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This review is written at the time of the twentieth anniversary of the discovery of high-temper-
ature superconductors, which, nearly coincides with the important discovery of the superfluid
phases of ultracold trapped fermionic atoms. We show how these two subjects have much in com-
mon. Both have been addressed from the perspective of the BCS–Bose–Einstein condensation
(BEC) crossover scenario, which is designed to treat short coherence length superfluids with tran-
sition temperatures which are «high», with respect to the Fermi energy. A generalized mean field
treatment of BCS–BEC crossover at general temperatures T, based on the BCS–Leggett ground
state, has met with remarkable success in the fermionic atomic systems. Here we summarize this
success in the context of four different cold atom experiments, all of which provide indications, di-
rect or indirect, for the existence of a pseudogap. This scenario also provides a physical picture of
the pseudogap phase in the underdoped cuprates which is a central focus of high Tc research. We
summarize successful applications of BCS–BEC crossover to key experiments in high Tc systems in-
cluding the phase diagram, specific heat, and vortex core STM data, along with the Nernst effect,
and exciting recent data on the superfluid density in very underdoped samples.
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1. Introduction

1.1. Historical background

Most workers in the field of high Tc superconduc-
tivity would agree that we have made enormous prog-
ress in the last 20 years in characterizing these materi-
als and in identifying key theoretical questions and
constructs. Experimental progress, in large part, co-
mes from transport studies [1,2] in addition to three
powerful spectroscopies: photoemission [3,4], neutron
[5–12] and Josephson interferometry [13–15]. Over
the last two decades, theorists have emphasized differ-
ent aspects of the data, beginning with the anomalous
normal state associated with the highest Tc systems

(«optimal doping») and next, establishing the nature
and implications of the superconducting phase, which
was ultimately revealed to have a d-wave symmetry.
Now at the time of this twenty year anniversary, one
of the most exciting areas of research involves the nor-
mal state again, but in the low Tc regime, where the
system is «underdoped» and in proximity to the Mott
insulating phase. We refer to this unusual phase as the
«pseudogap state».

This pseudogap phase represents a highly anoma-
lous form of superconductivity in the sense that there
is an excitation gap present at the superfluid transi-
tion temperature Tc where long range order sets in.
The community has struggled with two generic classes
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of scenarios for explaining the pseudogap and its im-
plications below Tc. Either the excitation gap is inti-
mately connected to the superconducting order re-
flecting, for example, the existence of «pre-formed
pairs», or it is extrinsic and associated with a compet-
ing ordered state unrelated to superconductivity.

The emphasis of this Review is on the pseudogap
state as addressed by a particular preformed pair sce-
nario which has its genesis in what is now referred to
as «BEC–Bose–Einstein condensation (BEC) cross-
over theory». Here one contemplates that the attrac-
tion (of unspecified origin) which leads to super-
conductivity is stronger than in conventional supercon-
ductivity. In this way fermion pairs form before they
Bose condense, much as in a Bose superfluid. In sup-
port of this viewpoint for the cuprates are the observa-
tions that: (i) the coherence length � for superconduc-
tivity is anomalously short, around 10 � as compared
with 1000 � for a typical superconductor. Moreover
(ii) the transition temperatures are anomalously high,
and (iii) the systems are close to two-dimensional
(2D) (where pre-formed pair or fluctuation effects are
expected to be important). Finally, (iv) the pseudogap
has the same d-wave symmetry [16] as the supercon-
ducting order parameter [3,4] and there seems to be a
smooth evolution of the excitation gap from above to
below Tc.

To investigate this BCS–BEC crossover scenario
we have the particular good fortune today of having a
new class of atomic physics experiments involving
ultracold trapped fermions which, in the presence of
an applied magnetic field, have been found to have a
continuously tunable attractive interaction. At high
fields the system exhibits BCS-like superfluidity,
whereas at low fields one sees BEC-like behavior.

This Review presents a consolidated study of both
the pseudogap phase of the cuprates and recent devel-
opments in ultracold fermionic superfluids. The em-
phasis of these cold atom experiments is on the
so-called unitary or strong scattering regime, which is
between the BEC and BCS limits, but on the fermio-
nic side. The superfluid state in this intermediate re-
gime is also referred to in the literature as a «resonant
superfluid» [17,18]. Here we prefer to describe it as
the «pseudogap phase», since that is more descriptive
of the physics and underlines the close analogy with
high Tc systems. Throughout this Review we will use
these three descriptive phrases interchangeably.

1.2. Fermionic pseudogaps and metastable pairs:
two sides of the same coin

BCS–BEC crossover theory is based on the obser-
vations of Eagles [19] and Leggett [20] who independ-
ently noted that the BCS ground state wavefunction

� �0 0� � �
�k k( )|† †u v c ck k k (1)

had a greater applicability than had been appreciated
at the time of its original proposal by Bardeen, Coo-
per and Schrieffer (BCS). As the strength of the at-
tractive pairing interaction U (< 0) between fermions
is increased, this wavefunction is also capable of de-
scribing a continuous evolution from BCS like behav-
ior to a form of BEC. What is essential is that the
chemical potential � of the fermions be self consis-
tently computed asU varies.

The variational parameters vk and uk are usually
represented by the two more directly accessible pa-
rameters � sc( )0 and �, which characterize the fer-
mionic system. Here � sc( )0 is the zero temperature
superconducting order parameter. These fermionic pa-
rameters are uniquely determined in terms of U and
the fermionic density n. The variationally determined
self consistency conditions are given by two BCS-like
equations which we refer to as the «gap» and «num-
ber» equations respectively:

� �sc scU
E

( ) ( )0 0
1

2
� 	 �

k k
;

n
E

� 	
	


�
�



�
��2 1

�k

kk

�
(2)

where

E sck k� 	 �( ) ( )� � 2 2 0� (3)

and �k � �
2 2 2k / m are the dispersion relations for the

Bogoliubov quasiparticles and free fermions, respec-
tively. An additional advantage of this formalism is that
Bogoliubov–de Gennes theory, a real space implementa-
tion of this ground state, can be used to address the ef-
fects of inhomogeneity and external fields at T � 0. This
has been widely used in the crossover literature.

Within this ground state there have been extensive
studies [21] of collective modes [22,23] and effects of
two dimensionality [22]. Nozieres and Schmitt–Rink
were the first [24] to address non-zero T. We will out-
line some of their conclusions later in this Review.
Randeria and co-workers reformulated the approach of
Nozieres and Schmitt–Rink (NSR) and moreover,
raised the interesting possibility that crossover physics
might be relevant to high-temperature superconduc-
tors [22]. Subsequently other workers have applied
this picture to the high Tc cuprates [25–27] and
ultracold fermions [17,18,28,29] as well as formulated
alternative schemes [30,31] for addressing T � 0.
Importantly, a number of experimentalists, most nota-
bly Uemura [32], have claimed evidence in support
[33–35] of the BCS–BEC crossover picture for high
Tc materials.
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Compared to work on the ground state, considerably
less has been written on crossover effects at non-zero
temperature based on Eq. (1). Because our understand-
ing has increased substantially since the pioneering
work of NSR, and because they are the most interest-
ing, this review is focused on these finite T effects.

The importance of obtaining a generalization of
BCS theory which addresses the crossover from BCS
to BEC ground state at temperatures T Tc� cannot be
overestimated. BCS theory as originally postulated
can be viewed as a paradigm among theories of con-
densed matter systems; it is complete, in many ways
generic and model independent, and well verified ex-
perimentally. The observation that the wavefunction
of Eq. (1) goes beyond strict BCS theory, suggests
that there is a larger mean field theory to be ad-
dressed. Equally exciting is the possibility that this
mean field theory can be discovered and simulta-
neously tested in a very controlled fashion using
ultracold fermionic atoms [17,18]. Mean field ap-
proaches are always approximate. We can ascribe the
simplicity and precision of BCS theory to the fact that
in conventional superconductors the coherence length
� is extremely long. As a result, the kind of averaging
procedure implicit in mean field theory becomes
nearly exact. Once � becomes small BCS is not ex-
pected to work at the same level of precision. Never-
theless even when they are not exact, mean field ap-
proaches are excellent ways of building up intuition.
And further progress is not likely to be made without
investigating first the simplest of mean field ap-
proaches, associated with Eq. (1).

The effects of BEC–BCS crossover are most di-
rectly reflected in the behavior of the fermionic chemi-
cal potential �. We plot the behavior of � in Fig. 1,
which indicates the BCS and BEC regimes. In the

weak coupling regime � � EF and ordinary BCS the-
ory results. However at sufficiently strong coupling, �
begins to decrease, eventually crossing zero and then
ultimately becoming negative in the BEC regime,
with increasing | |U . We generally view � � 0 as a cross-
ing point. For positive � the system has a remnant of a
Fermi surface, and we say that it is «fermionic». For
negative �, the Fermi surface is gone and the material
is «bosonic».

