi (o) are collected in the appendix B. Insert-
ing into equation and using (3.10), we find

Ny
Kx(@)=1+p) Z CPa (), (3.14)

Vlj—

where CI(("} satisfies the following set of equations:

0o 2 0] 0]
. 1+pX X5, Q .(O’)C ;
c}?}:zfaf—lF(a)A}g”(a) = K > do. (3.15)
s 1+ [1+pz,z§:19”’ (a)c(”
Here
P @) = AL @) (PP +PY), ol @)= AP ©) (oPE+PY), (3.16)
A b4
P = ——[1-Zm? 3.17
K1 2z}§”D§§”( A Kl) (3.17)
b4 1
P ( mz+m(”)) (3.18)
K2 22 D |2 K0
pw = 2 [1, 2 = (ms+ 2 m)|. (3.19)
K,3 2 K K,2 :
’ (z(n)) pm 2A
K K

Thus, solution of the integral equation (3.6) for the unknown function x g (o) now is reduced to the solu-
tion of a set of equations for 4 Ny unknown constants C(") This solution can be used to calculate K(”) (o),
which in turn can be utilized to calculate thermodynam1cal propertles of the system via Helmholtz free
energy (2.32). Generalizing the expression for Helmholtz free energy (2.32) for a polydisperse system, we
have

A- A, v 1 B 1-
p— ef:pfF(a){—an I (4@ +1] - Z kk(0) KK(U)}dU. (3.20)

0 K=A K% (0)

Now we can use the standard relation between Helmholtz free energy and chemical potential (2.34),
generalized to polydisperse case

ﬁ (5 {A_Aref/ {/ }
e = ® - 3.21
B [,u(a) u f(a)] 5 F©0)] ( )

where /6 {F (o)} denote functional differentiation with respect to the distribution F(o). We find

B 1(0) = pret(0)] = %—lnilﬁfl K40 +1] - Xi:KK(U);Z—gg

Ny B 5P 5 sc.

+;K;A g u F(K)f ]ZIV%)JTE)] . (3.22)

Here

Hfr?)l _ %( (nO)C[n) (nO)C(n)) (3.23)
= lmer oot wh = S(noec)en. o
W= %[( (20) _ (n))P%“( 10 pC(n))P%)s ’ (3.25)
V}(n)z _ %[( (0) _ (n))P%>1+( (0) pC(")) ;{n)2 (3.26)
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functional derivatives 6P[") /6F(0) and 6D(")/6F (o) are presented in the appendix B and functional

derivatives 6 C(") /6 F (o) can be obtained from the solution of the set of linear equations, which follows
from (3I5) upon its functional differentiation with respect to F(0), i.e.

(K)
2 .
> M) 6F—(L) =R¥), i=12 K=A4B, (3.27)

j=1

where 6C§.K) /6F (0’)] =0 C;("} /6 F (o) and the elements of the matrices ME.I? and RE.K) (o) are collected in
n , ,

the appendix B.
The pressure expression follows from (2.34), generalized to the polydisperse case

r A-A
P—Pri=p f F(0) [(0) = piret(0) ] do — Tref . (3.28)

Using this expression together with the expression for the chemical potential (3.22), we find

B (P = Prep) = my, + pZ Z Zu“” v +Zv§?’ st (3.29)
T KrA\j=1 I
where
0 (n) S (n)
(n) Kj (n) _f K.j
do, S =|F do 3.30
e Of (0)6F(U) o K,j ) (o ) Fo) (3.30)

Expression for the integral /- (”) . is presented in the appendix B and integral S(”) can be obtained from the
solution of the set of linear equatlons

ZMU?SEK) =¥, i=12  K=AB, (3.31)
which follows from the set of equations (3.27). Here [S(K) ] ] )_and the elements of the matrix EEK)

are presented in the appendix B.

Expressions for the chemical potential and pressure are the final expressions to be used
in the phase equilibrium calculations. The properties of the reference system (chemical potential pef(0)
and pressure Py¢) are described here using polydisperse versions of the Mansoori et al. [18] expressions

m o
P o) = [(0—2) (3 20 —)—1 INA+my |1+ 22 )
re ms ms 3A
1 2 my1+A n (1 1 m3
p————+—nmp|-mp+= +omj ¢, 3.32)
ZA 3 mg A A 2 3 msA
1 n? 31
IBPref — P+2— 1m2+12A2 g (g) AZ mgmgl (3.33)

where ,u[e") (o) is the reference system chemical potential in excess to its ideal gas value.

