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We review the static and dynamical properties of stripe textures with regard to their relevance
in high-Tc superconductors. Our investigations are based on the time-dependent Gutzwiller ap-
proximation which allows for the computation of random-phase approximation-like (RPA) fluctu-
ations on top of the Gutzwiller approximation (GA). No restrictions are imposed on the charge and
spin configurations which makes the method suitable for the calculation of linear excitations
around symmetry-broken solutions. Within this approach we calculate the optical conductivity of
stripes and compare our results with reflectivity experiments on cuprates. Furtheron we use the
spin-rotational invariant extension of the GA + RPA method in order to investigate the character-
istics of magnetic excitations in the stripe phase of cuprates. Our results are in very good agree-
ment with neutron scattering and optical experiments on lanthanum cuprate superconductors.
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1. Introduction

Early on after the discovery of high-Tc cuprates by
Bednorz and M�ller [1] it was realized by both
experimentalists and theoreticians that many of the un-
usual properties of these compounds may be understood
by the assumption of an inhomogeneous distribution of
charge carriers. While at the beginning this inho-
mogeneity was predominantly characterized as an elec-
tronically or (and) chemically driven global phase sep-
aration another point of view soon emerged which
pointed out the existence of microsocopic or nanoscale
inhomogeneities (for a colletion of papers on this issue
see Refs. 2–4). Progress towards an understanding of
the spatial structure of the inhomogeneous charge dis-
tribution was made in 1995 when Tranquada and col-
laborators observed a splitting of both spin and charge
order peaks in La1.48Nd0.4Sr0.12CuO4 within elastic
neutron scattering [5]. The outcome of this experiment
resembled similar data in the nickelates where both in-

commensurate antiferromagnetic (AF) order [6,7] and
the ordering of charges [7,8] has been detected by neu-
tron scattering and electron diffraction, respectively.
In Ref. 7 it was shown that the magnetic ordering in
La2NiO4.125 displays itself as an occurrence of first and
third harmonic Bragg peaks whereas the charge order-
ing is associated with second harmonic peaks. From
this it was concluded that the doped holes arrange
themselves in quasi-onedimensional structures, called
stripes, which simultaneously constitute antiphase do-
main walls for the AF order.

Whereas the existence of static charge and spin or-
der in the nickelates is well established by electron,
neutron and x-ray diffraction [6–9] the interpretation
of experimental results in the cuprate compounds
[5,10–16] with respect to stripes is still controversial.

Direct evidence for static stripes in cuprates has
been most clearly established in La2–xSrxCuO4
(LSCO) co-doped with Nd, Eu or Ba. In this regard
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the stripe concept also helped to clarify the origin of
the dip in the Tc vs. x curve at doping x � 012. in
La2–xBaxCuO4 [17]. However incommensurate inelas-
tic neutron scattering signals have been found in both
LSCO and YBa2Cu3O7–� (YBCO) compounds with a
remarkable similar phenomenology [18]. Even more
static charge order has been found in YBCO without
the need for additions like Nd [19]. These experiments
suggest that the stripe picture applies also to LSCO
and YBCO where stripes may have a more dynamical
character.

In LSCO the inverse stripe spacing grows linearly
with doping x up to x /� 1 8 and the orientation ro-
tates from vertical (i.e., oriented along the Cu–O
bonds) by 45 � to diagonal for concentrations lower
x � 0 05. [12,20,21]. Moreover, from this linear rela-
tion it turns out that in the LSCO compounds stripes
are characterized by one doped hole per two unit cells
along the domain wall, that is a linear density of
added holes � � 0 5. (hereafter called «half-filled
stripe»).

Regarding the Bi2Sr2CaCu2O8 (BiSCCO) family it
is a very difficult material to perform neutron scatter-
ing so few experiments exist, a notable example being
Ref. 22. Interestingly this study finds a peak much
broader than the momentum resolution leaving plenty
of room for incommensurate effects. The existence of
incommensurate scattering in BiSCCO is also sup-
ported by the experiments of Ref. 23.

While most neutron scattering experiments focus
on the structure of spin excitations, the inhomo-
geneous charge distribution as arising from the forma-
tion of stripes has also been detected by local probes
like NQR [24–26] and NMR [27]. Due to refinements
in the experimental technique Haase et al. [27] where
even able to demonstrate a correlation of charge and
density variations on short length scales.

All these experiments suggest that stripes are a
common phenomena of all cuprates families and there-
fore may be related to superconductivity.

Concerning the theoretical aspects, stripes were
predicted by the inhomogeneous Hartree–Fock (HF)
approximation in the three-band Hubbard model [28],
the one-band Hubbard [29,30] and the t J� model
[31]. However these pioneering studies predicted insu-
lating stripes with a linear density of � � 1 added holes
per lattice constant along the stripe (instead of the ob-
served � � 0 5. ) which led to an early rejection of
stripes [32]. It was then subsequently realized that the
failure of the HF approach is due to the insufficient
treatment of electronic correlations and more ad-
vanced methods have been applied to the problem.
Within a density matrix renormalization group
(DMRG) approach White and Scalapino [33] have

found stable domain wall solutions in the physically
relevant doping regime of the t J� model which have
the correct stripe filling. The stripe stability in the
t J� model has also been investigated using exact
diagonalization [34,35] as well as quantum and
variational Monte Carlo techniques [36,37]. Besides
the HF approach a variety of methods has also been
applied to Hubbard-type models in order to investi-
gate the possibility of charge and spin order. Fleck
and collaborators [38,39] have found stable metallic
stripes using dynamical mean-field theory (DMFT)
and shown that the spectral features of these struc-
tures are consistent with angle-resolved photoemission
experiments [40]. More recently the DMRG method
has also been applied to a 6 7� Hubbard model doped
with four holes where a stable striped ground state
was found for a large variety of U/t [41]. Partially
filled metallic stripes have also been stabilized within
the Gutzwiller approximation [42] opening the way to
studies in large systems and of fluctuation effects as
will be discussed in this review.

All the above theoretical studies are based on mod-
els with only short range interactions. The tendency of
strongly correlated systems towards the formation of
inhomogeneous structures can also be accessed from an
alternative point of view based on the concept of frus-
trated phase separation [43–47]. In these theories a
phase separation instability is prevented by long-range
Coulomb interactions. As a result the long-wave-
length density fluctuations associated with phase sep-
aration are suppressed in favor of shorter-wavelength
density fluctuations, giving rise either to dynamical
slow density modes [43] or to incommensurate charge
density waves [45–47].

The formation of stripe structures in cuprates
should have profound consequences on the excitation
spectra of the system in both charge and magnetic
channels. If the mechanism of high temperature super-
conductivity is electronic the characterization of these
excitation spectra is of fundamental importance in the
same way as a well developed theory of phonons was
fundamental for the development of Bardeen–Cooper
and Schrieffer theory of superconductivity [48].

Our purpose here is therefore to give an overview
over our investigations in this regard and to demon-
strate that peculiar properties of a number of experi-
ments which probe the dynamics in the charge and
spin sectors can be understood within the stripe sce-
nario based on short range models, i.e., without
long-range Coulomb interaction.

Previous analogous calculations have been mostly
performed within the Hartree–Fock approximation of
the one-band Hubbard model supplemented with
random-phase approximation (RPA) fluctuations
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[49–53]. However, in case of the HF approximation
[54] vertical stripe solutions are only favored for unre-
alistic small values of U/t � 3 5� whereas a ratio of
U/t � 8 is required to reproduce the low energy spec-
trum of the three-band model [55]. In order to enable
a quantitative comparison with experiment our inves-
tigations here are based on the unrestricted Gutzwiller
approximation [56,57] which provides an excellent
variational Ansatz for the ground state energy of Hub-
bard-type models and which can also be extended to
include fluctuations beyond the saddle-point solution
[58–60].

The corresponding formalism is outlined in Sec. 1
where we derive the relevant RPA interaction kernels
in both the charge and spin sector. For the latter, one
has to go beyond the standard Gutzwiller approxima-
tion (GA) [61] since the calculation of spin excita-
tions requires a proper consideration of transverse spin
degrees of freedom. For this purpose we derive the
spin-rotational Gutzwiller approximated energy func-
tional in the appendix. In Sec. 2 we present a compu-
tation of metallic mean-field stripes [42] within the
unrestricted GA applied to the three-band Hubbard
model. The behavior of the magnetic incom-
mensurability � � 1 2/ d( ) [11,12,14,15] (d is the dis-
tance between charged stripes in units of the lattice
constant), chemical potential [62,63], and transport
experiments [64,65] as a function of doping is ex-
plained in a parameter free way [42]. Section 3 is de-
voted to an investigation of charge fluctuations based
on the solutions of Sec. 2 within the time dependent
GA [60]. Especially we present results for the evolu-
tion of the optical conductivity with doping [66] find-
ing very good agreement with experiment [67,68].
The evaluation of magnetic excitations from stripes is
the subject of Sec. 4. The complexity of the three band
model as used in the previous sections, however,
makes it difficult to perform such study since large
system sizes have to be considered for an analysis of
wave-vector dependent spin excitations. For this pur-
pose we adopt here a much simpler Hamiltonian,
namely the extended one-band Hubbard model. In the
first part of Sec. 4 we derive the parameter set for this
model where we require that the doping dependence of
the stripe periodicity should be analogous to the re-
sults obtained within the three-band model in Sec. I.
In the second part the dynamic structure factor for an
underlying stripe structure is computed [69] and com-
pared with inelastic neutron scattering data [70].