The new and largely unexplored physics of this
problem lies in the fact that once outside the BCS
regime, but before BEC, superconductivity or super-
fluidity emerge out of a very exotic, non-Fermi liquid
normal state. Emphasized in Fig. 1 is this intermedi-
ate (i.e., pseudogap or PG) regime having positive �
which we associate with non-Fermi liquid based super-
conductivity [25,36,37]. Here, the onset of supercon-
ductivity occurs in the presence of fermion pairs. Un-
like their counterparts in the BEC limit, these pairs
are not infinitely long lived. Their presence is appar-
ent even in the normal state where an energy must be
applied to create fermionic excitations. This energy
cost derives from the breaking of the metastable pairs.
Thus we say that there is a «pseudogap» (PG) at and
above Tc. It will be stressed throughout this Review
that gaps in the fermionic spectrum and bosonic de-
grees of freedom are two sides of the same coin. A par-
ticularly important observation to make is that the
starting point for crossover physics is based on the
fermionic degrees of freedom. A non-zero value of the
excitation gap � is equivalent to the presence of
metastable or stable fermion pairs. And it is only in
this indirect fashion that we can probe the presence of
these «bosons», within the framework of Eq. (1).

In many ways this crossover theory appears to rep-
resent a more generic form of superfluidity. Without
doing any calculations we can anticipate some of the
effects of finite temperature. Except for very weak
coupling, pairs form and condense at different tem-
peratures. More generally, in the presence of a moder-
ately strong attractive interaction it pays energeti-
cally to take some advantage and to form pairs (say
roughly at temperature T�) within the normal state.
Then, for statistical reasons these bosonic degrees of
freedom ultimately are driven to condense at T Tc �

� ,
as in BEC.

Just as there is a distinction between Tc and T� ,
there must be a distinction between the superconduct-
ing order parameter � sc and the excitation gap �. In
Fig. 2 we present a schematic plot of these two energy
parameters. It may be seen that the order parameter
vanishes at Tc, as in a second order phase transition,
while the excitation gap turns on smoothly below T� .
It should also be stressed that there is only one gap
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Fig. 1. Behavior of the T � 0 chemical potential � in the
three regimes. � is essentially pinned at the Fermi temper-
ature EF in the BCS regime, whereas it becomes negative
in the BEC regime. The PG (pseudogap) case corresponds
to non-Fermi liquid based superconductivity in the inter-
mediate regime.



energy scale in the ground state [20] of Eq. (1). Thus
� �sc( ) ( )0 0� .

In addition to the distinction between � and � sc,
another important way in which bosonic degrees of
freedom are revealed is indirectly through the tem-
perature dependence of �. In the BEC regime where
fermionic pairs are pre-formed, � is essentially con-
stant for all T Tc� (as is �). By contrast in the BCS
regime it exhibits the well known temperature de-
pendence of the superconducting order parameter.
This behavior is illustrated in Fig. 3.

Again, without doing any calculations we can make
one more inference about the nature of crossover phys-
ics at finite T. The excitations of the system must
smoothly evolve from fermionic in the BCS regime to
bosonic in the BEC regime. In the intermediate case,
the excitations are a mix of fermions and metastable
pairs. Figure 4 characterizes the excitations out of the
condensate as well as in the normal phase. This sche-
matic figure will play an important role in our think-
ing throughout this Review.

1.3. Introduction to high Tc superconductivity:
pseudogap effects

This Review deals with the intersection of two
fields and two important problems: high-temperature
superconductors and ultracold fermionic atoms in
which, through Feshbach resonance effects, the at-
tractive interaction may be arbitrarily tuned by a mag-
netic field. Our focus is on the broken symmetry phase
and how it evolves from the well known ground state
at T � 0 to T Tc� . We begin with a brief overview
[1,2] of pseudogap effects in high-temperature super-
conductors. There is an extensive body of theoretical
literature which aims to understand these pseudogap
effects from a variety of different viewpoints. We list
some of these in Refs. 38–40 for the interested reader.
A study of concrete data in these systems provides
a rather natural way of building intuition about
non-Fermi liquid based superfluidity, and this should,
in turn, be useful for the cold atom community.

It has been argued by some [26,27,42–44] that a
BCS–BEC crossover-induced pseudogap is the origin
of the mysterious normal state gap observed in high-tem-
perature superconductors. While this is a highly con-
tentious subject some of the arguments in favor of this
viewpoint (beyond those listed in Section 1.1) rest on
the following observations: (i) To a good approxi-
mation the pseudogap onset temperature [45,46]
T /* ( ) .� 2 0 4 3� which satisfies the BCS scaling rela-
tion. (ii) There is widespread evidence for pseudogap
effects both above [1,2] as well as (iii) below [47,48]
Tc. (iv) In addition, it has also been argued that short
coherence length superconductors may quite generally
exhibit a distinctive form of superconductivity [32]
which sets them apart from conventional superconduc-
tors. One might want, then, to concentrate on this
more generic feature (rather than on more exotic as-
pects), which they have in common with other super-
conductors in their distinctive class.
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Fig. 2. Contrasting behavior of the excitation gap �( )T
and order parameter � sc T( ) versus temperature in the
pseudogap regime. The height of the shaded region reflects
the number of noncondensed pairs, at each temperature.
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Fig. 3. Comparison of temperature dependence of excita-
tion gaps in BCS (a) and BEC (b) limits. The gap van-
ishes at Tc for the former while it is essentially T-inde-
pendent for the latter.
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Fig. 4. The character of the excitations in the BCS–BEC
crossover both above and below Tc. The excitations are
primarily fermionic Bogoliubov quasiparticles in the BCS
limit and bosonic pairs (or «Feshbach bosons») in the
BEC limit. For atomic Fermi gases, the «virtual mole-
cules» in the PG case consist primarily of «Cooper» pairs
of fermionic atoms.



In Fig. 5 we show a sketch of the phase diagram for
the hole-doped copper oxide superconductors. Here x
represents the concentration of holes which can be
controlled by, say, adding Sr substitutionally to
L1�xSr xCuO4. At zero and small x the system is an
antiferromagnetic (AFM) insulator. Precisely at half
filling (x � 0) we understand this insulator to derive
from Mott effects. These Mott effects may or may not
be the source of the other exotic phases indicated in
the diagram, i.e., the superconducting (SC) and the
«pseudogap» phases. Once AFM order disappears the
system remains insulating until a critical hole concen-
tration (typically around a few percent) when an insu-
lator-superconductor transition is encountered. Here
photoemission studies [3,4] suggest that once this line
is crossed, � appears to be positive. For x � 0 2. , the
superconducting phase has a non-Fermi liquid (or
pseudogapped) normal state [2]. We note an important
aspect of this phase diagram at low x. As the pseudogap
becomes stronger (T� increases), superconductivity as
reflected in the magnitude of Tc becomes weaker.

Figure 6 indicates the temperature dependence of
the excitation gap for three different hole stoichio-
metries. These data [3] were taken from angle resolved
photoemission spectroscopy (ARPES) measurement.
For one sample shown as circles, (corresponding
roughly to «optimal» doping) the gap vanishes
roughly at Tc as might be expected for a BCS super-
conductor. At the other extreme are the data indicated
by inverted triangles in which an excitation gap ap-
pears to be present up to room temperature, with very
little temperature dependence. This is what is referred
to as a highly underdoped sample (small x), which
from the phase diagram can be seen to have a rather

low Tc. Moreover, Tc is not evident in these data on
underdoped samples.

While the high Tc community has focused on
pseudogap effects above Tc, there is a good case to be
made that these effects also persist below. STM data
[33] taken below Tc within a vortex core indicate that
there is a clear depletion of the density of states
around the Fermi energy in the normal phase within
the core. These data underline the fact that the exis-
tence of an energy gap has little or nothing to do with
the existence of phase coherent superconductivity. It
also underlines the fact that pseudogap effects effec-
tively persist below Tc; the normal phase underlying
superconductivity for T Tc� is not a Fermi liquid.

Analysis of thermodynamical data [2,47] has led to
a similar inference. For the PG case, the entropy ex-
trapolated into the superfluid phase, based on Fermi
liquid theory, becomes negative. In this way Loram
and co-workers [47] deduced that the normal phase un-
derlying the superconducting state is not a Fermi liq-
uid. Rather, they claimed to obtain proper thermody-
namics, it must be assumed that this state contains a
persistent pseudogap. In this way they argued for a dis-
tinction between the excitation gap � and the super-
conducting order parameter, within the superconduct-
ing phase. To fit their data they presume a modified

fermionic dispersion E Tk k� 	 �( ) ( )� � 2 2� where

� � �2 2 2( ) ( )T Tsc pg� � (4)

Here � pg is taken on phenomenological grounds to be
T-independent. While Eq. (4) is also found in
BCS–BEC crossover theory, there are important dif-
ferences. In the latter approach � pg � 0 as T � 0.
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There exists a pseudogap phase above Tc in the underdoped
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Fig. 6. Temperature dependence of the excitation gap at
the antinodal point (�,0) in Bi2Sr2CaCu2O8� � (BSCCO)
for three different doping concentrations from near-opti-
mal (discs) to heavy underdoping (inverted triangles), as
measured by angle-resolved photoemission spectroscopy
(from Ref. 3).



