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Based on the generalized non-Markovian equations obtained earlier for a nonequilibrium one-particle distri-

bution function and potential part of the averaged enthalpy density [Markiv B.B., Omelyan I.P, Tokarchuk M.V.,

Condens. Matter Phys., 2010, 13, 23005] a spectrum of collective excitations is investigated, where the potential

of interaction between particles is presented as a sum of the potential of hard spheres and a certain long-range

potential.
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1. Introduction

A number of investigations [1–10] were devoted to the problem of constructing a consistent descrip-

tion of kinetic and hydrodynamic processes in dense gases, liquids, and plasma. For instance, the im-

portance of taking into account the kinetic processes connected with irreversible collision processes at

the scale of short-ranged interparticle interactions was pointed out in [11]. Short-wavelength collective

modes in liquids were investigated therein based on the linearized kinetic equation of the revised Enskog

theory for the hard spheres model.

In this paper we investigate a spectrum of collective excitations within a consistent description of

kinetic and hydrodynamic processes in a system in which the potential of interaction between particles

consists of two parts: the hard spheres potential and a long-range part.

2. Transport equations

Using the ideas presented in papers [3, 4] the nonequilibrium statistical operator consistently describ-

ing the kinetic and hydrodynamic processes for a system of classical interacting particles was obtained

in [7, 8] by means of nonequilibrium statistical operator method. Using this operator, a set of kinetic

equations for the nonequilibrium one-particle distribution function f~k (~p; t) = 〈n̂~k
(~p)〉t and the potential

part of the averaged enthalpy density hint
~k

(t) = 〈ĥint
~k

〉t was obtained in the case of weakly nonequilibrium

processes:

∂

∂t
f~k (~p; t)+

i~k ·~p
m

f~k (~p; t) =−
i~k ·~p

m
n f0(p)c2(k)

∫

d~p ′ f~k (~p ′
; t)+ iΩnh (~k;~p)hint

~k
(t)

−
∫

d~p ′
t

∫

−∞

e
ε(t ′−t )ϕnn(~k;~p,~p ′

; t , t ′) f~k (~p ′
; t ′)dt ′−

t
∫

−∞

e
ε(t ′−t )ϕnh(~k ;~p; t , t ′)hint

~k
(t ′)dt ′, (1)
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∂

∂t
hint
~k

(t) =
∫

d~p ′
iΩhn (~k;~p ′

) f~k (~p ′
; t)

−
∫

d~p ′
t

∫

−∞

e
ε(t ′−t )ϕhn(~k;~p ′

; t , t ′) f~k (~p ′
; t ′)dt ′−

t
∫

−∞

e
ε(t ′−t )ϕhh(~k ; t , t ′)hint

~k
(t ′)dt ′, (2)

where iΩnh (~k;~p) = 〈 ˙̂n~k
(~p)ĥint

−~k
〉0Φ

−1
hh

(~k) and iΩhn (~k;~p) =
∫

d~p ′〈 ˙̂
hint
~k

n̂−~k (~p ′)〉0Φ
−1
~k

(~p ′,~p) are the normal-

ized static correlation functions.

ϕnn(~k;~p,~p ′
; t , t ′) =

∫

d~p ′′〈In (~k;~p)T0(t , t ′)In (−~k;~p ′′
)〉0Φ

−1
~k

(~p ′′
,~p ′

),

ϕhn(~k;~p; t , t ′) =
∫

d~p ′〈I int
h (~k)T0(t , t ′)In (−~k;~p ′

)〉0Φ
−1
~k

(~p ′
,~p),

ϕnh(~k;~p; t , t ′) = 〈In (~k;~p)T0(t , t ′)I int
h (−~k)〉0Φ

−1
hh(~k),

ϕhh (~k; t , t ′) = 〈I int
h (~k)T0(t , t ′)I int

h (−~k)〉0Φ
−1
hh (~k) (3)

are the generalized transport kernels (memory functions) describing kinetic and hydrodynamic pro-

cesses. In [12], the inner structure of generalized transport kernels for a consistent description of ki-

netic and hydrodynamic processes was analyzed in detail. It was shown that they are expressed in

terms of time correlation functions related to the basic set of dynamical variables, phase density n̂~k
(~p)