2. Unrestricted Gutzwiller approximation and
RPA fluctuations

The Gutzwiller variational wave function together
with the Gutzwiller approximation [61] is a widely

used approach in order to deal with Hubbard-type
models. Originally introduced in order to explore the
possibility of ferromagnetism within the Hubbard
model (see, e.g., Ref. 71 and references therein) its
popularity resides in the fact that it captures correla-
tion effects like the band narrowing already on the
variational level. More recently the GA has been also
used for realistic band structure computations
[71–73]. Since in the Hubbard model one has a com-
petition between delocalization, from the hopping of
the charge carriers, and localization, from the onsite
interaction U, the idea is to apply a projector to a
given Slater determinant which reduces the number of
doubly occupied sites. Within the GA one has to mini-
mize an energy functional which is composed of a
renormalized kinetic term and the interaction energy
UD, where D denotes the concentration of doubly oc-
cupied sites.

The GA can be derived using a variety of methods
[61,74–77]. In particular it is recovered at the
mean-field level (saddle-point) of the four-slave boson
functional integral method introduced by Kotliar and
Ruckenstein (KR) [77]. The latter offers the possibil-
ity of going beyond the Gutzwiller result as for exam-
ple the inclusion of transversal spin degrees of free-
dom [78]. In addition it provides a scheme (at least in
principle) to include fluctuations beyond the
mean-field (MF) solution. This has made the KR
method quite popular since the inclusion of fluctua-
tions on top of the GA has been a long standing goal.
Expansions around the slave-boson saddle point have
been performed for homogeneous systems in Refs.
79,80 in order to calculate correlation functions in the
charge and longitudinal spin channels. However, the
expansion of the KR hopping factor zSB is a highly
nontrivial task both with respect to the proper normal
ordering of the bosons and also with respect to the cor-
rect continuum limit of the functional integral
[81,82]. These problems have severely hampered prac-
tical computations of fluctuations. The time depend-
ent Gutzwiller approximation which we present below
is an alternative route to the computation of fluctua-
tions which can be easily implemented in a variety of
situations.

2.1. Gutzwiller approximation

In order to be specific we consider the two-dimen-
sional Hubbard model on a square lattice, with hop-
ping restricted to nearest (� t) and next nearest (� 	t )
neighbors
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Here ci,
(†)
� destroys (creates) an electron with spin � at

site i, and n c ci i i, ,
†

,� � �� .U is the on-site Hubbard re-
pulsion. The generalization of the following to higher
dimensions and (or) multiband models is straightfor-
ward.

The unrestricted GA in its simplest variant can be
implemented by either a variational Ansatz [83] or the
Kotliar–Ruckenstein slave-boson scheme [77]. Within
the variational Ansatz one constructs a Gutzwiller
wave function |� by applying a projector to a Slater
determinant | SD� which reduces the double occu-
pancy. The Slater determinant has in general an
inhomogeneous charge and spin distribution describ-
ing generalized spin and charge density waves [83].

The resulting energy functional EGA � � �� �| |H
treated in the Gutzwiller approximation reads as
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,� � � denotes the single-particle
density matrix associated with the Slater determinant
| SD� (before Gutzwiller projection) and
D n ni i i� � �� � | | are the double occupancies. The
Gutzwiller hopping factors are given by
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The energy functional Eq. (2) has to be minimized
with respect to the double occupancy parameters D
and the density matrix � where the latter variation has
to be constrained to the subspace of Slater determi-
nants. For technical aspects of this variational proce-
dure we refer to Ref. 56. For unconstrained mini-
mizations the clusters ususally have dimensions
N N Lx� � up to 16 16� and we use periodic and
antiperiodic boundary conditions in order to stabilize
static and homogeneous (metallic) stripe textures. Af-
ter a specific stripe texture has been found as a stable
saddle-point of the GA energy functional it is also pos-
sible to investigate wave-vector dependent properties
of the system. For this it is more convenient to work in
k-space and to define a Wigner–Seitz cell according to
the specific stripe symmetry. In this way we can per-
form a constrained minimization for systems with typi-
cal dimensions N � �100 100 lattice sites.

Eq. (2) is the appropriate GA energy functional
when one restricts on the longitudinal spin degrees of
freedom (i.e., Si

z ). However, transverse components
can be straightforwardly incorporated within the

spin-rotationally invariant slave boson formulation
[84]. The latter can be derived either from the KR
Hamiltonian or alternatively from Gebhard’s energy
functional when the spin rotation is applied to the un-
derlying Slater determinant [85]. A synthesis of both
approaches is derived in appendix and yields the en-
ergy functional
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where the matrix z i reads as:
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and for clarity spin expectation values are denoted

by Si ii

 � �� � , , Si ii

	 � �� � , , S /i
z

ii ii� �� � � �( ), ,� � 2,

and � � �ii ii ii� �� � � �, , .

Regarding the stationary solutions, we will restrict
to Slater determinants which are diagonal in spin
space, i.e., � � �� � � �

� �ij ij
, ( ) , ( )

,


�0 0 so that saddle-point
energies can always be obtained from Eq. 2. However,
in order to analyze the magnetic excitations on top of
the ground state solution the energy functional Eq. 4
constitutes the appropriate starting point (cf. next
subsection).

In order to estimate the quality of the GA with re-
spect to more advanced techniques (which are how-
ever restricted to smaller clusters and specific bound-
aries) we have compared the energy and charge
distribution with DMRG calculations [41] on a
7 6� Hubbard cluster doped with 4 holes. At the
static level and U/t � 12 the GA ground state energy
is by 9–10% too large as compared to DMRG (HF is
30% too large). This lives room for fluctuation correc-
tions to the ground state energy [60]. Remarkably the
GA charge distribution is almost identical to the exact
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one. Especially both DMRG and GA result in a metal-
lic stripe state whereas HF breaks the translational
symmetry along the domain wall and produces insu-
lating states.

2.2. Fluctuations around the GA saddle-point

Charge and spin excitations are obtained by com-
puting RPA like fluctuations on top of the GA sad-
dle-point [58–60] which fulfills standard sum rules
and on small clusters yields excitation spectra in ex-
cellent agreement with exact diagonalization [59].

In the spirit of linear response theory we study an
external time-dependent perturbation

F t f t c cij i j
i j

( ) [ ( ) ., ,
†

,
, , ,

� � 



 �� � �
� �

h.c , (9)

f t fij ij
i t

, ,( ) ( )�� ��
�

 
	� 0 e , (10)

which induces small amplitude oscillations of D and �
around the GA saddle point:

D D D t� �( ) ( ),0 � (11)

� � ��� �( ) ( )0 t . (12)

Correspondingly, we have to expand the energy
functional Eq. (4) around the stationary solution up
to second order in the density- and double-occupancy
deviations. Due to the fact that we restrict to collinear
saddle-point solutions, with an eventual magnetic mo-
ment oriented along the quantization axis, the fluctu-
ations involving a spin-flip (spin) and no-spin-flip
(charge) are decoupled and one obtains,

E D E h E E[ , ] } ,� �� � �� � � �0
0tr { charge spin (13)

where the subscript 0 indicates quantities evaluated
in the stationary state and we have introduced the
Gutzwiller Hamiltonian [60,61]:

h D
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The no-spin-flip sector corresponds to excitations
which do not change the total z component of the
spin, �Sz � 0. Although we identify the no-spin-flip
sector with the «charge excitations» one should be
aware that it includes the longitudinal magnetic exci-
tations. The spin-flip sector with �Sz � �1 corre-
sponds to the transverse magnetic excitations.

No-spin-flip sector. �Echarge contains the expan-
sion with respect to the double-occupancy parameters
and the part of the density matrix, which is diagonal
in the spin indices. Up to second order it is formally
given by

� � � �� �� ��E D E h Lcharge [ , ( )] † †� � � �0 0 0
1
2

� �� �� � �DS D K Dt
0 0

1
2

(15)

where the bar indicates that we are treating a matrix as
a column vector and the not indicates evaluation in the
stationary state, i.e., the saddle point solution. For sim-
plicity we have skipped the notation of spin indices.

The formal complication of the present approach as
compared to the standard RPA has its origin in the
proper adjustment of D to the time evolution of �( )t ,
i.e., the determination of �D t( ). This can be consis-
tently incorporated by assuming that at each instant
of time the double occupancy parameter is at the mini-
mum of the energy functional compatible with the cor-
responding �( )t ; i.e., the double occupancy parameters
D adjust antiadiabatically to the time evolution of the
density matrix. This is reasonable since the double oc-
cupancy involves processes which are generally high
in energy and hence fast.

From this condition of antiadiabaticity

�
�

�
E
D�

0 , (16)

we obtain a linear relation between �� and �D. Elimi-
nating �D from Eq. (15) finally yields an expansion
of the energy as a functional of �� alone ~ [ ]� �E �
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Spin-flip sector. The spin-flip part of the expansion
reads:
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with the following abbreviations for the quadratic
parts of the z-factor expansion
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It is interesting to observe that, in contrast to the
charge excitations, the evaluation of the magnetic ex-
citations can be performed without any adjustment of
�D to ��, i.e., without any assumption on the time
evolution of D. Only in the case of non-colinear sad-
dle points one would have a coupling between spin
and charge fluctuations and, therefore, the necessity
to invoke the antiadiabaticity condition to eliminate
the �D deviations.