Finally, Fig. 7 makes the claim for a persistent
pseudogap below Tc in an even more suggestive way.
Figure 7,a represents a schematic plot of excitation
gap data such as are shown in Fig. 6. Here the focus is
on temperatures below Tc. Most importantly, this fig-
ure indicates that the T dependence in � varies dra-
matically as the stoichiometry changes. Thus, in the
extreme underdoped regime, where PG effects are
most intense, there is very little T dependence in � be-
low Tc. By contrast at high x, when PG effects are less
important, the behavior of � follows that of BCS the-
ory. What is most impressive however, is that these
wide variations in �( )T are not reflected in the
superfluid density � s T( ). Figure 7 then indicates that,
despite the highly non-universal behavior for �( )T ,
the superfluid density does not make large excursions
from its BCS- predicted form. This is difficult to un-
derstand if the fermionic degrees of freedom through
�( )T are dominating at all x. Rather this figure sug-

gests that something other than fermionic excitations
is responsible for the disappearance of superconductiv-
ity, particularly in the regime where �( )T is relatively
constant in T. At the very least pseudogap effects must
persist below Tc.

The phase diagram also suggests that pseudogap ef-
fects become stronger with underdoping. How does
one accommodate this in the BCS–BEC crossover sce-
nario? At the simplest level one may argue that as the
system approaches the Mott insulating limit, fermions
are less mobile and the effectiveness of the attraction
increases. In making the connection between the
strength of the attraction and the variable x in the
cuprate phase diagram we will argue that it is appro-
priate to simply fit T x*( ). In this Review we do not
emphasize Mott physics because it is not particularly
relevant to the atomic physics problem. It also seems
to be complementary to the BCS–BEC crossover sce-
nario. It is understood that both components are im-
portant in high Tc superconductivity. It should be
stressed that hole concentration x in the cuprates
plays the role of applied magnetic field in the cold
atom system. These are the external parameters which
serve to tune the BCS–BEC crossover.

Is there any evidence for bosonic degrees of freedom
in the normal state of high Tc superconductors? The
answer is unequivocally yes: metastable bosons are ob-
servable as superconducting fluctuations. These ef-
fects are enhanced in the presence of the quasi-two-di-
mensional lattice structure of these materials. In the
underdoped case, one can think of T* as marking the
onset of preformed pairs which are closely related to
fluctuations of conventional superconductivity the-
ory, but which are made more robust as a result of
BCS–BEC crossover effects, that is, stronger pairing
attraction. A number of people have argued [49,50]
that fluctuating normal state vortices are responsible
for the anomalous transport behavior of the pseudogap
regime. It has been proposed [51] that these data may
alternatively be interpreted as suggesting that bosonic
degrees of freedom are present in the normal state.

1.4. Summary of cold atom experiments: crossover
in the presence of Feshbach resonances

There has been an exciting string of developments
over the past few years in studies of ultracold
fermionic atoms, in particular, 6Li and 40K, which
have been trapped and cooled via magnetic and optical
means. Typically these traps contain105 atoms at very
low densities � 1013 cm�3. Here the Fermi tempera-
ture in a trap can be estimated to be of the order of a
microkelvin. It was argued on the basis of BCS theory
alone [52], and rather early on (1997), that the tem-
peratures associated with the superfluid phases may be
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Fig. 7. Temperature dependence of fermionic excitation
gaps � and superfluid density � s for various doping con-
centrations (from Ref. 48). When �( )Tc � 0, there is little
correlation between �( )T and � s T( ); this figure suggests
that something other than fermionic quasiparticles (e.g.,
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ance of superconductivity with increasing T. Figure (b)
shows a quasi-universal behavior for the slope d /dTs� at
different doping concentrations, despite the highly
non-universal behavior for �( )T .



attainable in these trapped gases. This set off a search
for the «holy grail» of fermionic superfluidity. That a
Fermi degenerate state could be reached at all is itself
quite remarkable; this was first reported [53] by Jin
and deMarco in 1999. By late 2002 reports of unusual
hydrodynamics in a degenerate Fermi gas indicated
that strong interactions were present [54]. This
strongly interacting Fermi gas (associated with the
unitary scattering regime) has attracted widespread
attention independent of the search for superfluidity,
because it appears to be a prototype for analogous sys-
tems in nuclear physics [55,56] and in quark-gluon
plasmas [57,58]. Moreover, there has been a fairly ex-
tensive body of analytic work on the ground state
properties of this regime [59,60], which goes beyond
the simple mean field wave function ansatz.

As a consequence of attractive s-wave interactions
between fermionic atoms in different hyperfine states,
it was anticipated that dimers could also be made.
Indeed, these molecules formed rather efficiently
[62–64] as reported in mid-2003 either via three body
recombination [65] or by sweeping the magnetic field
across a Feshbach resonance. Moreover, they are ex-
tremely long lived [63]. From this work it was rela-
tively straightforward to anticipate that a Bose con-
densate would also be achieved. Credit goes to
theorists such as Holland [17] and to Griffin [29] and
their co-workers for recognizing that the superfluidity
need not be only associated with condensation of long
lived bosons, but in fact could also derive, as in BCS,
from fermion pairs. In this way, it was argued that a
suitable tuning of the attractive interaction via
Feshbach resonance effects, would lead to a realiza-
tion of a BCS–BEC crossover.

By late 2003 to early 2004, four groups [61,66–68]
had observed the «condensation of weakly bound mol-
ecules» (that is, on the as � 0 side of resonance), and
shortly thereafter a number had also reported evidence
for superfluidity on the BCS side [69–72]. The BEC
side is the more straightforward since the presence of
the superfluid is reflected in a bimodal distribution in
the density profile. This is shown in Fig. 8 from
Ref. 61, and is conceptually similar to the behavior for
condensed Bose atoms [73]. On the BEC side but near
resonance, the estimated Tc is about 0 3. TF , with con-
densate overtions varying from 20 or so to nearly 100 .
The condensate lifetimes are relatively long in the vi-
cinity of resonance, and fall off rapidly as one goes
deeper into the BEC. However, for as � 0 there is no
clear expectation that the density profile will provide
a signature of the superfluid phase.

These claims that superfluidity may have been
achieved on the BCS side (as � 0) of resonance were
viewed as particularly exciting. The atomic commu-

nity, for the most part, felt the previous counterpart
observations on the BEC side were expected and not
significantly different from condensation in Bose at-
oms. The evidence for this new form of «fermionic
superfluidity» rests on studies [69,70] that perform
fast sweeps from negative as to positive as across the
resonance. The field sweeps allow, in principle, a
pairwise projection of fermionic atoms (on the BCS
side) onto molecules (on the BEC side). It is pre-
sumed that in this way one measures the momentum
distribution of fermion pairs. The existence of a con-
densate was thus inferred. Other experiments which
sweep across the Feshbach resonance adiabatically,
measure the size of the cloud after release [68] or
within a trap [74].

Evidence for superfluidity on the BCS side, which
does not rely on the sweep experiments, has also been
deduced from collective excitations of a fermionic gas
[71,75]. Pairing gap measurements with radio fre-
quency (RF) spectroscopy probes [72] have similarly
been interpreted [76] as providing support for the ex-
istence of superfluidity, although more directly these
experiments establish the existence of fermion pairs.
Quite recently, evidence for a phase transition has
been presented via thermodynamic measurements and
accompanying theory [77]. The latter, like the theory
[76] of RF experiments [72], is based on the formal-
ism presented in this Review. A most exciting and
even more recent development has been the observa-
tion of vortices [78] which appears to provide a smok-
ing gun for the existence of the superfluid phase.

544 Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5

Qijin Chen, Jelena Stajic, and K. Levin

0

1.0

2.0

–200 0 –200
0

1.0

2.0

–200 0 –200
position, m position, m

o
p

tic
al

d
e

n
si

ty

a

b
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ages (dots) with bimodal fits (lines).



2. Theoretical formalism for BCS–BEC
crossover

2.1. Many-body Hamiltonian and two-body
scattering theory

We introduce the Hamiltonian [17,29,79] used in
the cold atom and high Tc crossover studies. The most
general form for this Hamiltonian consists of two
types of interaction effects: those associated with the
direct interaction between fermions parametrized by
U, and those associated with «fermion–boson» inter-
actions, whose strength is governed by g.

H N	 ��

� 	 � � 	 �� �( ) ( )
,

, ,
k

k k
†

k
q

q q
†

q
�

� �� � � �a a b bmb
� 2

� �
�

� � � � � � � � ��U a a a a
/ / / /

( , )
, ,

,
†

,
†

, ,
q k k

q k q k q k q kk k
2 2 2 2 �

�

� �� � � � �( ( ) )
,

†
, ,

q k
q q k q kkg b a a/ /2 2 h. c. .

