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Spin dynamics in cuprate perovskites
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Results obtained with the use of the t–J model of Cu–O planes and Mori’s projection operator
formalism are compared with data of neutron scattering experiments in lanthanum and yttrium
cuprates. This comparison allows us to interpret the intensive peak at the antiferromagnetic wave
vector observed in yttrium cuprates as a manifestation of excitations of localized Cu spins. The
high-frequency incommensurability detected both in lanthanum and yttrium cuprates is connected
with the dispersion of these excitations, while the low-frequency incommensurability arises due to
a dip in the spin-excitation damping at the antiferromagnetic wave vector. For moderate doping
the dip stems from the weakness of the interaction between the spin excitations and holes near hot
spots. It is conjectured that the dissimilarity of the susceptibility frequency dependencies in yt-
trium and lanthanum cuprates may be connected with different values of the hole bandwidth and
damping in these crystals.
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One of the most interesting features of the inelastic
neutron scattering in lanthanum cuprates is that for
hole concentrations x � 0 04. , low temperatures, and
small energy transfers the scattering is peaked at in-
commensurate momenta ( , ),1 2 1 2/ / � � ( , )1 2 1 2/ /� �

in the reciprocal lattice units 2� � a with the lattice pe-
riod a [1]. For x � 012. the incommensurability param-
eter � is approximately equal to x and saturates for
larger concentrations [2]. The incommensurability
was observed both below and above Tc [3]. The analo-
gous low-frequency incommensurability was observed
also in YBa Cu O2 3 7�y [4]. This gives ground to sup-
pose that the incommensurability is a common feature
of cuprate perovskites. However, for larger frequen-
cies the susceptibility differs essentially in these two
types of cuprates. In the underdoped YBa Cu O2 3 7�y
and some other cuprates both below and above Tc a
pronounced maximum is observed at frequencies�r �

� 25–40 meV [5]. In the momentum space the mag-
netic response is sharply peaked at the antifer-
romagnetic wave vector Q 	 ( , )1 2 1 2/ / for this
frequency. Contrastingly, no maximum at such fre-
quencies was observed in lanthanum cuprates. Instead

for low temperatures and frequencies of several milli-
electronvolts a broad feature was detected [6]. For
even larger frequencies the magnetic response becomes
again incommensurate in both types of cuprates
with maxima located at momenta ( , )1 2 1 2/ /� �� � ,
( , )1 2 1 2/ /� � �� in some experiments [5,7–9]. In
contrast to the low-frequency incommensurability in
which the incommensurability parameter decreases
with increasing frequency, the parameter of the high-
frequency incommensurability grows with frequency.
Thus, the dispersion of the maxima in the susceptibil-
ity resembles two parabolas with upward- and down-
ward-directed branches which converge at the momen-
tum Q and near the frequency �r [4,9].

The nature of the magnetic incommensurability is
the subject of active discussion now. The most fre-
quently used approaches for its explanation are based
on the picture of itinerant electrons with the suscepti-
bility calculated in the random phase approximation
[10,11] and on the stripe picture [9,12].

In the present work we use an alternative approach
for the interpretation of the incommensurability. In
contrast to the stripe picture we do not postulate the
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existence of stripes from the outset, supposing that the
magnetic incommensurability is the cause rather than
the effect of stripes. Contrary to the itinerant-electron
picture we take proper account of strong electron cor-
relations inherent in underdoped cuprates by using the
t–J model of Cu–O planes and the general formula for
the magnetic susceptibility derived in Mori’s projec-
tion operator formalism [13]. In this approach the
mentioned peculiarities of the magnetic properties of
cuprates in the normal state are reproduced including
the proper frequency and momentum location of the
susceptibility maxima.

The Hamiltonian of the two-dimensional t–J model
reads [14]

h t a a J	 
 �� nm n m nm n m
nmnm

s s� �

�

† 1
2

, (1)

where an n n� �	 � | |0 is the hole annihilation opera-
tor, n and m label sites of the square lattice formed
by Cu ions, � 	 � 1 is the spin projection, Jnm and
tnm are the exchange and hopping constants, respec-
tively, | n�� and | n0� are states corresponding to the
absence and presence of a hole on the site, the spin-
1 2/ operators can be written as
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In Mori’s projection operator formalism [13] the
following general formula for the imaginary part of
the magnetic susceptibility can be derived [15]:
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k . In the normal state for Hamiltonian (1) the

parameters in Eq. (2) read [16]
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where � ∼ 1 is the vertex correction [17], J and
C s s1

1 1	  ��

�

�

n n a are the exchange parameter and
spin correlation for neighbor sites, � k 	 
[cos ( )kx

 cos ( )]ky /2 the interaction constant g tkk k� �	 �

� � �tk k with

t ti
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� �e 1 1,

A( )k� is the hole spectral functions. The real part of
R( )k� can be calculated from its imaginary parts and
Kramers—Kronig relations.