3.3. Phase equilibrium conditions

One can easily see that thermodynamical properties of the model at hand obtained above are defined
by the set of the finite number of the distribution function moments, i.e., four regular moments (m;,

1=0,1,2,3) and 1+ 10Ny + 3Ny (Ny +1) generalized moments (m, m (”) m%’(j).) m[";"), i=012j=

0,1; [ = 0,1,2; K = A,B). Note, that m["m) mf,(ml”) Thus, the polydlsperse mixture of dipolar hard
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spheres treated within ETPT-CF belongs to the class of truncatable free energy models (see [E] and ref-
erences therein). This property allows us to map the phase coexistence relations onto a set of nonlinear
equations for the unknown moments of the daughter distribution functions (19).

We assume that at a certain density pp and composition Fy(o) the system separates into two phases
with densities p; and p», and compositions Fj (o) and F (o). Hereafter the lower index 0 refers to the
parent phase and the lower indices 1 and 2 refer to the daughter phases. At equilibrium these quantities
take the values, which follows from the phase equilibrium conditions, i.e.: (i) conservation of the total
volume of the system, (ii) conservation of the total number of the particles of each species, (iii) equality
of the chemical potentials of particles of the same species in the coexisting phases, (iv) equality of the
pressure in the coexisting phases. These conditions finally lead to the following set of relations [é

Fa(0) = Fy (0) Qa (03 po, p1, P25 [Fal), (3.34)
Pi(p1;[F1]) = P2 (p2; [F2l), (3.35)
fFa(O') do=1, for a=1 or a=2, (3.36)

0

where
Po (pg - ‘01) [l _6111 +61a exp (ﬁA,LL(eX))]
0;00,01,02;[Fal) = , (3.37)
PaQa(73po.p1,pzilFal) po—p1 - (po— p2) exp (BALE)

A =y (0,025 [F]) - 1 (0, p1; F11), (3.38)

pffx) is the excess (over the ideal gas) chemical potential of the particle of species ¢ in the phase a, and

[...] denote functional dependence. The relation between Fy(o) and daughter phase distribution function
F,(0),1i.e., equation (3.34), follows from the phase equilibrium conditions (i)-(iii).

Relations (3:34)-(3.36) represent a closed set of equations to be solved for the unknowns p, and F, (0);
this set has to be solved for every value of the species variable o. However, since thermodynamical
properties of the model at hand are defined by the finite number of the moments we can map this set of
equations onto a closed set of 10 + 28 Ny + 6Ny (Ny + 1) algebraic equations for pg, Cl(gf)l(“), C](C’Z(“) and

moments m](c"‘), mL“), m{m@ 0@ mglm)(“) in the two coexisting phases (a = 1,2). We have

K,i K,j
m;g(l) = Pa f mk(U)FO (0) Qa (U, Po; {Xl} ’ {XZ}) dU) k= 0, 1)2,3, (339)
oo
my = pa f m{P () Fy (0) Qe (0, po; (X1}, 1X2}) do, (3.40)
oo
m@ = pg f m@ () Fy (0) Qa (0, po; (X1},{X2}) do, =012, (3.41)
0
oo
mg )@ = f 7@ (©0)Fy(0)Qa(0,po; (X1}, 1X2}) do, =01, (3.42)
0
oo
mg@ = f T () Fy (0) Qa (0, po; {X11, 1X2}) do, 1=0,1,2, (3.43)
0

where K = A, B and {X,} represent the unknowns of the problem, i.e.

Xe} = {parm®, m®, m@@, mEO@, merm@ g =12,

The remaining 2 + 8 Ny equations follow from the equality of the pressure in coexisting phases (3.35),

Pi(p1;1X1}) = P2 (p2;{X2}), (3.44)
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from the set of equations for Cgl)l(“) and C}(")Z(“) (3.15) and from the normalizing condition (3.36) for either
phasea=1lora=2,
o0

fFo (0) Qqa (0, p0; 1X1},{X2}) do =1. (3.45)
0

Solution of the set of equations GI5), 3.39-(3.45) for a given density po and distribution function Fy(o)
of the parent phase gives the densities p, and distribution functions F, (o) of the two coexisting daughter
phases. The coexisting densities at different densities of the parent phase p defined binodals, which are
terminated when the density of one of the phases is equal to the parent phase density pg. These termina-
tion points form cloud and shadow coexisting curves. These curves intersect at the critical point, which
is characterized by the critical density per = p1 = p2 = po and critical temperature T¢;. The cloud-shadow
curves can be obtained as a special solution of the general coexisting problem, when the properties of
one phase are equal to the properties of the parent phase: assuming that the phase @ = 2 is the cloud
phase, i.e. p2 = pg, and following the above scheme we will end up with the same set of equations G15),
(B.39-3.45), but with p, and F, (o) substituted by po and Fy (o), respectively.