In a paramagnet the ground state is a singlet and
the lowest magnetic excitations corresponds to a trip-
let with �Sz � �0 1, . One can show [59] that the above
expansions in the spin-flip and no-spin-flip sectors
correctly reproduce the degeneracy of longitudinal
(no-spin-flip, �Sz � 0) and transverse (spin-flip,
�Sz � �1) magnetic excitations. In Ref. 59 we have
interpreted this as an additional support for the
antiadiabatic condition. More recently we have real-
ized that also the longitudinal excitations from the
no-spin-flip sector decouple from the doubble occu-
pancy fluctuations. As a consequence this degeneracy
can not be invoked as an extra support for the
antiadiabatic condition. This leaves some freedom for
how to treat the time dependence of the doubble occu-
pancy fluctuations and one can envisage a more elabo-
rate formalism which may take into account retarda-
tion effects without violating standard sum rules
which are obeyed within the present scheme.

Eqs. (17) and (18) can be regarded as the expan-
sion of an effective interacting energy functional in
which the interaction potential between particles is
density dependent. This kind of functional often ap-
pears in the context of nuclear physics and a well
developped machinery exist to compute the RPA fluc-
tuations induced by the interaction. Details of the cor-
responding formalism can be found in Refs. 86,87. The
advantage of this method with respect to other meth-
ods (eg. diagrammatic) is that the present derivation
is solely based on the knowledge of an energy func-

tional of a SD density matrix which is precisely what
the GA provides.

In order to demonstrate the quality of the method and
its improvement over the traditional HF + RPA ap-
proach we present some selected results for the half-filled
Hubbard model in the antiferromagnetic ��el state [88].
The double occupancy at the RPA level is given by:

DRPA � � � �� � �� 
 � �d n n Ei i� � � � �
�

�0 0| | | | ( )( ) where

the integrand is the Lehmann representation of an appro-
priately defined density-density correlation function. The
matrix elements � ��0| |n � for �  0 can be computed in
terms of the eigenvectors V( )� [86,87].

From the interaction energy UDRPA we compute
the correction to the ground state energy using the
coupling constant integration trick [88]. In order to
compare with exact results [89] we consider a 4 4�
cluster and find very good agreement up to very large
values of U/t as shown in Fig. 1. The improvement
with dimensionality is expected as in any MF + RPA
computation.

Fig. 2 shows the magnetic excitation energies for
the same cluster as a function ofU/t evaluated within
the GA + RPA, the HF + RPA and the exact dia-
gonalization. Note that the 4 4� system has a further
accidental symmetry, which causes degeneracy be-
tween the q / /� ( , )! !2 2 and q � ( , )! 0 excitations.
Furthermore, the SDW ground state of the GA and
HF solution leads to the doubling of the Brillouin
zone so that, besides the antiferromagnetic wave vec-
torQ, only q /� ( , )! 2 0 and q � ( , )! 0 correspond to in-
dependent excitations. On the other hand, on the 4 4�
lattice, we have that the exact energies at q /� ( , )! 2 0
and q /� ( , )! !2 are slightly different.

The small-U behavior of the lowest excitation en-
ergy in Fig. 2 can be well understood from the SDW
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Fig. 1. Comparison of the exact ground state energy [89]
with the GA and GA+RPA method for the half-filled
Hubbard model on a 4 4� system.
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picture. Within this approximation, the band struc-
ture in the reduced Brillouin zone is given by

Eq q� � ��2 2� , with �q x yt q q� � �2 [cos( ) cos( )]

and � denotes the SDW gap. Since we study a
half-filled system, all states with Eq " 0 are occupied.
Consider first the q � ( , )! 0 excitation which can be
attributed to a spin-flip transition from q1 �
� � �( , )! !/ /2 2 to q / /2 2 2� �( , )! ! so that the ex-
citation energy is given by � � � �E Eq q1 2

2�. The
SDW gap in the HF approximation is related to the
on-site magnetization �HF

zU S� 2 | |, whereas within

the KR formulation of the GA it is determined by the
difference in the local spin-dependent Lagrange mul-
tipliers �GA � �� �� � . Since in the limit U # 0 the

GA reduces to the HF approximation, both excitation
energies coincide in this regime and also agree with

the exact result. On the other hand, forU � 1, where
RPA corrections become important, it can be seen
from Fig. 2 that the GA + RPA is in much better
agreement with exact diagonalization than the corre-
sponding HF + RPA result. As a consequence, the
GA + RPA gives a quite accurate description of the
crossover (atU/t � 6) from the SDW regime, where a
gap proportional toU opens along the Fermi surface,
to the Heisenberg regime, where there are low-energy
magnetic excitations with energy scale t /U2 .

For the higher energy triplet excitation at
q /� ( , )! 2 0 , the GA + RPA yields energies which are
slightly lower than the exact result. However, whereas
the discrepancy for the GA + RPA atU/t � 6 is around
10%, the HF + RPA deviates by almost 20% from the
exact diagonalization result.

3. Stripes in the three-band Hubbard model

Whichever is the specific property of stripes to be
analyzed a one- or three-band description may be the
more suitable one. For example, direct interband exci-
tations are not important for the description of the
low energy magnetic fluctuations so that for the inves-
tigation of the latter (cf. Sec. 4) a one-band descrip-
tion is the more appropriate one. The one-band model
is also convenient for analyzing the generic properties
of stripes within the GA and to elucidate differences
to the standard HF approximation [91]. On the other
hand the three-band hamiltonian provides a more solid
basis for computing ground state energies of different
inhomogeneous textures the stability of which has to
be compared in order to obtain reliable saddle-points
for a random-phase computation. Also the analysis of
experiments which probe local density distributions
on Cu and O obviously has to be performed within the
three-band approach. We do not address here the im-

portant question under which circumstances the
three-band model can be mapped onto the one-band
hamiltonian. Rather we take the more pragmatic point
of view that both models have their own eligibilty de-
pending on the specific property of high-Tc cuprates to
be analyzed.

In the following we start therefore by examining
the stabilty of stripe textures within the three-band
Hubbard model. It turns out that in the underdoped
regime this approach yields so-called bond-centered
(BC) textures as the most stable stripe configuration
whereas at higher doping site-centered (SC) struc-
tures compete. Later on in Sec. 3.2 we will then com-
pute and analyze the optical conductivity of the
three-band model based on these stripe saddle-points
where the doping dependent degeneracy of stripe
structures will have important consequences on the
low energy charge response. In Sec. 4 the stability of
stripes is also analyzed in the one-band model. Special
attention will be paid to the derivation of a consistent
parameter set which allows us to calculate the mag-
netic excitations of stripes and to compare with neu-
tron scattering experiments.

3.1. Phase diagram and stability of stripes

Our starting hamiltonian is the three-band Hub-
bard model

H t d p p d npd i
ij

j j i d i
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where the fermion operators act on the vacuum config-
uration Cu[ ]d10 O[ ]p6 in the hole representation. The
brackets "  ... denote summation over nearest neigh-
bors and the Cu–O and O–O hopping matrix elements
include the phase factors due to the d and p symmetry
of the Cu and O orbitals. The local orbital levels are
denoted by �d and �p and the charge-transfer energy is
� � �� �d p .Ud ,Up andUdp are the Hubbard inter-
actions on and between nearest Cu and O sites respec-
tively. We consider the following parameter set as de-
duced from local density calculations of McMahan et
al. [92]: tpd � 15. eV, tpp � 0 6. eV, � � 3 3. eV,
Ud � 9 4. eV, Up � 4 7. eV, Upd � 0 8. eV. Other stan-
dard sets obtained from ab initio calculations (see e.g.
Ref. 55,93) do not change the results.

Since Ud is the largest energy scale in the
hamiltonian we treat the Cu on-site correlation within
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the Gutzwiller approximation and decouple the resid-
ual interactions via Hartree–Fock. The resulting en-
ergy functional is then minimized according to the
procedure described above where we ususally start
with a HF stripe Slater determinant. Following the
standard terminology from one band models [33,39]
the stripe structures can be classified in bond- and site
centered (BC, SC) which differ by the location of the
antiphase domain wall separating the AF regions (cf.
Fig. 3). In the three band model SC solutions are cen-
tered on Cu and BC solutions are centered on O. All
vertical stripe solutions investigated are metallic (i.e.,
homogeneous along the stripe) except for integer �
and we have suppressed 1–D instabilities by choosing
appropriate boundary conditions (i.e., periodic or
antiperiodic in direction of the stripes).

Figure 4 depicts the cross section of a typical charge
and spin distribution of so-called bond- and site cen-
tered (BC, SC) vertical stripes. BC stripes are built up
from two Cu–O legs and the antiphase boundary corre-
sponds to the Ox sites between the two legs. On the
other hand the antiphase boundary for SC textures is
on a single Cu–O leg so that by symmetry the spin den-
sity vanishes on these sites. For both structures added

charge is mainly accumulated on the oxygen sites near
(and on) the antiphase boundary between the AF re-
gions. The hole density on the Cu sites does not vary
significantly but nevertheless the symmetry of the
stripe state reflects in the Cu double occupancy (lowest
panels in Fig. 4). It is exactly this decoupling of
charge- and spin densities from the variational double
occupancy parameter which leads to an improvement of
the GA over the tradional HF approximation [91].