This quantity influences the frequency of spin exci-
tations �konly near Q. Therefore it is convenient to
incorporate � �f Rk k� ( ) in �k

2 . A positive value of the
parameter � [see Eq. (3)] leads to a finite frequency of
spin excitations at Q which differentiates them from
the classical antiferromagnetic magnons. Using
Eq. (3) it can be shown that � �Q � �� �1 1 2x [16]
where � is the correlation length of the short-range
antiferromagnetic order. Thus, the spin gap at Q
grows with the hole concentration and temperature.
The dispersion of spin excitations near the antiferro-
magnetic momentum is shown in Fig. 1.

If the hole hopping to nearest and next nearest sites
is taken into account the interaction constant gkk� be-
tween holes and spin excitations acquires the form

g t tkk k k k k k k� � � � � � �	 � 
 � � � �( ) ( ),� � � � (4)

where �� 	k cos ( ) cos ( )k kx y . The constant vanishes
for k Q	 when the vector k� is located at the bound-
ary of the magnetic Brillouin zone. In other words,
fermions near hot spots interact weakly with spin ex-
citations. This is connected with the short-range char-
acter of the interaction — the decaying spin excita-
tion on site n creates the fermion pair on the same and
neighboring sites which is reflected in the above form
of the interaction constant.
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In calculating the susceptibility (2) we used the
hole spectral function A( )k� obtained in self-consis-
tent calculations [16] and the one-pole approximation
A( ) ( )[( ) ]k k� � � � � � �	 � � 
 
 �2 2 1 with the hole
dispersion �k derived from photoemission data in
cuprates [19,20]. Here � and � are the artificial broad-
ening and chemical potential, respectively. The Fermi
surface for one of these dispersions [20],

� � � �k k k k	 � 
 � � � 
 �

�

87 9 554 7 132 7 13 2 92 45

2
2. . . . .

[cos ( )kx cos ( ) cos ( ) cos ( )] . ,k k ky x y
 � �2 26 5 2� k

(5)

is shown in Fig. 2. In Eq. (5), the coefficients are in
millielectronvolts. This type of the Fermi surface is
inherent in moderate doping.

First we consider the case of small transfer frequen-
cies when Eq. (2) reduces to

� � � �� ��� � � ��( ) ( ).k kk4 2 4
B R (6)

As seen from Eq. (3) and Fig. 1, �k
�4 is a decreasing

function of the difference k Q� which acts in favor
of a commensurate maximum peaked at Q in the
momentum dependence of the susceptibility. How-
ever, if �R( )k� has a pronounced dip at the anti-
ferromagnetic momentum the commensurate maxi-
mum splits into several incommensurate peaks.
Indeed, as follows from Eq. (3), states with energies
� � � ��� � �k 0 and 0 � � �� �� � �k k make the main
contribution to �R( )k� . For small � these states are
located near the Fermi surface and for k Q	 they are

near the hot spots in Fig. 2. As indicated above, for
these wave vectors the interaction constant gQk�,
Eq. (4), is small which leads to the smallness of
�R( )Q� . With the wave vector moving away from Q
momenta of states contributing to the spin-excitation
damping recede from the hot spots, the interaction
constant grows, and with it the spin-excitation damp-
ing. Thus, the damping has a dip at Q which leads to
the low-frequency incommensurability.

The momentum dependence of the normal-state sus-
ceptibility corresponding to this latter case is shown
in Fig. 3,c. The calculations were carried out using the
dispersion (5). Analogous results were also obtained
with other dispersions found in literature [19,20].
As seen from the figure, for small frequencies the
susceptibility is peaked at the wave vectors
k 	 �( , )1 2 1 2/ / � and ( , )1 2 1 2/ /� � . Similar mo-
mentum dependencies of � ���( )k were observed in yt-
trium and lanthanum cuprates [3,4,9].