4. Results and discussion

In this section we present our numerical results for a liquid-gas phase diagram of polydisperse dipolar
hard-sphere fluid at different degrees of polydispersity. For a size distribution function F(o) we have
chosen the beta distribution given by

F(v+p—1) (1-x)H 1 x!

Hes Hou-0)H(@=04), 4.1
@) TWMC() (Ou—0a) (Ou-0)H(o-04) @1
where )
x:ﬂ, VZI_UO_&O, 'u:(~i_1)vy 6_0:0’0—0‘03’ €2
Oyu—0¢g Dg (o) Ou—0y4
(o™ ; .
00=(0), Do=-—5-1 (o >=fda oF(0). (4.3)
o

0

Here 0, and o4 define the range of values for o. In our calculations we have chosen o, = 1.29470 and
04 =0.850.

0.19 T T T T T T

0.185 _
0.18 - _
0.175 _

T* 017 _

0.165 cloud shadow

0.16
0.155
0.15
0.145 [v
0.14 &

0 005 01 015 02 025 03 0.35

P

Figure 1. Predictions of the ETPT-CF for the phase diagram of polydisperse dipolar hard-sphere mixture
including cloud and shadow curves (as labeled), and critical binodal (dashed line) at Dy =0.1in p* vs T*
coordinate frame. Dotted line and empty square represent ETPT-CF binodal and MC [16] critical point of
monodisperse dipolar hard-sphere fluid, respectively.
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0.19 I I I I 0.19 I
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T* 017 - 4 T* o017y
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0.14 & . . ’ 0.14 & ' . . .
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Figure 2. The same as in figure[[lat Dy = 0.2. Figure 3. The same as in figure[flat D, = 0.3.

In figures[TH3]the liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid at different de-
grees of polydispersity Dy = 0.1, 0.2, 0.3 is presented in 7*vs p* coordinate frame. Here 7%= kg T/ dﬁ(oo)
and p* = pag. We show the cloud and shadow curves and critical binodal. In addition, for the reference
we include Monte-Carlo predictions for the critical point and ETPT-CF predictions for the phase diagram
of monodisperse version of the model [16]. One can see that upon increasing the Dy, the region of the
phase instability increases with the critical point shifting to higher temperatures and densities. For larger
values of Dy (Dy = 0.2, 0.3), the low density part of the cloud curve and the high density part of the
shadow curve become almost vertical. For D, = 0.3 the cloud and shadow curves do not intersect. At
T* =0.1715 the cloud curve has a cusp (denoted by the arrow in figure[3) and shadow curve has a jump
discontinuity. We believe that at this temperature there is a three-phase equilibria, when the mother
phase is in equilibrium with two phases on two branches of the shadow curve, one with slightly lower
density and the other with slightly higher density, respectively. The cloud and shadow curves for the
whole set of values for D, are collected in figured In figures[5land[6]we present the average A-size Ly

0.19 T T T T
0.185 | R -
0.18 | -
0.175 ' :

T* 017
0.165
0.16 -
0.155 s
015 /7
0.145 +//

I
1
I
I
]
I

K 1
0.14 W21 I I I L i
0 0.05 0.1 0.15 >9’2 0.25 0.3

P

Figure 4. ETPT-CF cloud and shadow curves for polydisperse dipolar hard-sphere mixture at Dy = 0.1
(solid lines), Dy = 0.2 (dashed lines) and D, = 0.3 (dotted lines).

~—_

S

0.35

and B-size Lp of the clusters, respectively, along the cloud and shadow curves and along the binodals
for both monodisperse and polydisperse (with D, = 0.2) versions of the model. For Lx we have used the
expression (2.38), extended to account for polydispersity, i.e.