In Fig. 5 we show the band structure (corresponding
to BC stripes separated by d � 4 unit cells) for the elec-
trons in an extended zone scheme. Two bands appear
well inside the charge transfer gap. The upper one at
� 0 9. eV is more Cu like and quite flat (even in the
stripe direction) whereas the lower one has substantial
dispersion, is mainly O like, and crosses the Fermi
level. Counting both ingap bands the � � 1 2/ system
corresponds to 3/4 hole (1/4 electron) band filling.
The gap between the bands is related to the magnetic
character of the stripe and is absent in SC solutions
with a non-magnetic core. The electronic structure
close to the chemical potential is well represented by a
half-filled cosine like band, hereafter referred to as the
active band.

For large stripe separation the dispersion of the active
band perpendicular to the stripe is quite flat indicating
quasi 1D behavior. Small oscillations appear in this di-
rection for d $ 5 which can be identified as a crossover
interstripe distance from 1D to 2D behavior and corre-
sponds to a crossover doping x � 01. for � � 0 5. .

The band structure in the stripe direction (right
panel) is quite similar in all BC stripes solutions regard-
less of d which instead determines the periodicity in the
perpendicular direction (left panel). Similar electronic
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structures of a striped state have been obtained by
DMRG [38,39]. Note that the Fermi surface crossing at
vertical momentum k /y � ! 4 and the associated flat
portion of the active band in the direction perpendicular
to the stripe correlates well with the flat bands observed
in many cuprates around k � ( , )! 0 [94].

To evaluate the stability we compute the energy per
added hole for Nh holes added to the system with N
CuO2 units,

e E N N E N /Nh h h� � �[ ( ) ( )] . (22)

Here E N Nh( )� [E N( )] is the total energy of the
doped [undoped AF] solution. In Fig. 6,a we show eh
as a function of the filling fraction � � N / N Lh s( ) for
BC vertical stripes. Each curve corresponds to a fixed
d. The curves have a sharp minimum at � � 0 5. . This is
in contrast to early one-band [30,31,94] and
three-band mean-field computations [28] for which
� � 1 is the most favorable hole filling. The discrep-

ancy can be traced back to the missing of a direct oxy-
gen-oxygen hopping (tpp � 0) in the parameter set of
Ref. 28. We will come back to the importance of this
parameter in the framework of the one-band model in
Sec. 4 where it can be introduced as a next-nearest
neighor hopping t	.

Vertical stripes should be compared with other pos-
sible ground states. We find that within the present
GA approach they are lower in energy than polaron so-
lutions [96] (see Fig. 6,b) and diagonal stripes solu-
tions (not shown). Very low nonsuperconducting
dopings (x " 0 05. ) were not explored in detail since
we believe that a careful consideration of other effects
is required in this case. Especially long-range order
perpendicular to the planes favors loop configurations
of stripes [33] and long-range Coulomb effects [44,47]
are expected to become important. The increased
orthorombicity at low doping also indicates the impor-
tance of the lattice in determining the structure of
inhomgeneous textures.

If one uses the HF approximation instead of the GA
the minimum also occurs at � " 1 for BC vertical
stripes provided one uses the present parameter set.
The insulating stripes found in Ref. 28 with the wrong
filling � � 1 are due to a parameter set with tpp � 0.
However a polaron lattice is the ground state in HF
and diagonal stripes are lower in energy than vertical
ones. Thus the overall success of the present
mean-field computation with respect to the earlier
ones [28] is due to both a more accurate mean-field ap-
proximation GA instead of HF) and a more accurate
parameter set.

Further stabilization of the half-filled stripes can oc-
cur if due to many-body effects a gap or pseudogap
tends to open at the commensurate filling � � 1 2/ [95].
Although we do not need this effect to explain � � 1/2
it is quite possible that this produces a fine tuning for
T T" *. In this regard it is interesting to remark that
the «V» shape form of the curves in Fig. 6,a is due to
the gap produced by the discretization of the levels in a
finite system. For larger systems (see d � 4 curve in
Fig. 6,a) the cusp becomes rounded, however the mini-
mum is still close to � � 1 2/ . One should be aware that
the curves with the cusp are for already quite long
stripes (L � 12) and it is not clear whether stripes in
real materials will be much longer. Thus finite size data
could turn out to be more realistic than infinite size
one. Within experimental and theoretical finite size er-
rors our optimal filling fractions are in good agreement
with the ones found at low superconducting dopings
[5,10–12,14,15].

For d  4 the curves coincide close to � � 0 5. in Fig.
6,a whereas for d � 3 4, the curves are shifted up. This
feature is due to the width of the domain wall of 4 � 5
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lattice sites (see Fig. 4) which forces stripes to overlap
when d " 5 leading to an increase of eh .

In Fig. 6,b we show eh for various values of the
stripe separation d and as a function of doping x as-
suming each dopant introduces one hole. Since
x /d� � curves with larger d appear at lower concen-
tration. The locus of the minimum of eh as a function
of doping in Fig. 6,b is expected to form a continuous
curve in the thermodynamic limit by combining differ-
ent d solutions in new solutions with larger periodic-
ity. Up to x �1/8 the stripe filling is fixed at � � 0 5.
and consequently the density of stripes increases with
doping. This explains the behavior of the incom-
mensurability � �� �x/ x( )2 as seen in neutron scat-
tering experiments in this doping range (inset of
Fig. 6) [5,11,12,14,15]. For x  1/8 the right branch
of the d � 4 solution is more stable than the � � 0 5. and
d � 3 solution due to the stripe overlap effect. There-
fore the incommensurability remains locked at � � 1 8/
in good agreement with the change of behavior in � ob-
served around x /� 1 8 [11,12,14,15].

As doping increases further, BC stripes become de-
generate with SC ones at x � 0 21. . This degeneracy be-
tween O-centered and Cu-centered stripes is also
found in many other approaches [33,39] and suggests
that as doping increases lateral fluctuations of the
stripe will become soft. This is interesting given the
possibility that the lateral fluctuations may mediate
pairing between holes. In Sec. 3.2 it will be shown
that this feature has important implications for collec-
tive excitations which e.g. reflects as a softening of
certain modes in the optical conductivity.

For doping x  0 225. we find the d � 3 stripe
( . )� � �1 6 017/ to become the lowest energy solution
with an initial filling fraction � � 0 675. . Experimentally
the situation is not clear. � �1/6 has been reported for
YBa2Cu3O6 + � [15] (YBCO) but not for LSCO where �
remains in the � � 1/8 line up to x � 0 25. (inset of Fig.
6). In La2–x–yNdySrxCuO4 (LNSCO), where stripes are
pinned by the low-temperature tetragonal lattice distor-
tion, the incommensurability is substantially increased
beyond � �1/8 at doping x � 0 2. but without reaching
� � 1/6 [11].

It is possible that lateral stripe fluctuations become
so strong at this doping range that an effectively iso-
tropic state is reached [97]. Another possibility is that
the d � 3 phase is skipped due to phase separation
among the d � 4 phase and the overdoped Fermi liquid
which for our parameters becomes the lowest energy
solution close to x � 0 4. (see Ref. 98 for a related sce-
nario). Further theoretical and experimental work
should be done to clarify this point. Especially being
the system charged a careful analysis of phase separa-
tion is needed [46,47].

It has been emphasized [63] that there is a close
connection between the doping dependent incom-
mensurability as discussed above and the chemical po-
tential in cuprates. In fact the chemical potential for
the electrons can be related to eh via: % �
� � � � �( )e x e / xh h . From Fig. 6,b one can then de-
duce that % is approximately constant for x � 0.1 and
decreases for x � 0.1 in qualitative agreement with
the observed behavior [62,63]. The rate of change of %
with doping, being a high derivative of the energy, is
very sensitive to finite size effects and, moreover, few
experimental points are available in this doping range
in order to allow for a precise comparison. A rough es-
timate indicates that the theoretical rate of change of
% with doping for x  1/8 is approximately a factor of
2 larger than the experimental one [62,63]. This may
be attributed to an underestimation of the mass
renormalization in mean-field. Another possibility
which goes in the right direction is phase separation
among the d � 4 stripe solution and the paramagnetic
overdoped Fermi liquid as mention above.

We finally turn to the discussion of our calculation
in light of measurements of the Hall coefficient RH in
LNSCO [64] and YBCO [65]. In the former com-
pound RH displays an abrupt decrease below the
charge-stripe ordering temperature T0 and for concen-
trations x $ 1/8. It has convincingly been argued that
quasi 1D transport is not enough to explain this anom-
aly and instead reflects a remarkable cancellation due
to particle-hole symmetry in the stripe state [65,99].
A partial suppression of RH (and simultaneously the
thermopower S) below some temperature Tmax has
also been observed in YBCO up to oxygen contents
corresponding to doping x � 1/8 [65].

For distant stripes we indeed observe that the
chemical potential crosses an approximately parti-
cle-hole symmetric band (see Fig. 5) providing a natu-
ral explanation to the simultaneous suppression of RH
and S. Interstripe hopping becomes significant for
x  01. . However it does not break particle-hole sym-
metry. As discussed above the chemical potential
shifts from the center of the band for x / 1 8, thus
breaking particle-hole symmetry and consequently
both RH and S start to grow in modulus explaining
the crossover behavior observed. Unfortunately the
magnitude and even the sign of the transport coeffi-
cients cannot be predicted by a knowledge of the band
structure alone. For example RH for our Fermi surface
(which turns out to be open) is determined by the un-
known anisotropy of the scattering path length [100].