and potential part of the enthalpy density ĥint
~k

along with the transport kernels describing diffusive

and visco-thermal processes. Here, n̂~k
(~p) =

∫

d~r e−i~k~r n̂1(~r ,~p) are the Fourier-components of microscopic

phase density of particles number, n̂1(~r ,~p) =
∑N

l=1
δ(~p −~pl )δ(~r −~rl ), ĥint

~k
= ε̂int

~k
−〈ε̂int

~k
n̂−~k 〉0S−1(k)n̂~k

are

the Fourier-components of the potential part of the enthalpy density, ε̂int
~k

= 1
2

∑N
l, j=1

Φ(|~rl j |)e−i~k~r j and

n̂~k
=

∑N
l=1

e−i~k~rl are the Fourier-components of the potential energy and particle number densities, re-

spectively, ~k is the wave-vector. Φ−1
hh

(~k) is the function inverse to the equilibrium correlation function

Φhh(~k) = 〈ĥint
~k

ĥint

−~k
〉0, 〈. . .〉0 =

∫

dΓN . . .̺0(xN ), where ̺0 is an equilibrium statistical operator. In (~k;~p) =

(1−P0)iLN n̂~k
(~p) = (1−P0) ˙̂n~k

(~p) and I int
h

(~k) = (1−P0)iLN ĥint
~k

= (1−P0)
˙̂
hint
~k

are the generalized flows

in linear approximation, T0(t , t ′) = e(t−t ′)(1−P0)iLN is the evolution operator with regard to projection.

P0 is the linear approximation of the Mori projection operator constructed on the orthogonal dynamic

variables n̂~k
(~p), ĥint

~k
[8]: P0 Â~k

=
∑

~k
〈Â~k

ĥint

−~k
〉0Φ

−1
hh

(~k)ĥint
~k

+
∑

~k

∫

d~p
∫

d~p ′〈Â~k
n̂−~k (~p)〉0Φ

−1
~k

(~p,~p ′)n̂~k
(~p ′). It

possesses the following properties: P0P0 = P0, P0(1−P0) = 0, P0n̂~k
(~p) = n̂~k

(~p), P0ĥint
~k

= ĥint
~k

. Φ−1
~k

(~p,~p ′)

is the function inverse to Φ~k
(~p,~p ′) = 〈n̂~k

(~p)n̂−~k (~p ′)〉0 = nδ(~p −~p ′) f0(p ′)+n2 f0(p) f0(p ′)h2(~k). It is equal

to Φ
−1
~k

(~p,~p ′) = δ(~p−~p′)
n f0(p′) −c2(k), where n = N /V , f0(p)=

(

β/2πm
)3/2

e−β
p2

2m is the Maxwellian distribution,

β = 1/kBT is an inverse temperature and kB is Boltzmann constant. c2(k) is the direct correlation func-

tion related to the correlation function h2(k): h2(k) = c2(k)[1−nc2(k)]−1. S(k) = 〈n̂~k
n̂−~k 〉0 denotes the

static structure factor. It is important to note that dynamical variables ĥint
~k

and n̂~k
(~p) are orthogonal in

the sense that 〈ĥint
~k

n̂~k
(~p)〉0 = 0.

Projecting the set of equations (1), (2) onto the first moments of the nonequilibrium one-particle dis-

tribution function Ψ1(~p) = 1, Ψα(~p) =
p

2pα/2kBT (where α= x, y, z), Ψε(~p) =
p

2/3(p2/2mkBT −3/2),

one can obtain a set of equations for the averaged values of densities of particles number n~k
(t), momen-

tum ~~k (t), kinetic hkin
~k

(t) and potential hint
~k

(t) parts of enthalpy [8], where the Fourier-components of

the kinetic part of enthalpy density defined as ĥkin
~k

= ε̂kin
~k

−〈ε̂kin
~k

n̂−~k〉0〈n̂~k
n̂−~k〉

−1
0

n̂~k
. For this purpose, we

introduce the projection operator constructed on the eigenfunctions |Ψν(~p)〉 of the nonequilibrium one-

