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We develop a new theory of pairing and magnetic effect near the quantum critical point. Sev-
eral novel properties are predicted: based on a spin fermion model, we derive two new interactions,
i) a spin deformational potential Hsdp proportional to the bandwidth W (as opposed to the consid-
erably smaller exchange coupling J of the nearly antiferromagnetic Fermi liquid theory) and ii) a
diamagnetic potential Hdia, quadratic in a gauge potential A. A dramatic increase of Tc is pre-
dicted for 0.01 W � J � 10W. This should have immense technological impact in electric energy
production, storage and transmission, as well as for medical electronics, microwave electronics,
computer memory and information storage, separations technology and maglev, amongst others.
The striking prediction to be confirmed by experiment is that the pairing order parameter �(k) is
predicted to be p-wave, i.e., l = 1, S = 1, as compared to l = 2 and S = 1 for conventional HTS ma-
terials. In addition a novel collective model is predicted whose frequency, �L is in the optical
range and is determined by Hsdp.

PACS: 71.10.Ay, 71.10.Pm.
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The static magnetic susceptibility of the localized
spins in approximately 30 doped intermetallic com-
pounds is found to be highly anomalous namely,

� � �( , , )Q n T /T� �0 1 ; with � � 0.14 (1)

where Q is the magnetic spin ordering vector of the
spin ordered phase, e.g. Q = (�/a, �/a) for a cubic
commensurate antiferromagnet. Equally anomalous is
the specific heat

C
V

(T) � ln T. (2)

This is to be contrasted with
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N
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1
(N�el law) (3)

and

C
V

(T) � T (Fermi liquid law)

of mean field theory. Anomalously small critical ex-
ponents are also found in some ten other experiments.

Thus, a universal experimental behavior is found,
i.e., a law of corresponding states is observed, calling
for a universal theory producing these anomalous
exponents. Such a theory is developed here, for the
first time.

In the pioneering work of Hertz [1], ferromagnetic
critical spin fluctuations were treated using a one
fermion loop effective action for the spin-fermion
model. He found highly anomalous properties, as in
experiment. This work was extended by Millis [2] to
the several fermion loop level. Since then, a great deal
of effort [3–9] has been expended with little progress
having been achieved. Here we give a complete solu-
tion to the problem, including pairing, for the
spin-fermion problem and find i) excellent agreement
with experiment for the anomalous critical exponents,
and ii) we predict a highly novel p-wave, S = 1 super-
conductor, a very high frequency Leggett mode and an
extraordinarily high Tc of immense technological and
scientific interest.
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For clarity, we use the spin fermion model.

H = H0 + H
J
, (4)

H t
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ijs
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H JJ is
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[ , ]S S i Si j ij� � �
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with �, �, � = 1, 2, 3 in cyclic permutation. Equally
well we could have use the Hubbard model with
equivalent results, although the mathematics would
be considerably more involved.

A key aspect of the quantum critical point problem is
that all fluctuations, pairing and spin, are of long range
(L >> a, a — lattice spacing), and of low frequency
compared to the electronic band width W and the two
site Heisenberg exchange interaction, J2 � J2/W. This
suggests that we develop a long wavelength, adiabatic
approximation. This we do below.

To exploit these slow variations, we introduce the
unitary electron spin rotation operator,
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T is the Feynman time ordered product defined by

T[A(t1)B(t2)C(t3) ... ] = A(t1)B(t2)C(t3) ... ,

for t1 � t2 � t3 ... . This prescription preserves the
quantum commutation relations (7), (8).

We define the rotation vector angle as,
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with M(r,t) being the staggered magnetization,
where for example, Q = 0 for ferromagnetic spin fluc-
tuations. More generally,

M SR
i it ti( ) (– ) ( )� 1 . (11)

The transformed Hamiltonian is

H t H t H t U t H t H t U tJ J( ) ( ) ( ) ( )[ ( ) ( )] ( ),†� � � �0 0

(12)

where H0 is given for a free electron band by
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Here the gauge field Ass�(r,t) is defined as

A r rss sst t� �� 	 �( , ) ( , ).
1
2

� � (13)

Note that H0 is just the electronic kinetic energy of
quantum electrodynamics (QED) for e/c � 1.

It is convenient to expand out H0 in powers of A
and we find,

H t H t H t H tsdp0 0( ) ( ) ( ) ( )� � � dia (14)

with H0(t) given by (5). The two new spin couplings
are (i) the spin deformation potential (sdp) Hsdp,
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where the spin current is defined by
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j rs t( , ) couples to the quantity ��( , )r t , in the same
manner as the p � A + A � p paramagnetic coupling of
QED. The «diamagnetic» term proportional to A(r, t)2

is given by
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It is Hsdp and Hdia which lead to the anomalous expo-
nents near the QCP.

H tJ ( ) is given by

H t
J

d s t S tJ s
s

s
r( ) ( , ) ( , )( ) ,†� �� �2

1r r r� � (18)

where s is defined as the �z in the spin rotated frame.
We note that the transformed exchange coupling acts
as a simple diagonal spin Zeeman coupling, analogous
to the exchange interaction in the mean field approxi-
mation. This exact result greatly simplifies the calcu-
lations.