The dependence of the incommensurability parame-
ter � on x calculated in the normal state for � 	 2 meV
is shown in Fig. 4. In agreement with experiment (see
the inset) � grows with x up to x � 012. and then satu-
rates. In our calculations this dependence is solely
conditioned by the behavior of the spin-gap frequency
�Q which for small hole concentrations grows as x1 2�

and saturates near x 	 012. [16]. The growth of the
spin-gap frequency leads to a weaker momentum de-
pendence of the spin-excitation frequency �k near Q
which increases the distance between susceptibility
maxima in Eq. (6). Notice that the change of the hole
dispersion which takes place in the concentration
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Fig. 1. The dispersion of spin excitations calculated self-
consistently in a 20�20 lattice for x � 006. and T � 17 K
[15] (filled squares). The solid line is the fit of the de-
pendence � �k Q k Q� � � �[ ( ) ]2 2 2 1 2c to these data. Open
squares are positions of maxima in the odd susceptibility
in YBa Cu O2 3 6.5 (x � 0075. [18]) at T � 5 K [5].
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Fig. 2. The Fermi surface for dispersion (5) and
� � � 40 meV (solid lines). Dashed lines show the boun-
dary of the magnetic Brillouin zone, gray circles are the
hot spots, the dotted arrow is the antiferromagnetic mo-
mentum Q.



range 0 04 016. .� �x [16] was not taken into account
in these calculations.

In the itinerant-electron picture in the normal state
the low-frequency incommensurability is related to
the Fermi surface nesting [10]. This mechanism im-
poses rather stringent requirements on the hole energy
spectrum, because to reproduce known experimental
results the nesting has to persist in a wide doping
range with the nesting momentum changed in a spe-
cific manner. In the superconducting state the in-
commensurability stems from the nesting of con-
stant-energy contours [11,20]. This mechanism leads
to incommensurability also with the use of the more
general formula (2) for the susceptibility. However,
the mechanism depends crucially on details of the hole
dispersion and it is unlikely that it can explain the
incommensurability both in lanthanum and yttrium
cuprates.

The above discussion was mainly concerned with
transfer frequencies � �� Q. If the frequency approa-
ches �Q the resonance denominator in Eq. (2) starts
to dominate in the momentum dependence of the
susceptibility. If the spin excitations are not over-

damped, for � �� Q the equation � �	 k defines the
position of the maxima in � ���( ).k Using the approxi-
mation � �k Q k Q� 
 � �[ ( ) ]2 2 2 1 2c which is applica-
ble for k Q� (see Fig. 1) we find that the maxima are
located near a circle centered at Q with the radius
c� ��1 2 2 1 2( )� �Q [21,15]. Thus, for � �� Q the mag-
netic response is commensurate, i.e. � ���( )k is peaked
at Q. For larger � the commensurate maximum splits
into incommensurate peaks with distances from the
antiferromagnetic momenta which grow with the fre-
quency. Such situations are shown in Figs. 3,a and
3,b. For parameters of Fig. 3 �Q � 37 meV.
With these parameters incommensurate maxima for
� �� Q are located at k 	 � �( , )1 2 1 2/ /� � ,
( , )1 2 1 2/ /� � �� , in contrast to the low-frequency
maxima at ( , ),1 2 1 2/ / � � ( , ).1 2 1 2/ /� � A similar
location of the high-frequency maxima was observed
in YBa Cu O2 3 7�y and La2–xBaxCuO4 [4,8,9]. How-
ever, for other parameters, e.g., for increased hole
damping, maxima were found to form a circle or merge
together in a broad commensurate maximum. Such sit-
uations were also observed experimentally [22]. As
follows from the above discussion, the dispersion of
maxima in � ���( )k has a shape of two parabolas with
upward- and downward-directed branches which con-
verge at the antiferromagnetic momentum Q and at
the frequency �Q which is identified with �r.

The frequency dependencies of the magnetic sus-
ceptibility at the antiferromagnetic momentum for
the superconducting and normal states are shown in
Figs. 5 and 6. Our results for the normal state were
obtained from the data of the self-consistent calcu-
lations [15,16]. For the superconducting state
the same ordinary hole self-energies as for the nor-
mal state and the d-type anomalous self-energy
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Fig. 4. The incommensurability parameter � vs. x for
� � 2 meV. Inset: experimental data [2] for La2–xSrxCuO4.
Connecting lines are a guide to the eye.
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Fig. 3. The momentum dependence of 	 �
 
( )k for T � 0,
x � 012. , � � � 40 meV, t t
 � � 02. and � � 70 meV,
� � 30 meV (a), � � 35 meV, � � 15 meV (b), � � 2 meV,
� � 15. meV (c). Calculations were carried out in a
1200�1200 lattice. The solid lines correspond to scans
along the edge of the Brillouin zone, k � ( , )� 1 2/ , the
dashed lines are for the zone diagonal, k � ( , ).� �



� �12 2( ) ( )[ cos ( ) cos ( )]k� �	 � �s
x yk k with the su-

perconducting gap � s 	 20 meV [23] were used for
calculating �R( ).k� As seen from the figures, the t–J
model is able to reproduce correctly the location of the
maximum in the susceptibility and gives a proper evo-
lution of this maximum with doping and temperature.
For the parameters of Figs. 5 and 6 the location of the
maximum coincides approximately with the value of
the spin gap �Q and is determined by the resonance
denominator in Eq. (2). Comparing the spin-excita-
tion damping with the gap frequency we found that
the spin excitations are not overdamped near Q. In
view of the similarity in shapes of the experimental
and calculated curves the same conclusion can be
made with respect to the spin excitations in the
underdoped YBa Cu O2 3 7�y . Similar results were ob-
tained with the hole dispersion (5).

However, the value of the spin-excitation damping
was found to depend heavily on details of the hole
band structure such as the bandwidth, damping and
the distribution of the spectral weight. Changes in
these parameters may lead to overdamping of spin ex-
citations. In this case the position of the maximum in
the frequency dependence of �� � has nothing to do with
the spin-excitation frequency. An example of such
changes is shown in Fig. 7 where the susceptibility
was calculated with dispersion (5) scaled by the factor
0.4 [16]. The calculations were carried out for

k 	 ( . , . )0 42 0 5 which corresponds to the momentum of
the low-frequency peak in Fig. 3,c. In this case excita-
tions near the spin gap are overdamped which leads to
the red shift of the susceptibility maximum. The simi-
lar frequency dependence of �� �without a well-defined
peak of spin excitations is observed in La2–xBaxCuO4
[6]. Thus, we suppose that the observed dissimilarity
in the frequency dependencies of the susceptibility in
lanthanum and yttrium cuprates may be connected
with some difference in their hole spectra.
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( )Q in the super-
conducting state. Curves are our results obtained with the
hole spectrum from Ref. 16 for T � 17 K, x � 006. (a) and
x � 012. (b). Filled squares are the odd susceptibility
measured [5] in YBa Cu O2 3 6.5 [(a), x � 0075. ] and in
YBa Cu O2 3 6.83[(b), x � 014. ] at T � 5 K.
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mal state. Curves are our results obtained with the hole
spectrum from Ref. 16 for T � 116 K, x � 006. (a) and
x � 012. (b). Filled squares are the odd susceptibility
measured [5] in YBa Cu O2 3 6.5 (a) and YBa Cu O2 3 6.83 (b)
at T � 100 K.
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In summary, Mori’s projection operator formalism
and the t–J model of Cu–O planes were used for the
interpretation of the magnetic susceptibility in cup-
rate perovskites. It was shown that the calculated mo-
mentum and frequency dependencies of the imaginary
part of the susceptibility �� �, the dispersion and loca-
tion of maxima in it and the concentration dependence
of the incommensurability parameter are similar to
those observed in lanthanum and yttrium cuprates.
The dispersion of the maxima in �� � resembles two
parabolas with upward- and downward-directed
branches which converge at the antiferromagnetic
wave vector Q and at the respective frequency of spin
excitations �Q. We relate the upper parabola to the
spin-excitation dispersion. For the normal state the
incommensurability connected with the lower parab-
ola is related to the dip in the spin-excitation damping
at Q. For moderate doping the dip arises due to the
smallness of the interaction between spin excitations
and holes near the hot spots, which is a consequence of
the short-range character of this interaction. In agree-
ment with experiment the incommensurate peaks
which form the lower parabola are located at momenta
( , )1 2 1 2/ / � � and ( , ),1 2 1 2/ /� � while peaks in the
upper parabola are at ( , )1 2 1 2/ /� �� � and
( , ).1 2 1 2/ /� � �� Also in agreement with experiment
the low-frequency incommensurability parameter �

grows with the hole concentration x for x � 012. and
then saturates. This behavior of � is mainly connected
with the concentration dependence of the frequency
�Q of the spin gap at the antiferromagnetic wave vec-
tor. We suppose that the marked difference in the fre-
quency dependencies of the susceptibility in
YBa Cu O2 3 7�y and La2–xSrxCuO4 is a consequence of
the difference in the electron spectra. The larger
spin-excitation damping in La2–xSrxCuO4 leads to
overdamping of spin excitations, while in the
underdoped YBa Cu O2 3 7�y the excitations are
well-defined even in the normal state.
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