particle function such that P |Ψ〉 =
∑n

ν=1
|Ψν〉〈Ψν|Ψ〉. Here, 〈Ψ|Ψν〉 =

∫

d~pΨ(~p) f0(p)Ψν(~p), while Ψν(~p)

satisfies the conditions 〈Ψµ|Ψν〉 = δµν and
∑

ν |Ψν〉〈Ψν| = 1. Then, let us act by the projection operator P

onto the set of equation (1), (2). Repeat this operation acting by the operator Q = 1−P complementary

to P . Then, substituting the unknown quantity from the second equation into the first one we obtain

the necessary set of equations with separated contributions of kinetic and potential energies. Using the
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Laplace transform, let us represent it in a matrix form:

zã~k (z)− Σ̃G(~k ; z)ã~k (z)=−〈ã~k (t = 0)〉t
. (4)

Σ̃G(~k; z) is the matrix of memory kernels

Σ̃G(~k; z) = iΩ̃G(~k)− Π̃(~k; z), (5)

where ã~k (z) = [n~k
(z),~~k (z),hkin

~k
(z),hint

~k
(z)] is the column-vector.

iΩ̃G(~k) =













0 iΩn  0 0

iΩn 0 iΩkin
h

iΩint
h

0 iΩkin
h 

0 0

0 iΩint
h 

0 0













, Π̃(~k; z) =













0 0 0 0

0 Π   Π
kin
h

Π
int
h

0 Π
kin
h 

Π
kin,kin

hh
Π

kin,int

hh

0 Π
int
h 

Π
int,kin

hh
Π

int,int

hh













(6)

are the frequency matrix and the matrix of transport kernels. The elements of the latter have the follow-

ing structure:

Πµν(~k; z) = 〈Ψµ|ϕ̃(~k; z)+ Σ̃(~k; z)Q[zĨ −QΣ̃(~k; z)Q]
−1

QΣ̃(~k; z)|Ψν〉. (7)

Ĩ denotes a unit matrix, ϕ̃(~k; z) is the matrix whose elements are the generalized transport kernels

ϕnn(~k;~p,~p ′; z), ϕhn(~k;~p ′; z), ϕnh (~k;~p; z), ϕhh(~k; z) in the set of equations (1), (2), and Σ̃(~k; z) = iΩ̃(~k)−
ϕ̃(~k; z). Here, iΩ̃(~k) is the matrix of static correlation functions iΩnh (~k;~p), iΩhn (~k;~p). For the sake of

simplicity the dependence of ϕ̃(~k; z), Σ̃(~k; z) on ~p,~p ′ was omitted. As we can see from the structure of ele-

ments of the matrices iΩ̃G(~k) and Π̃( ~k; z), the contributions of kinetic and potential parts of enthalpy are

separated. Herewith, a question arises regarding the study of time correlation functions and collective

modes for liquids based on the set of transport equations (4).

3. Spectrum of collective excitations

Let us consider the system of kinetic equations (1), (2) in the case where the potential of interaction is

presented as follows:

Φ(|~ri j |) =Φ
hs

(|~ri j |)+Φ
l
(|~ri j |), (8)

where Φ
hs(|~ri j |) is the hard sphere interaction potential, and Φ

l(|~ri j |) is the long-range potential. Taking

into account the features of the hard sphere model dynamics [4] and the results of investigations [11, 13,

14], one can separate Enskog-Boltzmann collision integral from the function ϕnn(~k ;~p,~p ′; t , t ′). Indeed, an
infinitesimal time of a collision τ0 →+0 within an infinitesimal regionσ±∆r0,∆r0 ∼ |τ0||~p2−~p1|/m →+0

being a feature of the hard sphere model dynamics (σ is the hard sphere diameter). Taking this into ac-

count in the kinetic equation (1) we can obtain the kinetic equation of the revised Enskog theory for

the hard sphere model and the kinetic Enskog-Landau equation for the charged hard sphere model in a

pair collision approximation, respectively [4]. In the latter case, when Φ
l(|~ri j |) is the Coulomb potential

of interaction, taking into account the features τ0 →+0, ∆r0 →+0 makes it possible to separate a colli-

sion integral of the revised Enskog theory and a Landau-like collision integral in the limits τ→−0 and

τ → −∞, respectively. In the case of potential (8), in the region of τ0 → +0, ∆r0 → +0, σ±∆r0 where

the main contribution to a dynamics is defined by pair collisions of hard spheres, the memory function

ϕnn(~k;~p,~p ′; t , t ′) can be calculated by expanding it over the density (a pair collision approximation),

which was scrupulously done in papers by Mazenko [13–17].