(5)

Here the fermion and boson kinetic energies are given
by �k � k / m2 2 , and �q

mb q / M� 2 2 , and � is an impor-
tant parameter which represents the magnetic
field-induced «detuning». Here we use the conven-
tion � � � �k cB 1. In this two channel problem the
ground state wavefunction is slightly modified and
given by

� � �0 0 0� � B
(6)

where the molecular or Feshbach boson contribution
�0

B is as given in Ref. 80.
Whether both forms of interactions are needed in

either system is still under debate. The bosons (bk
†) of

the cold atom problem [17,18] are referred to as be-
longing to the «closed channel». These spin-singlet
molecules represent a separate species, not to be con-
fused with the («open channel») fermion pairs
(a ak –k

† † ), which are associated with spin triplet. As a
result of virtual occupation of the bound state of the
closed channel the interaction between open channel
fermions can be tuned (through applied magnetic
field) to vary from weak to very strong.

In this review we will discuss the behavior of cross-
over physics both with and without the closed-chan-
nel. Previous studies of high Tc superconductors have
invoked a similar bosonic term [27, 81–83] as well, al-
though less is known about its microscopic origin.
This fermion–boson coupling is not to be confused
with the coupling between fermions and a «pair-
ing-mechanism»-related boson ([ ]† †b b a a� ) such as
phonons in a metal superconductor. The coupling b aa†

and its Hermitian conjugate represent a form of sink

and source for creating fermion pairs, in this way in-
ducing superconductivity in some ways, as a
by-product of Bose condensation.

It is useful at this stage to introduce the s-wave scat-
tering length, a, defined by the low energy limit of
two-body scattering in vacuum. We begin with the ef-
fects ofU only, presuming thatU is always an attractive
interaction (U � 0) which can be arbitrarily varied,

m
a U4

1 1
2�

� � �
�kk

. (7)

We may define a critical valueUc of the potential as
that associated with the binding of a two particle
state in vacuum. We can write down an equation for
Uc given by

Uc
� � 	�1 1

2�kk
(8)

although specific evaluation ofUc requires that there
be a cut-off imposed on the above summation, associ-
ated with the range of the potential. The fundamen-
tal postulate of crossover theory is that even though
the two-body scattering length changes abruptly at
the unitary scattering condition (| | )a � � , in the
N-body problem the superconductivity varies
smoothly through this point.

Provided we redefine the appropriate «two body»
scattering length, Equation (7) holds even in the pres-
ence of Feshbach effects [28,29]. It has been shown
thatU in the above equations is replaced by

U U U
g

� � �
	eff

2

2� �
(9)

and we write a a� � . Experimentally, the two-body
scattering length a� varies with magnetic field B.
Thus we have

m

a U4

1 1
2� �

� � �
eff �kk

. (10)

More precisely the effective interaction between two
fermions is momentum and energy dependent. It
arises from a second order process involving emission
and absorption of a closed-channel molecular boson.
The net effect of the direct plus indirect interactions
is given by

~ ( , , ) ( )g Q K K g Qeff eff� � �� �k k

U Q U g D Qeff ( ) ( ),� � 2
0

where D Q / i n
mb

0 1 2( ) [ ]� 	 	 �� �q � � is the non-in-
teracting molecular boson propagator. Here and
throughout we use a four-momentum notation,
Q i n� ( , )q � , and its analytical continuation,
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Q i� � �( , )q � 0 , and write  �   Q QT
n q , where

� n is a Matsubara frequency. What appears in the
gap equation, however, is U Qeff ( )� 0 which we de-
fine to be Ueff . When the open-channel attraction U
is weak, clearly, 2� �� is required so that the
Feshbach-induced interaction is attractive. In the ex-
treme BEC limit � �� 2 . However, when a deep
bound state exists in the open channel, such as in
40K, the system may evolve into a metastable state
such that 2� �� in the BEC regime and there is a
point on the BCS side whereUeff � 0 precisely.

Figure 9 presents a plot of this scattering length
k a k aF s F� * for the case of 6Li. It follows that as is
negative when there is no bound state, it tends to 	� at
the onset of the bound state and to �� just as the bound
state stabilizes. It remains positive but decreases in
value as the interaction becomes increasingly strong.
The magnitude of as is arbitrarily small in both the ex-
treme BEC and BCS limits, but with opposite sign.

2.2. T-matrix-based approaches to BCS–BEC cross-
over in the absence of Feshbach effects

To address finite temperature in a way which is
consistent with Eq. (1), or with alternative ground
states, one introduces a T-matrix approach. Here one
solves self consistently for the single fermion propaga-
tor G and the pair propagator t. That one stops at this
level without introducing higher order Green’s func-
tions (involving three, and four particles, etc) is be-
lieved to be adequate for addressing a leading order
mean field theory such as that represented by Eq. (1).
One can see that pair–pair (boson–boson) interactions
are only treated in a (generalized) mean field averag-
ing procedure; they arise exclusively from the fer-
mions and are sufficiently weak so as not to lead to
any incomplete condensation in the ground state, as is
compatible with Eq. (1).

In this section we demonstrate that at the T-matrix
level there are three distinct schemes which can be im-

plemented to address BCS–BEC crossover physics.
Above Tc, quite generally one writes for the t-matrix

t Q
U
U Q

( )
( )

�
�1 !

(11)

and theories differ only on what is the nature of the
pair susceptibility !( )Q , and the associated self en-
ergy of the fermions. Below Tc one can also consider a
T-matrix approach to describe the particles and pairs
in the condensate. For the most part we will defer ex-
tensions to the broken symmetry phase to Section 2.3.

In analogy with Gaussian fluctuations, Nozieres
and Schmitt–Rink considered [24]

!0 0 0( ) ( ) ( )Q G K G Q K
K

� 	� (12)

with self energy

"0 0( ) ( ) ( )K t Q G Q K
Q

� 	� , (13)

where G K0( ) is the noninteracting fermion Green’s
function. The number equation of the Nozie-
res–Schmitt–Rink scheme [22,24] is then deduced in
an approximate fashion [84] by using a leading order
series for G with

G G G G� �0 0 0 0" . (14)

It is straightforward, however, to avoid this approxi-
mation in Dyson’s equation, and a number of groups
[31,37] have extended NSR in this way.

Similarly one can consider

!( ) ( ) ( )Q G K G Q K
K

� 	� (15)

with self energy

"( ) ( ) ( )K t Q G Q K
Q

� 	� . (16)

This latter scheme has been also extensively discussed
in the literature, by among others, Haussmann [85],
Tchernyshyov [86] and Yamada and Yanatse [44].

Finally, we can contemplate the asymmetric form
[25] for the T-matrix, so that the coupled equations
for t Q( ) and G K( ) are based on

!( ) ( ) ( )Q G K G Q K
K

� 	� 0 (17)

with self energy

"( ) ( ) ( )K t Q G Q K
Q

� 	� 0 . (18)

It should be noted, however, that this asymmetric
form can be derived from the equations of motion by
truncating the infinite series at the three-particle

546 Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5

Qijin Chen, Jelena Stajic, and K. Levin

600 700 800 900 1000
B, G

–3

–2

–1

0

1

2

3
BEC PG BCS

834 G

k
a F

s

Fig. 9. Characteristic behavior of the scattering length for
6Li in the three regimes.



level, G3, and then factorizing the G3 into one- and
two-particle Green’s functions [87]. The other two
schemes are constructed diagrammatically or from a
generating functional, (as apposed to derived from the
Hamiltonian). It will be made clear in what follows
that, if one’s goal is to extend the usual crossover
ground state of Eq. (1) to finite temperatures, then
one must choose the asymmetric form for the pair sus-
ceptibility, as shown in Eq. (17). Other approaches
such as the NSR approach to Tc, or that of Haussmann
lead to different ground states which should, how-
ever, be very interesting in their own right . These
will need to be characterized in future. Indeed, the
work of Strinati group has also emphasized that the
ground state associated with the Tc calculations based
on NSR is distinct from that in the simple mean field
theory of Eq. (1), and they presented some aspects of
this comparison in Ref. 88.

Other support for this GG0-based T-matrix scheme
comes from its equivalence to self consistent
Hartree-approximated Ginzburg–Landau theory [89].
Moreover, there have been detailed studies [90] to
demonstrate how the superfluid density � s can be
computed in a fully gauge invariant (Ward Identity
consistent) fashion, so that it vanishes at the self con-
sistently determined Tc. Such studies are currently
missing for the case of the other two T-matrix
schemes.

Some concerns about the other two T-matrix
schemes can be raised. In Ref. 24 pairing fluctuation
effects are not self consistently included so that self
energy corrections appear in the number equation but
not in the gap equation. Similarly, the GG-based
T-matrix scheme of Ref. 85 fails to recover BCS theory
[87] in the weak attraction limit where pairing fluctu-
ations are negligible.