3.2. Optical conductivity

The doping-dependent evolution from insulating be-
havior to a strange metal in the superconducting
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cuprates emerges dramatically in the normal state opti-
cal conductivity. Slightly doped cuprates show a small
or no Drude peak and doping-induced transfer of spec-
tral weight from the charge-transfer (� 2eV) to a
mid-IR (MIR) band at � 0.5 eV [67,68]. Upon further
doping the system progressively metallizes as is evident
from the prominent Drude-like peak that develops at
zero energy. A remarkable effect of doping is that the
MIR band strongly softens and merges with the Drude
peak, resulting in a feature that cannot be fitted by a
conventional Drude model. A variety of alternative
theories [101,102] have been proposed in order to de-
scribe this feature. Clearly the identification of this
low-energy MIR (LEMIR) band is of paramount im-
portance to understand the physics of these materials.
The low-doping behavior has been explained in terms
of the random-phase-approximation (RPA) electronic
excitations of single-hole Hartree–Fock states in CuO2
layers [96], but the moderate doping behavior (the
softening of the LEMIR band) could not be explained
due to difficulties with the HF ground state.

The softening of the LEMIR band in
La2–xSrxCuO4 (LSCO) is accompanied by the appear-
ance of another (much less discussed) band at 1.3 eV
[67,68,103]. This high energy MIR (HEMIR) band is
well pronounced in optical absorption through LSCO
thin films [68], and electron energy loss spectroscopy
[103] where it develops as a function of doping. More-
over LEMIR and HEMIR are also detected in
photodoped experiments on LSCO [104]. The
HEMIR has not been clearly resolved by reflectivity
in YBa2Cu3O6 + � (YBCO), but a strong broad feature
at the right energy appears in photodoped transmis-
sion experiments [105]. As far as we know no micro-

scopic explanation of the HEMIR existed before our
work [66].

Finally we note that also in isostructural
La2NiO4.133 MIR features were related to the forma-
tion of stripes [106].

We compute the optical conductivity � �( ) based on
the stripe structures obtained within the three-band
model in Sec. 3. However, at very dilute doping
(x � 0.03) due to the long-range Coulomb interaction
(not included in our calculations) each hole will be
close to an acceptor preventing the formation of stripes.
In this case the lowest energy one-hole solution consists
of a self-trapped state similar to the Zhang–Rice state
[107] as found in HF [96,108]. As doping increases, the
donor potential becomes more uniform and screened,
favoring the formation of stripes. Experiment shows
that stripes are parallel to the Cu–O bond except at
dopings 0.03 � 0.05 where diagonal stripes have been
observed [20]. Those may be an intermediate state be-
tween the isolated polarons and the vertical stripes and
probably also require long-range Coulomb and (or)
electron lattice interactions to be stable. For simplicity
we skip this phase and consider vertical metallic solu-
tions. Weak one-dimensional instabilities probably rel-
evant at low temperatures are intentionally suppressed
in our clusters due to finite size effects.

For inhomogeneous textures the optical conductiv-
ity depends on the direction & of the applied electric
field and can be computed within the GA + RPA ap-
proach from
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Here jGA� denotes the GA current operator which
contains the Gutzwiller hopping renormalization fac-
tors. The Drude weight is obtained from the f-sum rule

d TGA� � � !� �	 � � � �

�

� ( )

0

1
2

which relates the integrated weight of 	� �� ( ) to the
GA kinetic energy in the respective directions.

In the left (right) panel of Fig. 7 we show � �( ) for
both orientations of the applied electric field without
(with) the addition of RPA corrections. The excita-
tions shown in Fig. 7,a can be directly obtained from
the symmetry of the mean-field bands (Fig. 8) the
symmetry of which determines the selection rules for
optical transitions. Roughly speaking the flat bands
labeled S and P correspond to symmetric (S) and
antisymmetric (P) combinations of orbitals centered
on the two legs of Cu that form the core of the stripe

440 Fizika Nizkikh Temperatur, 2006, v. 32, Nos. 4/5

J. Lorenzana and G. Seibold

1 2 3
�' eV

0

1

2

3

�
(�

)

E _|_ stripe

E || stripe

0 1 2 3
0

1

2

3

a
GA

b
GA + RPA

�' eV

�
(�

)

Fig. 7. Optical conductivity for d � 4 stripes with the
electric field applied perpendicular and parallel to the
stripes. � �( ) computed without the addition of RPA cor-
rections. The corresponding excitations are also indicated
in the bandstructure in Fig. 8 (a); � �( ) computed within
the GA + RPA approach (b).



(sites 2 and 3 in Fig. 10). The band crossing the chem-
ical potential (hereafter the «active band») is due to
the orbitals centered on the core O leg of the stripe (at
2.5 in Fig. 10,a). The antisymmetric Cu orbital com-
bination mixes with the core O orbital pushing up-
wards (downwards) the P band (active band) close to
the edge of the stoichiometric bands (marked by the
full dots). The lower bands are of mainly O character.
All optical transitions in the x direction indicated in
Fig. 8 are of course between even and odd states with
respect to the stripe central axis. From Fig. 7,a it
turns out that besides the CT excitation the transi-
tions at � � 1 3. eV and � � 0 85. eV have the strongest
weight in both directions of the applied electric field.
The other transitions reported in Fig. 8 have much
smaller spectral weights. Upon adding RPA correc-
tions in the computation of the optical conductivity
(cf. Fig. 7,b) the 0.85 eV(x) transition which has a
strong oscillator strength in mean-field does not show
up and instead the low-energy collective mode appears
at �0.4 eV which is also polarized perpendicular to the
stripes. A similar mode was found in a study of stripes
within the t t t J� 	� 		� model [109]. On the other hand
the transitions at � � 1 3. eV are almost unchanged by
the RPA and are only slightly enhanced in intensity.
This negligible renormalization of the mean field tran-
sitions by the RPA is characteristic for incoherent par-
ticle-hole excitations whereas the mode at 0.4 eV
which shows only in the RPA is clearly a collective
mode.

In order to compare with experiment one has to av-
erage the optical conductivity over the two stripe ori-
entations with respect to the applied electric field.

The resulting spectra are shown in Fig. 9 for various
dopings. The RPA optical conductivity for the sin-
gle-hole solution appropriate at low doping, as dis-
cussed above, reproduces the results of HF + RPA
[96]. Formation of a doping induced MIR band close
to 0.5 eV and doping induced transfer of spectral
weight from the charge transfer band to the MIR re-
gion in agreement with experiment in this doping
range [67].

For distant stripes (d � 7) the single-hole MIR
band now splits into two bands. The one at higher en-
ergy is the band of incoherent particle-hole excita-
tions, identified above close to 1.3 eV, and provides a
theoretical explanation for the HEMIR. The position
of this band is nearly independent of doping and can
be understood in terms of transitions within the stripe
band structure at mean-field level shown in Fig. 8. In-
deed the HEMIR is mainly formed by the 1.33 eV(x)
and 1.34 eV(y) mean field transitions with similar os-
cillation strengths. The other MIR band, shown also
in the inset of Fig. 9, is a low-energy collective mode
and has no mean-field counterpart as explained above.
To characterize the LEMIR band we compute the so-
called transition charges and transition currents

n ni i
� %� � �0| � | , (25)

j jnm nm
GA� %� � �0| � | (26)

where % labels RPA excitations. ni
� (jnm

� ) is propor-
tional to the time-dependent charge (current) fluctu-
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the low energy spectra excluding the Drude component.
We used a Lorentzian broadening of 0.2 eV.



ation �ni (�jnm) that would occur at frequency �� if
the state � were weakly excited [86].

In Fig. 10 we show the charge and current fluctua-
tions associated with the LEMIR mode. It is associ-
ated with currents flowing across the stripe enhancing
(depleting) the charge density at the boundaries to
the AF regions and thus corresponds to lateral
displacements of the stripe. In fact, if we approximate
the charge modulation by cos( )q rCDW � ( with
qCDW � 2 2 0! �( , ), this oscillation can be interpreted
as a time-dependent fluctuation of the phase ( and
thus the LEMIR excitation can be identified with a
phason. Optically active phasons have zero momen-
tum, but naturally a band of phasons exist with a
well-defined dispersion relation. In continuum models
phasons are massless Goldstone modes whereas here
the commensurability of qCDW with the lattice makes

them have a finite energy at zero momentum. This
energy however is small and decreases as doping
increases. Since the BC and SC state become qua-
sidegenerate at a doping x0 it is natural to expect that
the phason softening is related to the quasidegeneracy
between these states.

In order to substantiate this idea we compute the
energy landscape for «intermediate» solutions con-
strained to be stripes centered between Cu and O. For
each intermediate state we perform a Fourier analysis
and extract the phase ( of the first Fourier component
of the charge-density-wave (CDW) modulation.
Fig. 11 shows the energy for d � 4 stripes and differ-
ent dopings. This provides an upper bound for the en-
ergy along the path connecting BC (( !� /4) and SC
(( � 0) solutions where ( plays the role of a collective
coordinate. The curves are periodic in ( with period
2!/d corresponding to a translation by one elementary
unit cell. Remarkably the curve acquires an extra peri-
odicity close to optimum doping corresponding to the
previously found quasidegeneracy between SC and BC
solutions [33,39,47].