Then, the kinetic equation (1) can be represented in the following form:

∂

∂t
f~k (~p; t)+

i~k ·~p
m

f~k (~p; t) =−
i~k ·~p

m
n f0(~p)

[

c2(k)− g2(σ)c0
2 (k)

]

∫

d~p ′ f~k (~p ′
; t)

−
∫

d~p ′ϕhs
nn(~k ,~p,~p ′

) f~k (~p ′
; t)+ iΩnh (~k;~p)hint

~k
(t)

−
∫

d~p ′
t

∫

−∞

dt ′eε(t−t ′)ϕl
nn(~k ;~p,~p ′

; t , t ′) f~k (~p ′
; t ′)−

t
∫

−∞

dt ′eε(t−t ′)ϕnh(~k;~p; t , t ′)hint
~k

(t ′). (9)
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Here,

∫

d~p ′ϕhs
nn(~k,~p,~p ′

) f~k (~p ′
; t) = ng2(σ)σ2

∫

dΩσ

∫

d~p ′ (~p −~p ′) ·~̂σ
m

Θ−
(

~̂σ · [~p −~p ′
]

)

×
[

f0(p ′∗
) f~k (~p; t)− f0(p ′

) f~k (~p∗
; t)+e

i~k·~̂σσ f0(p ′∗
) f~k (~p ′∗

; t)−e
i~k·~̂σσ f0(p) f~k (~p ′

; t)

]

(10)

is the Enskog-Boltzmann collision integral, where c0
2

(~k) is the low-density limit of the direct correlation

function and g2(σ) is the pair distribution function. The step function Θ−(x) is unity for x < 0 and van-

ishes otherwise. dΩσ is the differential solid angle, ~̂σ is unity vector. The precollision and postcollision

momenta of the colliding hard spheres are denoted as (~p,~p ′) and (~p∗,~p ′∗), respectively. ϕl
nn(~k;~p,~p ′; t , t ′)

is the part of the transport kernel related to the long-range interaction potential Φl(|~ri j |). Notably, the

presented equation contains the Enskog-Boltzmann collision integral describing short-time dynamics of

the hard sphere model. The collective effects related to the long-range interactions between particles are

described by the functions iΩnh (~k ;~p), ϕl
nn(~k;~p,~p ′; t , t ′),ϕnh (~k; t , t ′) and by the equation for hint

~k
(t). Since

the collective modes for the Enskog-Boltzmann model are well studied [11], the investigation of time cor-

relation functions and collective modes for the system of particles interacting through the potential (8)

turns out to be of great interest. In the case of the hard spheres system, the set of kinetic equations (2), (9)

reduces to the Enskog-Boltzmann kinetic equation [11].

∂

∂t
f~k (~p; t)+

i~k ·~p
m

f~k (~p; t) =−
i~k ·~p

m
n f0(~p)

[

c2(k)− g2(σ)c0
2(k)

]

∫

d~p ′ f~k (~p ′
; t)

−ng2(σ)σ2

∫

dΩσ

∫

d~p ′ (~p −~p ′) ·~̂σ
m

Θ−
(

~̂σ · [~p −~p ′
]

)

×
[

f0(p ′∗
) f~k (~p; t)− f0(p ′

) f~k (~p∗
; t)+e

i~k ·~̂σσ f0(p ′∗
) f~k (~p ′∗

; t)−e
i~k ·~̂σσ f0(p) f~k (~p ′

; t)

]

. (11)

Projecting the Enskog-Boltzmann equation (11) onto the first moments of the nonequilibrium one-particle

distribution function a spectrum of collective excitations for the hard sphere model was obtained in [11,