2.3. Extending conventional crossover ground state
to T � 0: T-matrix scheme in the presence of

closed-channel molecules

In the T-matrix scheme we employ, the pairs are
described by the pair susceptibility !( )Q �
�  	

�K /G Q K G K0 2
2( ) ( )� k q where G depends on a

BCS-like self energy " �( ) ( )K G K� 	 	2
0

2� k . Through-

out this section � k � 	exp( )k / k2
0
22 introduces a mo-

mentum cutoff, where k0 represents the inverse range
of interaction, which is assumed infinite for a contact
interaction.

The noncondensed pairs [91] have propagator
t Q U Q U Q Qpg( ) ( ) / [ ( ) ( )]� �eff eff1 ! , where Ueff is
the effective pairing interaction which involves the di-
rect two-body interactionU as well as virtual excita-
tion processes associated with the Feshbach resonance

[29,91]. At smallQ, tpg can be expanded, after analyt-
ical continuation (i in� �� � �0 ), as

t Q
Z

ipg
q Q

( ) �
	 � �

�1

� � #�pair
. (19)

The parameters appearing in Eq. (19) are discussed in
more detail in Ref. 79. Here Z �1 is a residue and
� q q / M� 2 2 * the pair dispersion, where M* is the
effective pair mass. The latter parameter as well as
the pair chemical potential �pair depends on the im-
portant, but unknown, gap parameter � through the
fermion self energy ". The decay width #Q is negligi-
bly small for small Q below Tc.

While there are alternative ways of deriving the
self consistent equations which we use (such as a de-
coupling of the Green’s function equations of motion
[87]), here we present an approach which shows how
this GG0-based T-matrix scheme has strong analogies
with the standard theory of BEC. But, importantly
this BEC is embedded in a self consistent treatment of
the fermions. Physically, one should focus on � as re-
flecting the presence of bosonic degrees of freedom. In
the fermionic regime (� � 0), it represents the energy
required to break the pairs, so that � is clearly associ-
ated with the presence of «bosons». In the bosonic re-
gime, �2 directly measures the density of pairs.

In analogy with the standard theory of BEC, it is
expected [91] that � contains contributions from both
noncondensed and condensed pairs. The associated
densities are proportional to � pg T2 ( ) and ~ ( )� sc T2 , re-
spectively. We may write the first of several con-
straints needed to close the set of equations. (i) One
has a constraint on the total number of pairs [79]
which can be viewed as analogous to the usual BEC
number constraint

� � �2 2 2( ) ~ ( ) ( )T T Tsc pg� � . (20)

To determine �, (ii) one imposes the BEC-like con-
straint that the pair chemical potential vanishes in the
superfluid phase:

�pair � �0 T Tc. (21)

This yields

t Q Upg
� �� � � �1 10 0 0 0( ) ( ) ( )eff ! (22)

so that

U
f E

E
k

eff
� �

	
��1 20

1 2

2
0( )

( )k

k
k� . (23)

Importantly, below Tc, � satisfies the usual BCS gap
equation. Here we introduce the quasiparticle disper-
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sion Ek k k� 	 �( )� � �2 2 2� , where �k � �
2 2 2k / m is

the fermion kinetic energy, � is the fermionic chemi-
cal potential, and f x( ) is the Fermi distribution func-
tion.

(iii) In analogy with the standard derivation of
BEC, the total contribution of noncondensed pairs is
readily computed by simply adding up their number,
based on the associated propagator

� pg pg
Q

t Q2 � 	� ( ) . (24)

One can rewrite Eq. (24) so that it looks more di-
rectly like a number equation, by introducing the Bose
distribution function b x( ) for noncondensed pairs as

� �pg qZ b T2 1� � � ( , ), (25)

so that the noncondensed pair density is given by
Z pg�2 . Note that the right hand sides of the previous
two equations depend on the unknown � through the
self energy appearing inG which, in turn enters tpg or
� q. Also note that at T � 0, � pg � 0 so that all pairs
are condensed as is consistent with the mean-field
BCS–Leggett ground state.

Finally, in analogy with the standard derivation of
BEC, (iv) one can then compute the number of con-
densed pairs associated with ~� sc, given that one
knows the total � and the noncondensed component.

Despite this analogy with BEC, fermions are the
fundamental particles in the system. It is their chemi-
cal potential � that is determined from the number
conservation constraint

n n n n n nf b b f b� � � � �2 2 20
tot . (26)

Here nb0 and nb represent the density of condensed
and noncondensed closed-channel molecules, respec-
tively, nb

tot is the sum, and n G Kf K�  2 ( ) is the
atomic density associated with the open-channel fer-
mions. These closed channel fermions have a propaga-
tor D Q( ), which we do not discuss in much detail in
order to make the presentation simpler. Here

n D Q Z bb
Q

b
q

� 	 �� �( ) ( )� , (27)

where b x( ) is the Bose distribution function. The
renormalized propagator D Q( ) is given by the same
equation as Eq. (19) with a different residue
Z Zb
� �1 .
In this way the system of equations is complete

[91]. The numerical scheme is straightforward in prin-
ciple. We compute � (and �) via Eqs. (23) and (24),
to determine the contribution from the condensate ~� sc
via Eqs. (20) and (24). Above Tc, this theory must be

generalized to solve self-consistently for �pair which
no longer vanishes [92].

3. Physical implications: ultracold atom
superfluidity

In this section we compare four distinct classes of
experiments on ultracold trapped fermions with the-
ory. These are thermodynamics [77,92], temperature
dependent density profiles [93], RF pairing gap spec-
troscopy [72,94,95], and collective mode measure-
ments [71,75]. We address all four experiments in the
context of the mean field ground state of Eq. (1), and its
finite temperature extension discussed in Section 2.3.
That there appears to be good agreement between the-
ory and experiment lends rather strong support to the
simple mean field theory, which is at the center of this
Review. Interestingly, pseudogap effects are evident in
various ways in these experiments and this serves to tie
the ultracold fermions to the high Tc superconductors.

3.1. Tc calculations and trap effects

Before turning to experiment, it is important to dis-
cuss the behavior of the transition temperature which
is plotted as a function of scattering length in Fig. 10
for the homogeneous case, presuming s-wave pairing.
We discuss the effects of d-wave pairing in Section 4
in the context of application to the cuprates. Starting
from the BCS regime this figure shows that Tc ini-
tially increases as the interaction strength increases.
However, this increase competes with the opening of a
pseudogap or excitation gap �( )Tc . Technically, the
pairs become effectively heavier before they form true
bound states. Eventually Tc reaches a maximum (very
near unitarity) and then decreases slightly until field
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strengths corresponding to the point where � becomes
zero. At this field value (essentially where Tc is mini-
mum), the system becomes a «bosonic» superfluid,
and beyond this point Tc increases slightly to reach
the asymptote corresponding to an ideal Bose gas.
Somewhat different behavior in Tc appears in alterna-
tive theories where Tc is found to have a maximum
near unitarity and to approach the BEC asympotote
from above [24] or to have no extremal points and to
approach the BEC asymptote from below [85].

Trap effects change these results only quantita-
tively as seen in Fig. 11. However, the maximum in Tc
may no longer be visible. The calculated value of Tc
( . )� 0 3TF at unitarity is in good agreement with ex-
periment [77,96] and other theoretical estimates [97].
To treat these trap effects one introduces the local
density approximation (LDA) in which Tc is com-
puted under the presumption that the chemical poten-
tial � �� 	V r( ) . Here we consider a spherical trap
with V r / m r( ) ( )� 1 2 2 2$ . The Fermi energy EF is de-
termined by the total atom number N via
E k N k / mF BT

/
FF

� � �� �$( )3 21 3 2 2 , where kF is the
Fermi wavevector at the center of the trap. It can be
seen that the homogeneous curve is effectively multi-
plied by an «envelope» curve when a trap is present.
This envelope, with a higher BEC asymptote, reflects
the fact that the particle density at the center of the
trap is higher in the bosonic, relative to the fermionic
case. In this way Tc is relatively higher in the BEC re-
gime, as compared to BCS, whenever a trap is present.

Figure 12 presents a plot of the position dependent
excitation gap �( )r and particle density n r( ) profile
over the extent of the trap. An important point needs to
be made: because the gap is largest at the center of the
trap, bosonic excitations will be dominant there. At the

edge of the trap, by contrast, where fermions are only
weakly bound (since �( )r is small), the excitations will
be primarily fermionic. We will see the implications of
these observations as we examine thermodynamic and
RF spectra data in the ultracold gases.

3.2. Thermodynamical experiments

Figure 13 present a plot which compares experi-
ment and theory in the context of thermodynamic ex-
periments [77,92] on trapped fermions. Plotted on the
vertical axis is the energy which can be input in a con-
trolled fashion experimentally. The horizontal axis is
temperature which is calibrated theoretically based on
an effective temperature ~T introduced phenomeno-
logically, and discussed below. The experimental data
are shown for the (effectively) non-interacting case as
well as unitary. In this discussion we treat the non-in-
teracting and BCS cases as essentially equivalent since
� is so small on the scale of the temperatures consid-
ered. The solid curves correspond to theory for the two
cases. Although not shown here, even without a tem-
perature calibration, the data suggests a phase transi-
tion is present in the unitary case. This can be seen as a
result of the change in slope of E T( )

~
as a function of ~T.