RPA is essentially an harmonic approximation of
the energy landscape around the mean field solution
(SC or BC). The energy squared of each RPA mode is
proportional to the curvature (or «stiffness») of the
corresponding parabolic energy approximation when
the system is displaced from the stationary state in the
direction of the mode eigenvector (in our case para-
metrized by the collective coordinate (). Fig. 11
shows that as doping increases the stiffness decreases
showing explicitly that the softening of the LEMIR
feature is due to the quasidegeneracy between BC and
SC stripes. Of course the problem is very anharmonic
close to x0 and RPA provides only a rough estimate to
the phason energy. Moreover, since the barrier is
strongly reduced close to x0 we expect that anharmon-
ic corrections will make the phason even softer and the
«true» ground state will be a fluctuating mixture of
BC and SC solutions. Even away from x0 stripes show
a dynamic character on a scale of a few meV [12]
which is not capture by our starting-point mean-field
ground state. We expect this to affect the spectra at
very low energies as discussed in Ref. 102 but not at
the scale of Fig. 9.

In Fig. 12 we show the optical conductivity spec-
tral weight integrated up to an energy of 1.5 eV
(Neff (1.5 eV)) in comparison with experimental data
from Ref. 67. The lower curves report the regular
(� > 0) and Drude (� � 0) contributions to
Neff (1.5 eV) in each direction.

For x /" 1 8 the number of stripes, which act as
low-energy light absorbers, increases linearly with
doping keeping its electronic structure practically un-
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Fig. 10. Sketch of transition charges (black arrows) and
transition currents (gray arrows) for a d � 4 BC stripe (in-
dicated by the dashed lines) when the collective MIR
mode is excited. The transition charges provide a snapshot
of the charge oscillation in the collective mode. The black
arrows indicate charge increase (up) or decrease (down).
The horizontal arrows indicate the associated current fluc-
tuation. Cu and O sites are symbolized by open and full
circles respectively.
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changed [47]. Accordingly Neff (1.5 eV) increases
roughly linearly with doping. For 1 8 1/ x x  (x1 �
� 0.22–0.23) the number of absorbers get locked and
the evolution of the spectral weight is related to
changes in the electronic structure of each stripe, the
more relevant one being the shift of the chemical
potential from the center of the active band as dis-
cussed in Sec. 3.1 [47]. This depresses the Drude
weight in the stripe direction (joined circles) and re-
sults in a slower increase of spectral weight with dop-
ing which correlates well with experiment.

For x x 1 d � 3 stripes become the mean-field
ground state. These solutions tend to have a larger
spectral weight due to the strong Drude weight in
both directions (unjoined points in Fig. 12). The na-
ture of the ground state however is not clear in this
overdoped regime and therefore our results become
more qualitative than quantitative. Indeed d � 3
stripes have not been observed in LSCO. As already
mentioned one possible scenario is phase separation
between the stripe solutions and the homogeneous
Fermi liquid.

4. Stripes in the one-band Hubbard model

In Sec. 3 we have shown that within the GA ap-
plied to the three-band Hubbard model one can obtain
the doping dependence of stripe textures in agreement
with experiment. In principle the three-band Hamil-

tonian could therefore also serve as a starting point for
the investigation of magnetic excitations. However,
since in this context wave-vector dependent properties
are essential one has to consider large systems which
makes a one-band model more appropriate for numeri-
cal reasons. Moreover, because we restrict to low-en-
ergy magnetic excitations, we do not expect that
interband effects will play an important role and
therefore a one-band description should in fact be suf-
ficient. On the other hand there are small differences
on the phase diagram of stable stripes solutions among
the two models. We will discuss the mean-field solu-
tions in the next section.

4.1. Stability of stripes and parameter set

Our investigations are based on the one-band Hub-
bard model with hopping restricted to nearest (� t)
and next nearest (� 	t ) neighbors

H t c c t c c U n ni
ij

j i
ij

j i
i

� � � 	 �
� � �� ��

�
 
 
,
†

,
, ,

†

,
, ,�

�
� �

�
� i,� ,

Here ci,
(†)
� destroys (creates) an electron with spin � at

site i, and n c ci i i, ,
†

,� � �� .U is the on-site Hubbard re-
pulsion.

As usual we start by finding the saddle point solu-
tions [91]. We find that in this model and with realis-
tic parameters (to be discussed below) the more favor-
able solutions are again partially filled stripes
oriented parallel to the Cu–O bond. However con-
trary to the three band model we find that the more fa-
vorable solutions at small doping are SC instead of BC
but with a difference in energy that is negligibly small
in large systems. This quasidegeneracy is also found in
other one-band calculations [33,38,110]. Apart from
this difference other features are very similar to the re-
sults of the three band model. Stripes have a width of
4, 5 lattice sites and repeating the computations of
Sec. 3 one finds a magnetic incommensurability � � x
for x /" 1 8 and � � 1 8/ for x / 1 8 as found experi-
mentally [90].

We discuss now how the parameter set was deter-
mined. For definiteness in the following we mainly re-
strict ourself to the BC case because these textures
constitute the more stable configuration at x /� 1 8 in
the more accurate three-band model (cf. Sec. 3) [42]
and in first principle computations [111]. However,
one should keep in mind that all energetic consider-
ations below hold equally well for SC stripes.

In Ref. 91 we have shown that the ratio t /t	 is the
crucial parameter which determines the filling � of the
stripe and therefore the agreement with the experi-
mentally determined incommensurability [5,12]. It
thus plays the same role than the oxygen–oxygen hop-
ping tpp within the three-band model of Sec. 3. Inter-
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estingly it has been proposed recently [112] that a
one-band model description of the various cuprate
families essentially differs in the ratio between
next-nearest and nearest neighbor hopping t t	/ . In
fact it is found that the transition temperature scales
with t t	/ ranging from t t	 � �/ .015 for the LSCO
single layer compound up to t t	 � �/ .0 4 for the Tl and
Hg based materials. We show that this parameter
plays also a key role for the stability and electronic
structure of the stripes providing a possible link be-
tween stripes and superconductivity.

Figure 13 reports the energy per added hole (de-
fined in Eq. (22) of Sec. 3) of d � 6 BC stripes for dif-
ferent values of t t	/ andU/t � 7 5. .

The solid lines in Fig. 13 are obtained from an ex-
pansion of the excess energy per unit length in a Tay-
lor series in �:

E N E

L
A B Ch( )

.
�

� � �AF � �2 (27)

The resulting binding energy per doped hole

e A/ B Ch � � �� � (28)

provides an excellent fit to the data points of our
cluster calculation.

The parameter A represents the energy to create an
empty domain wall. Since this is related to an excita-
tion of the undoped system we can estimate its value
using the Heisenberg model with a magnetic interac-
tion J t /U� 4 2 in the limit of U t  . The estimate is
easily done in the case of BC stripes which have a core
with ferromagnetic alignment along the domain wall.
In the N�el limit one obtains: A J/� 2. The parameter
B can be defined as the chemical potential to add one
hole into the «empty» stripe. Finally the parameter
C C CK I� � is essentially the inverse compressibility
of the stripe (at fixed d) and can be split in a kinetic

(CK) and interaction (CI) contribution. CK can be
estimated as the bandwidth of the active stripe band
and is the only quantity which depends significantly
on t	 [91]. Since the minimum of eh is given by

�min � A/C

a larger | |t	 therefore implies an enhancement of the
kinetic contribution (�C) respect to the magnetic
contribution A, and thus a shift of the minimum
stripe filling to smaller values. From Fig. 13 we find
that in case of U/t � 7 5. a value of t t	 � �/ .0 2 is re-
quired in order to have �min .� 0 5 which is close to a
first principle estimate [112]. The same value of t t	/
has also been derived for large U/t � 10 in Ref. 90
with the difference that in this case much smaller fill-
ings �min can be achieved for t t	 "" �/ .0 2.

The influence of a next-nearest neighbor hopping
term on the stripe formation has been previously in-
vestigated by various methods. From the DMRG ap-
proach applied to the t t J� 	� model [113] it turned
out that a too negative t t	/ can suppress both the for-
mation of stripes and pairing correlations. A weaken-
ing of stripe tendencies for t t	 "/ 0 in the same model
was also found with exact diagonalization [35] and in
the Hubbard model with DMFT [114], and the HF
approximation [115–117]. All these calculations sug-
gest that static stripes are destabilized when the ratio
t t	/ becomes large and negative. This may indicate a
more dynamical character of stripes in some systems
like Tl and Hg based compounds.

The reason why we have chosen an onsite repulsion
U/t � 7 5. in the calculation of the binding energies
Fig. 13 is due to the fact that this value correctly re-
produces the observed energy splitting between
magnons at wave-vectors (1/2,0) and (1/4,1/4) for
x = 0 [118]. Indeed, within spin-wave theory applied
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to the Heisenberg model (corresponding toU/t # ))
the magnon excitations are given by

��q x yq q /� � �� 1 42[cos cos ] (29)

and thus the dispersion vanishes along the magnetic
Brillouin zone. It has been argued that in cuprates
corrections to the Heisenberg model arising as higher
orders in a t/U expansion are relevant [118–122].
The most important of such corrections is a term
which cyclically exchanges four spins on a plaquette.
A sizable value for this term has been revealed by an-
alyzing phonon-assisted multimagnon infrared ab-
sorption [122] and the dispersion relation [118]
shown in Fig. 14. In particular the dispersion in the
( , )! 0 and ( , )! !/ /2 2 is mainly due to this term. Since
the dispersion has its origin in the finiteness of t/U it
should show up in the transverse excitations of the
Hubbard model. The computation done in GA +
+ RPA is also shown in Fig. 14. One obtains a very
good fit of the dispersion and this provides an accu-
rate way to estimate the strength of the repulsion.
We findU/t � 7 5. in good agreement with other esti-
mates [118]. The dispersion turns out to be quite in-
sensitive to the value of t	 which has been discussed
above.