1-[14x% @] [1-%% @] 4= (1-xx, @) [14%% @] -1

(4.4)

LKzfdaF(U) de’F(O’)

(143 @] [1+1 @] (1452 @] 1453, @]
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0.14 L |":.||||| s b il Ll IR TIT

1 10 100 1000 10000
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Figure 5. Average A-size of the clusters along
the cloud and shadow curves (as labeled), along
the critical binodal (dashed line) for polydisperse
dipolar hard-sphere fluid at Dy = 0.2 and along
the binodal for monodisperse version of the model
(dotted lines).

0.175
0.17
0.165

0.155
0.15
0.145

| i\

0.14 i PE\ TR R A Y | L N1

1 10, 100
B — size

Figure 6. Average B-size of the clusters along
the cloud and shadow curves (as labeled), along
the critical binodal (dashed line) for polydisperse
dipolar hard-sphere fluid at Dy = 0.2 and along
the binodal for monodisperse version of the model
(dotted lines).

From these figures one can see that clusters of larger sizes occur in the liquid phase, in comparison with
the gas phase. A decrease of the temperature causes an increase of the cluster sizes in the liquid phase and
a decrease in the gas phase. With an increase of polydispersity, Lx along the cloud curve does not change
much. However, corresponding changes along the shadow curve are more substantial, here the cluster
sizes increase with an increase of polydispersity. In figure [7lwe show the ratio of A- and B-sizes Ls/Lg.
As one would expect L4 is substantially larger than Lg, thus a chain structure of the formed clusters
prevails, with chains mutually connected via B-bonds. This difference in L4 and Lp is larger in the liquid
phase and increases with polydispersity increase. Similarly, as before, the temperature decrease causes
L4/Lp decrease in the gas phase and increase in the liquid phase. Figures[BHI0 and [[Tlshow distribution
functions of the shadow curve and on the critical binodal at different temperatures. According to these
figures the larger size particles always fractionate to the liquid phase and smaller particles tend to move
to the gas phase. With an increase of D, and a decrease of the temperature, these fractionation effects
become more pronounced. Finally in figure [[2lwe show distribution functions of the two branches of the
shadow curve at T* = 0.1715 and mother phase distribution function.

0.175
tcloud
0.17

0.165
T* 0.16 -
0.155
0.15 -
0.145

0.14 L
1

1 11 IIIII
. 100 1000
A — size/B — size

Figure 7. The ratio of the average A and B sizes of the clusters along the cloud and shadow curves (as
labeled), along the critical binodal (dashed line) for polydisperse dipolar hard-sphere fluid at Dy = 0.2.
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Figure 8. Distribution functions of the gas (dotted lines) and liquid (dashed lines) phases along the shadow
curve for T* = 0.16, 0.15, 0.14 and mother phase distribution function (solid line) at Dy = 0.1. With the

temperature decrease distribution functions of the liquid phase shifts in the direction of larger o and
distribution functions of the gas phase shifts in the direction of smaller o.
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Figure 9. The same as in figure [§ for T*
0.17, 0.16, 0.15, 0.14 and Dy =0.2.

Figure 10. The same as in figure [§ for T* =
0.18, 0.17, 0.16, 0.15, 0.14 and Dy =0.3.
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Figure 11. Distribution functions of the gas (dotted lines) and liquid (dashed lines) phases along the critical
binodal for T* = 0.16, 0.15, 0.14 and mother phase distribution function (solid line) at D = 0.2. With the
temperature decrease, distribution functions of the liquid phase slightly shifts in the direction of larger

o (almost coinciding with the mother phase distribution function) and distribution functions of the gas
phase shifts in the direction of smaller o.
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Figure 12. Distribution functions on a shadow curves at T* = 0.1715 for three phases at equilibria for
Dy =0.3.

5. Conclusions

In this paper we propose an extension of our TPT-CF approach to account for several associating
sites with the possibility of each site to be multiply bonded. The theory is applied to the study of the
liquid-gas phase behavior of a polydisperse dipolar hard-sphere fluid with polydispersity in both hard-
sphere size and dipole moment. It is assumed that the dipole moment is proportional to the volume of
the particle. We present a full phase diagram, which includes cloud and shadow curves, binodals and
distribution functions of coexisting phases and discuss the effects of polydispersity on their behavior.
According to our analysis, polydispersity extends the region of the phase instability shifting the critical
point to higher values of temperature and density. For lower values of temperature, polydispersity causes
strong fractionation effects, with the larger size particles always tending to the liquid phase and the
smaller size particles tending to the gas phase. At relatively high values of polydispersity, three-phase
coexistence was observed.