The phenomenological temperature ~T is relatively
easy to understand. What was done experimentally to
deduce this temperature was to treat the unitary case
as an essentially free Fermi gas to, thereby, infer the
temperature from the width of the density profiles,
but with one important proviso: a numerical constant
is introduced to account for the fact that the density
profiles become progressively narrower as the system
varies from BCS to BEC. This systematic variation in
the profile widths reflects the fact that in the free
Fermi gas case, Pauli principle repulsion leads to a
larger spread in the particle density than in the
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bosonic case. And the unitary regime has a profile
width which is somewhere in between, so that one
parametrizes this width by a simple function of %. We
can think of% as reflecting bosonic degrees of freedom,
within an otherwise fermionic system. At% � 0 the sys-
tem is a free Fermi gas. The principle underlying this
rescaling of the non-interacting gas is known as the
«universality hypothesis» [96,98]. At unitarity, the
Fermi energy of the non-interacting system is the only
energy scale in the problem (for the widely used con-
tact potential) since all other scales associated with
the two-body potential drop out when as � & �. We
refer to this phenomenological fitting temperature
procedure as Thomas–Fermi (TF) fits.

An interesting challenge was to relate this pheno-
menological temperature ~T to the physical temperature
T; more precisely one compares 1 � % ~T and T. This re-

lationship is demonstrated in the inset of Fig. 13. And
it was in this way that the theory and experiment
could be plotted on the same figure, as shown in the
main body of Fig. 13. The inset was obtained using
theory only. The theoretically produced profiles were
analyzed just as the experimental ones to extract
1 � % ~T and compare it to the actual T. Above Tc no

recalibration was needed as shown by the straight line
going through the diagonal. Below Tc the phenome-
nologically deduced temperatures were consistently
lower than the physical temperature. That the normal
state temperatures needed no adjustment shows that
the phenomenology captures important physics. It

misses, however, an effect associated with the pres-
ence of a condensate which we will discuss shortly.

We next turn to a more detailed comparison of the-
ory and experiment for the global and low T thermo-
dynamics. Figure 14 presents a blow-up of E at the
lowest T comparing the unitary and non-interacting
regimes. The agreement between theory and experi-
ment is quite good. In the figure, the temperature de-
pendence of E reflects primarily fermionic excitations
at the edge of the trap, although there is a small
bosonic contribution as well. It should be noted that
the theoretical plots were based on fitting % to experi-
ment by picking a magnetic field very slightly off res-
onance. (In the simple mean field theory % � 	0 41. ,
and in Monte Carlo simulations [60] % � 	0 54. . Both
these theoretical numbers lie on either side of experi-
ment [77] where % � 	0 49. ).

Figure 15 presents a wider temperature scale plot
which, again, shows very good agreement. Impor-
tantly one can see the effect of a pseudogap in the uni-
tary case. The temperature T* can be picked out from
the plots as that at which the non-interacting and uni-
tary curves intersect. This corresponds roughly to
T Tc
� � 2 .

3.3. Temperature dependent particle density
profiles

In order to understand more deeply the behavior of
the thermodynamics, we turn next to a comparison of
finite T density profiles. Experiments which measure
these profiles [74,99] all report that they are quite
smooth at unitarity, without any signs of the bimo-
dality seen in the BEC regime. We discuss these pro-
files in terms of the four panels in Fig. 16. These fig-
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ures are a first step in understanding the previous
temperature calibration procedure.

In this figure we compare theory and experiment
for the unitary case. The experimental data were esti-
mated to correspond to roughly this same temperature
(T/TF � 019. ) based on the calibration procedure dis-
cussed above. The profiles shown are well within the
superfluid phase (T Tc F� 0 3. at unitarity). This figure
presents Thomas–Fermi fits [99] to (a) the experi-
mental and (b) theoretical profiles as well as (c) their
comparison, for a chosen RTF � 100 �m, which makes
it possible to overlay the experimental data (circles)
and theoretical curve (line). Finally Fig. 16,d indi-
cates the relative !2 or root-mean-square (rms) devia-
tions for these TF fits to theory. This figure was made
in collaboration with the authors of Ref. 99. Two of
the three-dimensions of the theoretical trap profiles
were integrated out to obtain a one-dimensional repre-
sentation of the density distribution along the trans-
verse direction: n x dydz n r( ) ( )� � .

This figure is in contrast to earlier theoretical stud-
ies which predict a significant kink at the condensate
edge which appears not to have been seen experimen-
tally [74,99]. Moreover, the curves behave
monotonically with both temperature and radius. In-
deed, in the unitary regime the generalized TF fitting
procedure of Ref. 99 works surprisingly well. And
these reasonable TF fits apply to essentially all tem-
peratures investigated experimentally [99], as well as
theoretically, including in the normal state.

It is important to establish why the profiles are so
smooth, and the condensate is, in some sense, rather in-
visible, except for its effect on the TF-inferred-temper-
ature. This apparent smoothness can be traced to the
presence of noncondensed pairs of fermions which need

to be included in any consistent treatment. Indeed,
these pairs below Tc are a natural counterpart of the
pairs above Tc which give rise to pseudogap effects.

To see how the various contributions enter into the
trap profile, in Fig. 17 we plot a decomposition of this
profile for various temperatures from below to above
Tc. The various color codes indicate the condensate
along with the noncondensed pairs and the fermions.
This decomposition is based on the superfluid density
so that all atoms participate in the condensation at
T � 0. This, then, forms the basis for addressing both
thermodynamics and RF pairing-gap spectroscopy in
this Review.

The figure shows that by T T /c� 2 there is a reason-
able number of excited fermions and bosons. As antici-
pated earlier in Section 2.3, the latter are at the trap
edge and the former in the center. By T Tc� the con-
densate has disappeared and the excitations are a mix
of fermions (at the edge) and bosons towards the cen-
ter. Indeed, the noncondensed bosons are still present
by T Tc� 15. , as a manifestation of a pseudogap effect.
Only for somewhat higher T Tc� 2 do they disappear
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altogether, so that the system becomes a non-interact-
ing Fermi gas.

Two important points should be made. The non-
condensed pairs clearly are responsible for smoothing
out what otherwise would be a discontinuity [98,100]
between the fermionic and condensate contributions.
Moreover, the condensate shrinks to the center of the
trap as T is progressively raised. It is this thermal ef-
fect which is responsible for the fact that the TF fit-
ting procedure for extracting temperature leads to an
underestimate as shown in the inset to Fig. 13. The
presence of the condensate tends to make the atomic
cloud smaller so that the temperature appears to be
lower in the TF fits.

3.4. RF pairing gap spectroscopy

Measurements [72] of the excitation gap � have
been made by using a third atomic level, called |3�,
which does not participate in the superfluid pairing.
Under application of RF fields, one component of the
Cooper pairs, called |2�, is presumably excited to state
|3�. If there is no gap � then the energy it takes to ex-
cite |2� to |3� is the atomic level splitting $23. In the
presence of pairing (either above or below Tc) an extra
energy � must be input to excite the state |2�, as a re-
sult of the breaking of the pairs. Figure 18 shows a
plot of the spectra near unitarity for four different
temperatures, which we discuss in more detail below.
In general for this case, as well as for the BCS and
BEC limits, there are two peak structures which ap-
pear in the data: the sharp peak at $23 0� which is as-
sociated with «free» fermions at the trap edge and the
broader peak which reflects the presence of paired at-
oms; more directly this broad peak derives from the
distribution of � in the trap. At high T (compared to

�), only the sharp feature is present, whereas at low T
only the broad feature remains. The sharpness of the
free atom peak can be understood as coming from a
large phase space contribution associated with the
2 3� excitations [95]. Clearly, these data alone do
not directly indicate the presence of superfluidity, but
rather they provide strong evidence for pairing.

As pointed out in Ref. 94 these experiments serve as
a counterpart to superconducting tunneling in provid-
ing information about the excitation gap. A theoreti-
cal understanding of these data was first presented in
Ref. 76 using the framework of Section 2.3. Subse-
quent work [95] addressed these data in a more quan-
titative fashion as plotted in Fig. 19. Here the upper
and lower panels correspond respectively to interme-
diate and low temperatures. For the latter one sees
that the sharp «free atom» peak has disappeared, so
that fermions at the edge of the trap are effectively
bound at these low T. Agreement between theory and
experiment is quite satisfactory, although the total

552 Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5

Qijin Chen, Jelena Stajic, and K. Levin

0

0.02

0.04

0.06 n
npair
ns
nQP

0

0.02

0.04

D
e

n
si

ty
p

ro
fil

e
s

0.5 1 1.50

0.02

0.04

00.51
r/R TF

0 0.5 1 1.5 0 0.5 1 1.5 00.51
r/RTF

0 0.5 1 1.5

T/Tc= 1.5

1.0

0.75

0.5

0.25

0

Unitary

Fig. 17. Decomposition of density profiles at various tem-
peratures at unitarity. Here (light gray) refers to the con-
densate, (dark gray) to the noncondensed pairs and
(black) to the excited fermionic states. T Tc F� 027. , and
RTF is the Thomas–Fermi radius.