4.2. Spin excitations of stripes

Since the discovery of cuprate superconductors the
elucidation of their magnetic properties has been a sub-
ject of intense research in the high-Tc community due to
their possible relevance for the superconducting mecha-
nism [123]. However, no consensus has been reached yet
wether the magnetic excitation spectra in the various
cuprate materials can be traced back to some universal
phenomenology which could be expected in the face of
the robust nature of superconductivity. The insulating
parent compounds show long-range antiferromagnetic
(AF) order in the CuO2 planes below the N�el tempera-
ture [124]. This static AF order is lost above a concen-
tration of added holes per planar copper x � 0 02. but
complex dynamical spin correlations persist up to the
overdoped regime [12,123].

In YBa2Cu3O6+y (YBCO) incommensurate mag-
netic fluctuations have been detected by inelastic NS
(INS) [14,18,125,126] with a similar doping depend-
ence of the low-energy incommensurability to that of
LCO [18]. Upon increasing energy the incommensu-
rate branches continuously disperse towards the
so-called resonance mode at wave-vectorQAF � ( , )! ! ,
a collective magnetic mode that grows up below Tc
[127–129]. The energy Er of the spin resonance seems
to scale linearly with Tc which has led to speculations
that it could be related to the superconducting pairing
and phase coherence (cf. Ref. 130,131] and references

therein), thus suggesting a magnetic origin of the high
transition temperatures of cuprates. Finally above Er
the magnetic fluctuations in YBCO acquire again an
incommensurate structure [14,15,19,125,131] and are
already observed above Tc [126].

Very recent experiments were dedicated to explore
the problem of universality in the magnetic excita-
tions between different cuprate families [70,132–134].
In particular Tranquada and collaborators [70] re-
ported INS measurements of the magnetic excitations
in La1.875Ba0.125CuO4 which shows static charge and
spin order. Most interestingly the dispersion of spin
excitations shows features which resemble closely
those of YBCO although the measurement has been
performed above Tc. The similarity between both com-
pounds has been further demonstrated by a high en-
ergy study of YBCO [126] and a high resolution ex-
periment on optimally doped LCO [133]. These works
[70,126,132–134] are certainly an important step to-
wards a unified understanding of magnetic fluctuation
in cuprates. On the other hand they open new ques-
tions. The spin excitations in YBCO are commonly ex-
plained in terms of an itinerant picture as arising from
a dispersing two-particle bound state induced by AF
correlations in a d-wave superconducting system
[134,135]. On the other hand magnetic excitations on
top of stripes are usually described in a localized mo-
ment picture within spin-wave theory (LSWT)
[136,137]. If the origin of magnetic excitations in
cuprates is universal, what picture is more appropri-
ate? The spectra of LSWT are difficult to reconcile
with several features of YBCO [126,130,134] and
LCO [70,133] challenging the stripe interpretation it-
self [132,133]. We have shown that the magnetic
excitations in La1.87Ba0.125CuO4 (and possibly in the
other cuprates) can be understood in terms of the spin
fluctuations of metallic stripes which are in an inter-
mediate regime, i.e. neither the localized nor the itin-
erant picture applies [69,138]. Contrary to the LSWT
computations [136] our results are in agreement with
experiment [70] over the whole range of energies and
momenta.

Results shown below are obtained for lattices of di-
mension �100�100 sites and for doping x /� 1 8 corre-
sponding to a period of charge modulation d a� 4 .

The calculation is performed within the extended
one-band Hubbard model for the parameter set de-
rived in the pervious section. For both BC and SC
stripes the magnetic excitation spectra are rather simi-
lar. For definiteness we mainly restrict ourselves to
the BC case because of marginally better agreement
with experiment (see below). As already mentioned,
these textures constitute the more stable configuration
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at x /� 1 8 in the more accurate three-band model [42]
(Sec. 3) and in first principle computations [110].

We compute the transverse dynamical structure
factor.

S
g Z

N
S

B� � � � �
( , )
( )

| | | | ( )�
% *

� � � �
�

�
�q q

2
20

�

+

(30)

which is probed by INS. Here g � 2 and as in LSWT
we included the renormalization factor Z� [124]. In
the insulating phase our spectral weights are close to
LSWT and therefore we adopt Z� � 0 51. [118]. *
takes into account polarization factors in the NS cross
section and is discussed in Ref. 139. Energy is sam-
pled at intervals of �2 meV.

Fig. 15 shows the dispersion of magnetic excita-
tions for BC stripes oriented along the y-axis. The
lower (acoustic) branch perpendicular to the stripes
(b) is similar to the lowest branch found within
LSWT [136]. Indeed, since the acoustic branch in-
volves long-wavelength excitations it should not de-
pend on the short-range details of the model. It shows
the correct Goldstone-like behavior going to zero fre-
quency at the ordering wave-vector Qs � �( , )! !� !2
with � � 1 8/ . Starting from Qs one observes two
branches of spin-waves where the one dispersing to-
wards smaller qx rapidly loses intensity. The other
one remains very intense up toQAF where it can be as-
sociated with the resonance peak. Moreover, the dis-
persion develops a local maximum at QAF explaining
the strong intensity in the momentum integrated
structure factor (Fig. 16) at the resonance frequency.
In the direction of the stripe the excitations display a

«roton-like» minimum. The energy of the resonance at
QAF is Er � 56 meV for BC stripes which is in excel-
lent agreement with the experimental one for this sys-
tem [70]. The corresponding value for SC textures is
slightly higher (Er � 64 meV).

In order to compare with experiments one should
average over the two possible orientations of the
stripes. In Fig. 15 this amounts to adding to each of
the panels the data of the other panel reflected with
respect to the central axes. One obtains an X-shaped
dispersion providing a natural explanation for the
X-like feature seen in both YBCO [14,19,134] and
LCO [70].

The acoustic branch and its continuation in Fig. 15
are quite similar to the dispersion obtained in a
weakly coupled two-leg ladder system [141]. In these
approaches parameters are adjusted to drive the sys-
tem into the quantum critical point separating the
quantum paramagnet from the magnetically ordered
state [141]. Hence the similarity with our spectra is
reasonable since regarding the magnetism the ordered
state corresponds to the present ground state and one
can expect continuity of the excitations at the transi-
tion. The spin-leg ladder theories [142], however, rely
heavily on the fine tuning of the coupling parameter
between the legs and an even charge periodicity of the
stripes (like for � � 1 8/ ). In contrast we obtain
qualitatively similar spectra for � � 1 8/ and � � 1 10/
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( .x � 01, d a� 5 ) [42,91], in accord with experiment
[133]. Note that this does not exclude the interesting
possibility that a small spin-gap opens by the ladder
mechanism for x /+ 1 8 and � � 1 8/ [111,141,142].

Above the acoustic branch in Fig. 15 there are three
optical branches. For BC textures the lowest two al-
most touch at q /x � ! 2. Gap positions are in agree-
ment with LSWT but the dispersion is not. Indeed the
computations in Ref. 136 yield a shift of the two lower
optical branches by !/4 along qx with respect to our
computation. Formally this difference can be traced
back to the nonlocal nature of magnetic excitations in
our system which shows magnetic moments consider-
ably smaller than in the insulator, and more impor-
tantly is metallic. In LSWT only processes of the kind
S Si j

 	 are allowed in the effective interaction kernel

with i and j being close neighbors [136]. We find that
not only processes with i far from j are important but
also processes of the kind c c c c

i i j j,
†

, ,
†

,�  � �  � with all four
sites different.

Figure 17 reports constant frequency scans of
S� ( , )� q in the full Brillouin zone for BC stripes ori-
ented along the y-direction. At low energies
(� � 6 meV) intensity is confined to the momenta of
the Goldstone mode Q /s � � �( , )3 4! ! and develops
into the structure of a spin-wave cone at higher ener-
gies (� � 36 meV). The intensity is very anisotropic
along the intersection with the region closest to QAF
displaying the stronger weight. At � � 55 meV the
acoustic mode has reached the resonance so that main
intensity is now at QAF � ( , )! ! . However, due to the
appearance of the roton we also observe some weight
in the direction of the stripes appearing as the small
segments at � � �( , )! !/4 . Upon further increasing
the energy (� � 80 meV) one still only observes inten-
sity in the direction of the stripes due to the gap be-
tween acoustic mode and lowest energy optical mode
perpendicular to the stripe (cf. Fig. 15). The intensity
of the latter becomes visible for � + 90 meV and leads
to the ring shaped structure aroundQAF for higher en-
ergies.

Another very interesting finding are the horizontal
cigar like features seen at 36 meV and higher energies.
Similar features have been obtained in weak coupling
in the longitudinal channel [53]. These structures ap-
pear close to q / ky F� �! 2 2 and correspond to
spin-flip backscattering processes of the quasi-one di-
mensional metallic subsystem. At this qy the contin-
uum extends to about 100 meV. As expected there is
also a sharp collective mode corresponding to forward
scattering processes but with too weak intensity to be
observable in Fig. 17. Diffusive scattering revealed a
similar phenomenon in La5/3Ni1/3O4 where stripes

are insulating but have a spin-1/2 degree of freedom
at the core [143].