Appendix A

Orientationally averaged Mayer function fKK(r, 0102) was fitted empirically as a sum of Yukawa-like
terms

= ) i e~ (Do)
fmroiop) =3 AR (0, T) A (0, T) — (A1)
n=1 Zm (D)1

where fi = fAA and f> = fBB, i,j denotes the species of the particles, o;; = (ai +aj)/2 N = 6, and

A(,Z) (o,T) = % \/ (")(T)/ ﬂA(") (o, T). The latter quantities depend on the particle size and temperature
and were fitted by “polynomlally exponential” functions of different forms for first and second integrals.

The fitting was performed for the following range of parameters: o € [0.85,1.2947] and T € [0.13,0.2].
The functional dependence of A” (o;,T)and z(") (T) was chosen differently for first and second integrals.
For the first integral

A, 1) = al) (D) +al) (D) x+aly (T)x* +al)) (T)x*

(1) %%+ aly (T) x° + aly (T) x° (A.2)
where x = (0~ 0 min) /(A0), Omin = 0.85, Ao = 1.2947 — 0 min = 0.4447 and )} (T),...,al)} (T) are given
below

ahy = et (B, 1 b0 y+ b 5, for i=1,2,34,
aly(ry = (b0, b,y b0 by, for i=5678,9, (A3)
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where y = Tiyin/ T and Tipin = 0.13.
The temperature dependence of zi”) (T) reads

zi")(T) ( S)1+w(nl)2y+wg)3y +w(nl)4y) (A.4)

For the second integral, the functional dependence of A(Z) (o, T) and z(Z) (T) is as follows:

A;") (o) = (2) 1+ a(2)2x+ a(Z)sx + a(zix + a(Z)s exp |a (Zzsx+ a(2)7x + a(Z)Sx + a%x
zé")(T) = (w(nz) (2)y+w(2)y +w(2) ewn5y) (A.5)
where
a? = e"n? (b2, + b2 y+ b2 e'nis?),  for i=1234 (A.6)
and
a2, = (b2 1+ b2,y b2 P+ b2, i), for 125,678, a7

The x and y are the same as for the first integral.

The fitting procedure consisted in finding suitable b, ; ; and w arameters for first and second in-
tegrals by means of differential evolution optimization algorlthm - ]. The objective function in both
cases was a sum of square deviations of the area under fy,(r,0;0 ;) as a function of r, and contact value
fm(r=0ij,0:0), from their fitting representations for different values of o;, 0 ; and T'. The deviations in
the objective function were calculated for ten different temperature values (uniformly distributed from
0.13 to 0.2) and twenty different o values (also uniformly distributed from 0.85 to 1.2947). For illustra-
tion purposes in figure [[3lwe present a comparison of the exact values of the orientation averaged Mayer
functions fA Alr,0102) and fB g(r,0102) with their fitted versions at T* = 0.153 and four different values
for the hard-sphere size: 01 = 02 = 0.8840, 1.0210¢, 1.1580, 1.260(. The numerical values of the fitting
parameters by ; j and w, ; can be obtained from the authors upon request.
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Figure 13. Comparison of the exact values of the orientation averaged Mayer functions f4(r,o102) (up-
per panel) and fgg(r,0102) (lower panel) with their fitted counterparts at T* = 0.153 and 01 = 03 =
0.8840( (diamonds), 1.0210 (triangles), 1.1580( (squares), 1.260 (circles).
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Appendix B