0.4

0

0.4

0

0.4

0

0.4

0

–20 0 20 40

Fr
ac

tio
n

al
lo

ss
in

|2
>

Therefore offset, kHz

T/T = 1.2c

1.1

0.85

<0.4

Fig. 18. Experimental RF spectra at unitarity. The tem-
peratures labeled in the figure were computed theoreti-
cally at unitarity based on adiabatic sweeps from BEC.
The two top curves, thus, correspond to the normal phase,
thereby, indicating pseudogap effects. Here EF � 25. �K,
or 52 kHz. From Ref. 72.



number of particles was adjusted somewhat relative to
the experimental estimates.

It is interesting to return to the previous figure
(Fig. 18) and to discuss the temperatures in the vari-
ous panels. What is measured experimentally are tem-
peratures T� which correspond to the temperature at
the start of a sweep from the BEC limit to unitarity.
Here fits to the BEC-like profiles are used to deduce T�
from the shape of the Gaussian tails in the trap. Based
on knowledge about thermodynamics (entropy S),
and given T�, one can then compute the final tempera-
ture in the unitary regime, assuming S is constant. In-
deed, this adiabaticity has been confirmed experimen-
tally in related work [74]. We find that the four
temperatures are as indicated in the figures. Impor-
tantly, one can conclude that the first two cases corre-
spond to a normal state, albeit close to Tc. Impor-
tantly, these figures suggest that a pseudogap is
present as reflected by the broad shoulder above the
narrow free atom peak.

3.5. Collective breathing modes at T � 0

We turn, finally, to a comparison between theory
[101,102] and experiment [71,75,96,103] for the col-
lective breathing modes within a trap at T � 0. The
very good agreement has provided some of the earliest
and strongest support for the simple mean field theory
of Eq. (1). Interestingly, Monte Carlo simulations
which initially were viewed as a superior approach,

lead to significant disagreement between theory and
experiment [104]. Shown in Fig. 20 is this comparison
for the axial mode in the inset and the radial mode in
the main body of the figure as a function of magnetic
field. The experimental data are from Ref. 71. The
original data on the radial modes from Ref. 75, was in
disagreement with that of Ref. 71, but this has since
been corrected [104], and there is now a consistent ex-
perimental picture from both the Duke and the
Innsbruck groups for the radial mode frequencies.

At T � 0, calculations of the mode frequencies can
be reduced to a calculation of an equation of state for
� as a function of n. One of the most important conclu-
sions from this figure is that the behavior in the
near-BEC limit (which is still far from the BEC as-
ymptote) shows that the mode frequencies decrease
with increasing magnetic field. This is opposite to ear-
lier predictions [105] based on the behavior of true
bosons where a Lee-Yang term would lead to an in-
crease. Indeed, the pair operators do not obey the com-
mutation relations of true bosons except in the zero
density or k aF � �0 limit [106]. Figure 20, thus, un-
derlines the fact that fermionic degrees of freedom (or
compositeness) are still playing a role at these mag-
netic fields. There are predictions in the literature
[107] that one needs to achieve k aF somewhat less
than 0 3. (experimentally, the smallest values for these
experiments are 0.3 and 0.7 for the various groups) in
order to approach the true bosonic limit. At this point,
then, the simple mean field theory will no longer be
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adequate. Indeed, there are other indications [108] of
the breakdown of this mean field in the extreme BEC
limit which are, physically, reflected in the width of
the particle density profiles. This originates from an
overestimate (by roughly a factor of 3) of the size of
the effective «inter-boson» scattering length.

Overall the mean field theory presented here looks
very promising. Indeed, the agreement between theory
and experiment is better than one might have antici-
pated. For the collective mode frequencies, it appears
to be better than Monte Carlo calculations [104]. Nev-
ertheless, uncertainties remain. Theories which posit a
different ground state will need to be compared with
the four experiments discussed here. It is, finally,
quite possible that incomplete T � 0 condensation will
become evident in future experiments. If so, an alter-
native wavefunction will have to be contemplated
[107,109]. What appears to be clear from the current
experiments is that, just as in high Tc superconduc-
tors, the ultracold fermionic superfluids exhibit
pseudogap effects. These are seen in thermodynamics,
in RF spectra and in the temperature dependence of
the profiles (through the noncondensed pair contribu-
tions). Moreover, while not discussed here, at finite T,
damping of the collective mode frequencies seems to
change qualitatively [96] at a temperature which is
close to the estimated T� .

Looking to the future, at an experimental level,
new pairing gap spectroscopies appear to be emerging
at a fairly rapid pace [110,111]. These will further test
the present and subsequent theories. Indeed, recently,
a probe of the closed channel overtion [111] has been
analyzed [112] within the present framework and has
led to good quantitative agreement between theory
and experiment.

4. Physical implications: high Tc
superconductivity

4.1. Phase diagram and superconducting coherence

The high Tc superconductors are different from the
ultracold fermionic superfluids in one key respect;
they are d-wave superconductors and their electronic
dispersion is associated with a quasi-two dimensional
tight binding lattice. In many ways this is not a pro-
found difference from the perspective of BCS–BEC
crossover. Figure 21 shows a plot of the two important
temperatures Tc and T� as a function of increasing at-
tractive coupling. On the left is BCS and the right is
PG. The BEC regime is not visible. This is because Tc
disappears before it can be accessed. This disappear-
ance of Tc is relatively easy to understand. Because the
d-wave pairs are more extended (than their s-wave
counterparts) they experience Pauli principle repul-

sion more intensely. Consequently the pairs localize
(their mass is infinite) well before the fermionic chem-
ical potential is negative [42].

The competition between T� and Tc, in which as T�

increases, Tc decreases, is also apparent in Fig. 21.
This is a consequence of pseudogap effects. More spe-
cifically, the pairs become heavier as the gap increases
in the fermionic spectrum, competing with the in-
crease of Tc due to the increasing pairing strength. It
is interesting to compare Fig. 21 with the experimen-
tal phase diagram plotted as a function of the doping
concentration x in Fig. 5. If one inverts the horizontal
axis (and ignores the unimportant AFM region) the
two are very similar. To make an association from cou-
plingU to the variable x, it is reasonable to fit T� . It
is not particularly useful to implement this last step
here, since we wish to emphasize crossover effects
which are not complicated by «Mott physics».

Because of quasi-two dimensionality, the energy
scales of the vertical axis in Fig. 21 are considerably
smaller than their three-dimensional analogues. Thus,
pseudogap effects are intensified, just as conventional
fluctuation effects are more apparent in low-dimen-
sional systems. This may be one of the reasons why the
cuprates are among the first materials to clearly reveal
pseudogap physics. Moreover, the present calculations
show that in a strictly 2D material, Tc is driven to
zero, by bosonic or fluctuation effects. This is a direct
reflection of the fact that there is no Bose condensa-
tion in 2D.

The presence of pseudogap effects raises an interest-
ing set of issues surrounding the signatures of the tran-
sition which the high Tc community has wrestled
with, much as the cold atom community is doing to-
day. For a charged superconductor there is no diffi-
culty in measuring the superfluid density, through the
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electrodynamic response. Thus one knows with cer-
tainty where Tc is. Nevertheless, people have been
concerned about precisely how the onset of phase co-
herence is reflected in thermodynamics, such as Cv or
in the fermionic spectral function, given that a gap is
already present at the onset of superconductivity. One
understands how phase coherence shows up in BCS
theory, since the ordered state is always accompanied
by the appearance of an excitation gap.

To address these coherence effects one has to intro-
duce a distinction [115] between the self energy asso-
ciated with noncondensed and condensed pairs. This
distinction is blurred by the approximations made in
Section 2.3. Within this improved scheme [115] super-
conducting coherence effects can be probed as, pre-
sented in Fig. 22, along with a comparison to experi-
ment. Shown are the results of specific heat and
tunneling calculations and their experimental coun-
terparts [2,33]. The latter measures, effectively, the
density of fermionic states. Here the label «PG» corre-
sponds to an extrapolated normal state in which we set
the superconducting order parameter � sc to zero, but
maintain the the total excitation gap � to be the same
as in a phase coherent, superconducting state. Agree-
ment between theory and experiment is satisfactory.