While the discussion at this point is exact, it is help-
ful to make pairing correlations manifest by elevating
� is t† ( ) to a two component pseudo-spin operator,

� � �is i i
t t t† † †( ) [ ( ), ( )]�

� �
. (19)

We introduce the Pauli pseudo-spin matrices �i, with
i = 0, 1, 2, 3. Then H t( ) can be written as
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where s and �z correspond to the direction of the local
M(r,t). The one loop Gor’kov self energy is given by
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where �n = (2n + 1)kBT, �m = 2�mkBT and V is the
potential arising from Hsdp and Hdia . Taking the 1, 2
components of (22) we have the gap equation,
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The normal phase renormalization shifts are given by
the � and �3 terms in (22), respectively.

While Hdia and HJ give s-wave (l = 0) and d-wave
(l = 2) (S = 0) pairing, Tc is exponentially larger for
p-wave, (l = 1), (S = 1) pairing. To calculate the ef-
fective pairing interaction in the p-wave, S = 1 chan-
nel we introduce quasi particles which diagonalize
H0(t) and H tJ ( ). These terms in H couple each k with
k ± Q in reciprocal space, without spin flip. Intro-
ducing the Bogoliubov–Valatin quasi-particle trans-
formation, one has

� � �k s k ks ks k Qu v
s, � � 
 (24)

and
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with eigenvalues
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Here,
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In the � representation, Hsdp(t) becomes

H t
i
m

t t t tsdp s
ss

s( ) ( , ) ( , )( ( , ) ( , )†� � � �
�

���
2

4
� �r r r r� � � �)

(28)

with

E
k
m

J
k � �



�
�
�

�

�
�
�

�
�

2 2 2 2

2 4
� (29)

for the free electron model.
The ground canonical potential is given by,

�( ) exp( ( )) ( )T k T T H N k T Z TB B� � � � � �lnTr ln� � .

(30)

Within the RPA for H tsdp ( ) and H tdia ( ), as shown in
Fig. 1, one has,
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where the zero order irreducible polarizability is de-
fined by
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The specific heat is given by

C T
d

dT
k T Z TV B( ) ( )� � ln . (33)

We find C T TV ( ) ln� for W/100 < T < W, as
obsereved in experiment.

The RPA spin susceptibility is given by

� � �RPA n
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nQ T ss Q T( , , ) ( , , )� ��1
4 0�

� � �[ ( , , ) ( , )]1 0
1V Q T Qn n� �� . (34)

To estimate Tc, we use a square potential model, as
in the BCS model. Then
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Fig. 1. The grand canonical �(T) within the random
phase approximation.
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where

� � N V( )0 pair , (36)

and Vpair being given by (22).
To determine Tc we take the limit that the magni-

tude of the order parameter  (k,�n,T) goes to zero.
One finds that Tc satisfies the linear gap equation
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where Z(k,Q,�m)/�n is the parallel component of !
(see (22)). The quantity (uv� + vu�) is nothing but the
BCS coherence. For the BCS square potential in en-
ergy, with a cut off at spin fluctuation frequency �s,
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where the coupling constant � is given by
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Using

� s
J
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�

2
, (41)

we obtain

k T
J
WB c �
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Maximizing Tc one finds

k T
W

B c �

8
(43)

for J � 0.1W. For W � 10 eV, this leads to the re-
markably high value of

k
B
T

c
� 1 eV � 104 K, (44)

with J = 1 eV. Clearly this result is of immense tech-
nological as well as scientific value (Fig. 2).

Details of this new theory with applications to
electronic tunneling, ARPES, transport measurement,
magnetic penetration depth, CV(T), etc. will soon be
published elsewhere (PR).
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interaction is due to
a) spin deformation potentential
with p-wave gap and d-wave
or s-wave
b) a lower T phase due to
H and H

c

dia J

Scalapino Pines HTS theory
regimeinteraction
is due to exchange of spin
fluctuations with coupling J
d-wave pairing

0.5

0.4

0.3

0.2

0.1

0
0.1 1.0 10

J/W

0.5

Kondo spin
compansated regime

a b

T Wc/

Fig. 2. The phase diagram of the t–J model, showing the
conventional nearly antiferromagnetic Fermi liquid of
Pines and Scalapins for J � 0.01W, where J is the elec-
tron localized spin exchange coupling and W is the elec-
tronic band width. For 0.01 W � J � 10 W a novel
p-wave, l = 1, s = 1 phase is predicted with an extremely
high Tc of immense technological importance (see the
text). In this phase the existence of a Leggett collective
model is predicted, corresponding to an oscillation at fre-
quency �L of the angle between L and s vectors the pair.
However, here the novel strong spin deformation raises �L
to a high value of order the optical range vs the low fre-
quency of superfluid 3He, where the spin orbit coupling
Hso is extremely weak.