mio) = o, (B.1)
mi@ = olo(z0), (B.2)
201 AW (o) 2k2.(0)
me) = -—= -—XK [1-xk(0)], (B.3)
K, 2 2
’ 1+KK(0') 1+1<K(0)
201 A (07 AV (o) 2k2.(0)
ngmioy = AONTO), 2o | ®
’ 1+1<K(0) 1+KK(0')
B
1-xg(o) | 1-xg(o
mu0) = Y [1+2%(0) f( ) f( ) (B.5)
K=A 1+x%(0) | 1+x%(0)
(n) (n)
OPk.1 = P 710[02+ (z(") U)]+Zz(”)P(")—6DK (B.6)
5F(0) 220 D e K KI5R(@) [ ‘
K2 p [ 2 ( (n) )] (n) p(n) K
= n|o“+2¢|z, ,0|| -4z, P, o ————— ¢, B.7
5F(0) 44;”1);;”{ AR K K25 (o) ®7
SPy 2 2 5D
ks p naz[—a+z§<”)(p(zg),a)]—2(25(")) Pyt (B.8)
5F(0) 220")2D 3 S 8F(0)
3D Losf w3 ( m,1 1, ()
3F o) = EJTO' {mK'l—@(mK'o+5mg)—Aalga +<p(zK ,0’)]
1 2 (n) ] 1 ( 1 1 (n)
—|-0 +(p(z ,0’) — |1+ =-mmg|+-—1mm
[2 K z0 2 27 K2
_anZ 2 (my+2m™ ) + Zom™ o (21,0 (B.9)
277 P %k 2 ko) T 59 Mg 1P\ O (0 :
1
¢(z,0)==(1-z0-¢€"), (B.10)
z
(K) _ (m) ___(nm) (m) __(nm)
[Ml,l o = Onm = Peymie, U Py gmy g,
(K) _ (m) ___(nm) (m) _(nm)
[MI,Z wm = PraMio tPraMi)
(K) _ (m) ___(nm) (m) _(nm)
[MZ,I wm = “PraMia tPrzmir
(K) _ (m) _(nm) (m) . _(nm)
[Mz,z o = Onm = Pryme Py my,
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da3oBa noBeAiHKa pigMHa-ras noniancnepcHoi cymitui
AVNONBbHUX TBepAUX cep: y3arasbHeHa TepMOgUHaAMiIYHa
Teopis 36ypeHb A5 acoLiaTUBHOrO NoTeHUiany Tuny
LeHTpanbHUX CUN

t0.B. Kantoxunif, C.1. FnyUJaKm', M.T. KamMinré2

1 IHCTUTYT $i3nKM KOHAEHCOBaHMX cucTeMm, YKpaiHa, 79011 Jibsis, Byn. CBEHLiLbKOrO, 1
2 YHiBepcuTeT BaHaepbinbaa, TeHHeci, 37235 Hewwsin

3 IHcTMTYT Teopii HaHOMaTepianis, LieHTp Hayk No HaHoda3HMX MaTepianax, HauioHanbHa JlabopaTopisi B Oyk
Pigxi, Oyk Pigx, TeHHeci, 37830

MpoBeaeHWA po3paxyHoK $a3oBoi Aiarpamu pifvHa-ras nonigMcnepcHoi cymilli AMNONbHUX TBEPAMX cdep 3
NoNANCNEPCHICTIO K MO po3Mipax TBepAux cdep, Tak i N0 BEANYMHI ANNOAbHUX MOMEHTIB, BUKOPUCTOBYHOUN
y3arasbHeHHs TepMOAMNHaMIYHOI Teopii 36ypeHHs ANA CMCTeM 3 LleHTPasIbHVM XapakTepoM acoLiaTUBHOI B3ae-
Mogii. lna Toro, o6 BCTaHOBUTY 3B'A30K 3 $pa30BOt0 NMOBEAIHKOI (pepoKoNoigHMX AnCnepciid, 6yno 3pobaeHo
NPUNYLLEEHHS NPO Te, L0 AUMONBHUA MOMEHT YaCTUHKW € NPOMOPLiHNI A0 Kyby il AdiameTpa. My npejcTaBu-
N Ta obrosopunu NoBHy $pasoBy Aiarpamy, sika BKIOYAE KPWBI ‘XMapu' Ta ‘TiHi', 6iHogani Ta dyHKuUiT po3noginy
CMiBiCHYOUMX AOYipHIX $a3 Npu Pi3HNX 3HAYEHHSAX NONIANCNEPCHOCTI cMcTeMU. Y BCiX BUNAAKaX, ki 4OCiAxy-
Ba/INCA, NONIANCMEPCHICTb 36inbLUye 06nacTb Ga30BOi HECTabIILHOCTI Ta 3MiLLYyE KPUTUYHY TOUKY B 061aCTb BU-
LMX TemnepaTyp Ta rycTuH. YacTMHKM 6inbLLoro po3mipy 3aBXAN GppakUioHyTb Y pignHHY $asy, a YacTUHKN
MeHLLIOro po3mipy BiAAatoTb nepeBary ra3osiii ¢pasi. Y Bunagky BifHOCHO BUCOKOrO 3HaYeHHS NosigncnepcHo-
CTi cuctemu byno BizMi4eHO HasBHICTb CNiBiCHYBaHHSA TPbOX $as.

KntouoBi cnoBa: T73, acoyirioBaHa piguHa, nonigncnepcHicTs, pepokonoigy, pasosa giarpamm
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