In order to compare with the experimentally de-
tected intensities (shown in Fig. 2 of Ref. 70) one has
to average over the two stripe orientations, i.e., to su-
perimpose the panels in Fig. 17 with the analogous
figure rotated by 90 � . The resulting intensity scans are
shown in Fig. 18 restricted to the magnetic zone only
and rotated by 45 � to facilitate comparison with the
corresponding panels of Ref. 70.

Resolution and linewidth effects are considered by
convoluting the data with a gaussian (FWHM = 0.06
r.l.u.). It is interesting to observe that below the reso-
nance and due to the highly anisotropic intensity dis-
tribution around the spin-wave cone the acoustic mode
now appears as a single branch dispersing towards
( , )! ! . The mode dispersing away from ( , )! ! has much
smaller intensity (c.f. Fig. 15) and is not visible in
Fig. 18. Although our study focusses on an
underdoped system this feature fits nicely with the
fact that only the branch closest toQAF is seen in a re-
cent high resolution study on optimally doped LCO
[133]. At 55 meV the «resonance» now appears as a
large intensity spot at QAF and some weight around
due to the appearance of the roton. At higher energies
the intensity evolves in a ring shaped feature around
QAF where the dominant weight has now rotated to-
wards the diagonal directions. This is in fact the be-
havior observed in LBCO [70] but even in strongly
underdoped YBCO [126] above the resonance.

5. Conclusions

Strongly correlated systems with competing inter-
actions have a natural tendency to form inho-
mogeneous ground states. The inhomogeneities can
support new collective modes which are not present in
the homogeneous phase and which can have important
physical consequences. Indeed an exciting possibility
is that these new collective modes are responsible for
pairing in high temperature superconductors and for
the anomalous normal state properties.

We have reviewed the application of the time de-
pendent Gutzwiller approximation to compute dynami-
cal properties of cuprates. This approach [58–60] allows
to compute RPA like fluctuations on top of the GA solu-
tions with the conceptual simplicity of a HF+ RPA com-
putation but staring from the correct ground state.

A comparison with exact data [58–60] shows that
GA + RPA is much more accurate than HF + RPA.
Roughly speaking since the GA contains ground state
correlations not included in a HF wave function the
residual interaction is a smaller perturbation to the
MF state and hence it is natural that RPA works much
better. In other words RPA fluctuations on top of a
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«correlated» mean field state (GA) converge much
better to the exact result than fluctuation on top of an
uncorrelated mean field state (HF).

Compared to numerical «exact» methods like exact
diagonalization or Monte Carlo our approach can be
pushed to much larger systems. Our experience on
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modeling real data is that often finite size effects are
more severe than the inaccuracies introduced by
mean-field + RPA approaches.

A more recent approach for dynamical properties
consists of mapping the problem onto quantum impu-
rity models «dynamical mean-field theory» which,
becomes exact in the limit of large dimensions. This
has enormously increased our understanding of these
systems, however on making the limit of large dimen-
sions important parts of the physics are lost. For ex-
ample all acoustic — like collective behavior like
spin-waves disappears. On the other hand these collec-
tive effects are naturally captured in our approach.

As a first step in the present application to the
cuprates we have analyzed the saddle point solutions
that minimize the GA energy functional with realistic
Hamiltonian parameters. Stripes in our computation
are metallic charge and spin density-waves in a regime
intermediate between localized moment and itinerant
pictures. These solutions allow to understand several
static properties of lanthanum cuprates [42] like the
doping dependence of: the magnetic incommen-
surability, the chemical potential and the presence or
absence of particle hole symmetry as reveled by trans-
port experiments.

Clearly the GA static solutions are an excellent
starting point as opposed to Hartree–Fock (HF) solu-
tions where the stabilization of stripes requires the
manipulation of the parameters beyond the physical
range.

Charge excitations determine the optical conduc-
tivity which we have computed within the GA + RPA
approach. Striped domain walls induce two MIR exci-
tations. At around 1.3 eV a HEMIR band appears
which is related to interband transitions within the
stripe band structure. Further on we found a collec-
tive mode (i.e., the LEMIR band) which softens as a
function of doping due to the suppression of the en-
ergy barrier between quasidegenerate BC and SC
stripe solutions. These features are in good agreement
with experiments for positions and relative intensities
with parameters fixed by first principle computations
as in Ref. 47.

For the magnetic channel probed by INS experi-
ments our results are also in good agreement with
experiments in La1.875Ba0.125CuO4 providing a strai-
ghtforward explanation of the energy and momentum
dependent evolution of S q� ( , )� in terms of stripes
and hence confirming stripes as a robust feature of this
system with a firm theoretical basis.

The fact that the magnetic excitation spectra are
similar in different cuprate families and for different
doping levels suggests that stripes or the proximity to
stripe instabilities are a universal property of cuprates

and hence that they may be relevant for the supercon-
ducting mechanism.

Both in the charge and in the spin channel the dy-
namics is well explained by the striped GA state with-
out free parameters giving strong support to the stripe
scenario. In addition it show that the method is simple
an accurate enough to obtain realistic dynamical prop-
erties of textured strongly correlated systems.

It is worth speculating that scattering of holes mov-
ing along and perpendicular to the stripes with the
soft collective modes in the charge and spin channel
may be responsible for the anomalous normal state be-
havior in cuprates. In addition such scattering may
contribute to the pairing of holes and be responsible
for the phenomenon of high temperature superconduc-
tivity. More work is needed to test this hypothesis in
detail.

Appendix: Spin-rotational invariant GA

Our aim is the derivation of an approximate sin-
gle-particle hamiltonian which obeys spin-rotational
invariance as a generalization of the conventional
mean-field Kotliar–Ruckenstein Hamiltonian. For
this purpose it is convenient to introduce the spinor
operators

� �i i
† † †( , )� �

�

�
��

�

�
��� �

�

�
c c

c

ci i
i

i
, (A.1)

and define the spin vector components as

S c c c ci
x

i i i i� � �
� � � �

1
2

1
2

� �i x i
† † †( ), , (A.2)

S c c c ci
y

i i i i� � �
� � � �

1
2

1
2

� �i y i
† † †( ), , (A.3)

S c c c ci
z

i i i i� � �
� � � �

1
2

1
2

� �i z i
† † †( ), . (A.4)

, i denote the Pauli matrices and one can furtheron
define the usual raising and lowering operators as

S S iS c ci i
x

i
y

i i



� �� � � † , (A.5)

S S iS c ci i
x

i
y

i i
	

� �� � � † . (A.6)

The procedure implemented in the following con-
sists essentially of three steps. Assume that in our ini-
tial reference frame we have non-vanishing spin order
pointing locally in some given direction, i.e. � � -S i 0.
At first we then rotate locally to a new frame where
spins point along the z-axis, i.e. � � � �~ ( , , ~ )S i i

zS0 0 . This
allows, as a second step, the introduction of slave-bos-
ons and associated fermions fi� within the
Kotliar–Ruckenstein [77] scheme. For the bosons we
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apply the saddle-point (mean-field) approximation.
Finally, in a third step we rotate the fermions back to
the original reference frame.

We define the local rotations in spin space by the
following transformations

� � � �i i i i i iU U� �† † † , (A.7)

where

U 1i � �cos( ) sin( ). . ,i i/ i /2 2 � (A.8)

and � � ( , , )* *x y 0 is the rotation axis of length
unity. The inverse transformation reads as

� � � �i i i i i iU U� �† † † . (A.9)

Within the first step of our procedure we have the
requirement that the transformed spinor is given by
~ ( , , ~ )S i i

zS� 0 0 . Applying the transformation Eq. (A.9)
to this vector one obtains the following relations

S Si
x

y i i
z� �* .sin( )~ , , (A.10)

S Si
y

x i i
z� * .sin( )~ , , (A.11)

S Si
z

i i
z� cos( )~. . (A.12)

Note that the local charge

n ni i� �� �i i1† ~ (A.13)

and thus also the interaction term n ni i� � �
� �1 2 2/ n ni i( ) are not affected by the transformation.

Since by definition transverse spin order vanishes
in the rotated frame we can now, as a second step, ap-
ply the Kotliar–Ruckenstein slave-boson scheme:

~ ~ ~ ~† † †c z f c z fi i i i i i� � � � � �� � (A.14)

with
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The double (d), singly (p�), and empty (ei ) occu-
pancy bosons are constrained by the following rela-
tions:

p p d d n ni i i i i i,
†

,
† ~

�
�

�
 � � �2 2 2 , (A.16)
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Since we follow essentially a Gutzwiller-type ap-
proach we now apply the mean-field approximation
for the bosons. With help of Eqs. (A.12), (A.16),
(A.17) and (A.18) we can eliminate all bosons but di
and express them via expectation values in the origi-
nal reference frame and D di� 2. One finds

e n Di i i
2 1� � � , (A.19)
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2
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and � � �1 in the latter equation.
Summarizing the steps we have performed so far

the original fermion operators ci� are related to the
Kotliar–Ruckenstein transformed ones

~
fi� in the ro-

tated frame via the transformation
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Finally we transform the fermion operators
~
fi�

back to the original frame (cf. Eq. (A.7))
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so that the spin-rotational invariant Gutzwiller repre-
sentation of the fermions is given by
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The complete transformation matrix z WU� reads as:
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(A.26)
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and for simplicity we have skipped the � �... symbols
in denoting the expectation values of the S compo-
nents.

We finally obtain for the spin-rotational invariant
Gutzwiller energy functional Eq. (4) for the Hubbard
model

E t U DGA
ij

i j
i

i

� � � �
 

,

† .� �i i j jz z (A.27)
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