4.2. Electrodynamics in the superconducting phase

In some ways the subtleties of phase coherent pair-
ing are even more perplexing in the context of electro-
dynamics. Figure 7 presents a paradox in which the
excitation gap for fermions appears to have little to do
with the behavior of the superfluid density. This
superfluid density can be readily computed within the
BCS–BEC crossover scenario [25,48]. Particularly
important is to include all excitations of the conden-
sate in a fully consistent fashion, compatible with
thermodynamics, and which is also manifestly gauge
invariant. To make contact with electrodynamic ex-
periments, one has to introduce the variable x and this
is done via a fit to T x*( ) in the phase diagram. In ad-
dition it is also necessary to fit � s T x( , )� 0 to experi-
ment, and we do so here, noting that [32] the Uemura
relation � s cx T x( , ) ( )0 ' no longer holds for very
underdoped samples [114,116]. By fitting these x-de-
pendent quantities we are, in effect accounting for at
least some aspects of Mott physics. The paradox raised
by Fig. 7 is resolved by noting that there are bosonic
excitations of the condensate [25] and that these be-
come more marked with underdoping, as pseudogap
effects increase. In this way � s does not exclusively re-
flect the fermionic gap, but rather vanishes «prema-
turely» before this gap is zero, as a result of pair exci-
tations of the condensate.

This theory can be quantitatively compared with
experiment. Figure 23 presents theoretical and experi-
mental plots of the lower critical field, H Tc1( ), for a
group of severely underdoped YBCO crystals as con-
sidered in Ref. 114. There it was argued that
H T Tc s1( ) ( )' � , so that the lower critical field effec-
tively measures the in-plane superfluid density.
Experimentally what is directly measured is the mag-
netization with applied field parallel to the c-axis. The
experimental results are shown on the lower two pan-
els and theory on the upper two. The left hand figures
plot H Tc1( ) vs T and the right hand figures corre-
spond to a rescaling of this function in the form
H T /Hc c1 1 0( ) ( ) vs T/Tc. Theoretically, it is found
that the fermionic contribution leads to a linear T de-
pendence at low T, associated with d-wave pairing,
whereas the bosonic term introduces a T /3 2 term.
Quite remarkably even when the Uemura relation no
longer holds, there is still a «universality» in the nor-
malized plots as shown in both theory and experiment
by the right hand figures. It should be noted that the
experimental plot contains (at Tc � 55 5. K) a slightly
different cuprate phase known as the ortho-II phase,
which does not lie on the universal curves. The univer-
sality found here can be understood as associated with
the fact that T xc( ), rather than �( )x , is the fundamen-
tal energy scale in � s T x( , ). The reason that �( )x is
not the sole energy scale is that bosonic degrees of
freedom are also present, and help to drive � s to zero
at Tc. By contrast, Fermi-liquid based approaches
[114,117] assume that the fermions are the only rele-
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vant excitations, and they account for this data by in-
troducing a phenomenological parameter ( which cor-
responds to the effective charge of the fermionic
quasi-particles.

As anticipated in earlier theoretical calculations
[25] the bosonic contribution begins to dominate in se-
verely underdoped systems so that the slope dH /dTc1
(associated with the lowest temperatures reached ex-
perimentally) should decrease with underdoping. Al-
though observed a number of years after this predic-
tion, this is precisely what is seen experimentally, as
shown in Fig. 24. Here the inset plots the experimen-
tal counterpart data. It can be seen that theory and ex-
periment are in reasonably good quantitative agree-
ment. This theoretical viewpoint is very different from
a «Fermi-liquid» based treatment of the supercon-
ducting state, for which the strong decrease in the
slope of Hc1 was not expected. Within the present for-
malism, the optical conductivity [1] ) $( ) is similarly
modified [118] to include bosonic as well as fermionic
contributions.

4.3. Bosonic power laws and pairbreaking effects

The existence of noncondensed pair states below Tc
affects thermodynamics, in the same way that electro-

dynamics is affected, as discussed above. Moreover,
one can predict [36] that the q2 dispersion will lead to
ideal Bose gas power laws in thermodynamical and
transport properties. These will be present in addition
to the usual power laws or (for s-wave) exponential
temperature dependencies associated with the
fermionic quasiparticles. Note that the q2 dependence
is dictated by the ground state of Eq. (1). Clearly this
mean field like state is inapplicable in the extreme
BEC limit, where, presumably interboson effects be-
come important and lead to a linear dispersion. Pre-
sumably, in the PG or near-BEC regimes, fermionic
degrees of freedom are still dominant and it is reason-
able to apply Eq. (1). Importantly, at present neither
the cuprates nor the cold atom systems access this true
BEC regime.

The consequences of these observations can now be
listed [36]. For a quasi-two dimensional system,C /Tv
will appear roughly constant at the lowest tempera-
tures, although it vanishes strictly at T � 0 as T /1 2.
The superfluid density � s T( ) will acquire a T /3 2 con-
tribution in addition to the usual fermionic terms. By
contrast, for spin singlet states, there is no explicit
pair contribution to the Knight shift. In this way the
low T Knight shift reflects only the fermions and ex-
hibits a scaling with T/�( )0 at low temperatures. Ex-
perimentally, in the cuprates, one usually sees a finite
low T contribution to C /Tv . A Knight shift scaling is
seen. Finally, also observed is a deviation from the
predicted d-wave linear in T power law in � s . The new
power laws inCv and � s are conventionally attributed
to impurity effects. Experiments are not yet at a stage
to clearly distinguish between these two alternative
explanations.
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gime with experimental data (inset) from Ref. 114. The
theoretical slopes are estimated using the low temperature
data points accessed experimentally. The quantitative
agreement is very good.



Pairbreaking effects are viewed as providing impor-
tant insight into the origin of the cuprate pseudogap.
Indeed, the different pairbreaking sensitivities of T�

and Tc are usually proposed to support the notion that
the pseudogap has nothing to do with superconductiv-
ity. To counter this incorrect inference, a detailed set
of studies was conducted (based on the BEC–BCS sce-
nario), of pairbreaking in the presence of impurities
[119,120] and of magnetic fields [121]. These studies
make it clear that the superconducting coherence tem-
perature Tc is far more sensitive to pairbreaking than
is the pseudogap onset temperature T� . Indeed, the
phase diagram of Fig. 21 which mirrors its experimen-
tal counterpart, shows the very different, even com-
peting nature of T� and Tc, despite the fact that both
arise from the same pairing correlations.

4.4. Anomalous normal state transport:
Nernst coefficient

Much attention is given to the anomalous behavior
of the Nernst coefficient in the cuprates [49]. This co-
efficient is rather simply related to the transverse ther-
moelectric coefficient ( xy which is plotted in Fig. 25.
In large part, the origin of the excitement in the litera-
ture stems from the fact that the Nernst coefficient be-
haves smoothly through the superconducting transition.
Below Tc it is understood to be associated with super-
conducting vortices. Above Tc if the system were a
Fermi liquid, there are arguments to prove that the
Nernst coefficient should be essentially zero. Hence the
observation of a non-negligible Nernst contribution has
led to the picture of fluctuating «normal state vortices».

The formalism of Ref. 51 can be used to address
these data within the framework of BCS–BEC cross-
over. The results are plotted in Fig. 25 with a subset
of the data plotted in the upper right inset. It can be
seen that the agreement is reasonable. In this way a
«pre-formed pair» picture appears to be a viable alter-
native to «normal state vortices». It will, ultimately,
be necessary to take these transport calculations below
Tc. This is a project for future research and in this con-
text it will be important to establish in this picture
how superconducting state vortices are affected by the
noncondensed pairs and conversely.

5. Conclusions

In this Review we have summarized a large body of
work on the subject of the BCS–BEC crossover sce-
nario. In this context, we explored the intersection of
two very different fields: high Tc superconductivity
and cold atom superfluidity. Theories of cuprate su-
perconductivity can be crudely classified as focusing
on «Mott physics» which reflects the anomalously

small zero temperature superfluid density and «cross-
over physics», which reflects the anomalously short
coherence length. Both schools are currently very in-
terested in explaining the origin of the mysterious
pseudogap phase. In this Review we have presented a
case for its origin in crossover physics. The pseudogap
in the normal state can be associated with metastable
pairs of fermions; a (pseudogap) energy must be sup-
plied to break these pairs apart into their separate
components. The pseudogap also persists below Tc in
the sense that there are noncondensed fermion pair ex-
citations of the condensate.

The recent discovery of superfluidity in cold fer-
mion gases opens the door to a set of fascinating prob-
lems in condensed matter physics. Unlike the bosonic
system, there is no counterpart of Gross–Pitaevskii
theory. A new theory which goes beyond BCS and en-
compasses BEC in some form or another will have to
be developed in concert with experiment. As of this
writing, there are four experiments where the simple
mean field theory discussed in this review is in rea-
sonable agreement with the data. These include the
collective mode studies over the entire range of acces-
sible magnetic fields [101,102]. In addition in the uni-
tary regime, RF spectroscopy-based pairing gap stud-
ies [76,95], as well as density profile [93] and
thermodynamic studies [77,92] all appear to be com-
patible with this theory. Interestingly, all of these
provide indications for a pseudogap either directly
through the observation of the normal state energy
scales, T* and �, or indirectly, through the observa-
tion of noncondensed pairs. The material in this Re-
view is viewed as the first of many steps in a long pro-
cess. It is intended to provide continuity from one
community (which has addressed the BCS–BEC
crossover scenario, since the early 1990’s) to another.
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