18]. Herewith, it is important to note that for the kinetic Enskog-Boltzmann equation we can consider two

typical limits: kσ≪ 1 and kσ≫ 1. In the hydrodynamic limit (kσ≪ 1) the spectrum includes: heatmode

zH(k) =−DTEk2, where DTE is the thermal diffusivity coefficient in the Enskog transport theory [19]; two

soundmodeswith eigenvalues given by z±(k) =±ick −ΓEk2, where ΓE is the sound damping coefficient

and c is the sound velocity in the Enskog theory; two shear modes with eigenvalues given by zν1
(k) =

zν2
(k) = zν(k) =−νEk2, νE is the kinematic viscosity in the Enskog dense gas theory. In the limit kσ≫ 1

the Enskog-Boltzmann collision integral (10) is transformed [11] into the Lorentz-Boltzmann collision

integral which has only one eigenfunction Ψ1(~p) = 1. Consequently, we obtain the diffusion mode only

with the eigenvalue zD(k) = −DEk2, where DE is the self-diffusion coefficient as given by the Enskog

dense gas theory.

Let us now project the system of equations (2), (9) onto the first moments of the nonequilibrium

one-particle distribution function. Thereafter, we perform simple transformations consisting in the tran-

sition from the set of equations (4) for averages n~k
(z),~~k (z),hkin

~k
(z),hint

~k
(z) to the equations of general-

ized hydrodynamics for averages b̃~k (z) = [n~k
(z),~~k (z),h~k

(z)= hkin
~k

(z)+hint
~k

(z)]. This permits to correctly

define (see below) the generalized viscosity coefficient via the transport kernel (13) and the heat con-

ductivity coefficient via the transport kernel Πhh (k, z). The averages b̃~k (z) satisfy the set of equations

zb̃~k (z) − Σ̃G(~k; z)b̃~k (z) = −〈b̃~k (t = 0)〉t . In the limit kσ ≫ 1, the latter reduces to a single equation of

diffusion for n~k
(z) in which the transport kernel ΣG(~k; z) = 〈Ψ1|ϕL−B

nn (~k)|Ψ1〉 corresponds to the Lorentz-

Boltzmann collision integral (10). In the opposite case, when kσ ≪ 1, the matrix Σ̃G(~k; z) is defined as

follows: Σ̃G(~k; z) = Σ̃H(~k; z) = iΩ̃H(~k)− Π̃H(~k; z),

Σ̃H(~k; z) =







0 iΩn  0

iΩn −〈Ψ2|ϕhs
nn |Ψ2〉−Σ

l
j j

iΩh −Π h

0 iΩh  −Πh  −〈Ψ3|ϕhs
nn |Ψ3〉−Π

l
hh







(k ,z)

. (12)
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Here we use the notations

Σ j j (k, z) = Π j j (k, z)−Σ
int
j h (k, z)

[

Σ
kin,kin

hh
(k, z)

]−1 {

iΩ
kin
h j (k)+Π

kin,int
hh

(k, z) (13)

×
[

z −Σ
int,int

hh
(k, z)

]−1

Σ
int
h j (k, z)

}

−Σ
kin
j h (k, z)

[

z −Σ
int,int

hh
(k, z)

]−1

Σ
int
h j (k, z),

Πhh (k, z) = Π
kin,kin

hh
(k, z)+Π

kin,int

hh
(k, z)+Π

int,kin

hh
(k, z)+Π

int,int

hh
(k, z), (14)

where Σ
kin,kin

hh
(k, z) = z − Π

kin,kin

hh
(k, z), Σ

int,int

hh
(k, z) = Π

int,int

hh
(k, z) + Π

int,kin

hh
(k, z)

[

Σ
kin,kin

hh
(k, z)

]−1

×Πkin,int

hh
(k, z), Σint

h j
(k, z) = iΩint

h j
(k)+Πint,kin

hh
(k, z)

[

Σ
kin,kin

hh
(k, z)

]−1

iΩkin
h j

(k). We can separate real and imag-

inary parts in memory functions (13) and (14) as follows: Σ j j (k, z) =Σ
′
j j

(k,ω)+iΣ′′
j j

(k,ω) andΠhh (k, z) =
Π
′
hh

(k,ω)+ iΠ′′
hh

(k,ω). Herewith, the contributions from the hard sphere dynamics with typical spatial-

temporal scale τ0 →+0, ∆r0 →+0 are separated in the transport kernel ϕnn(~k;~p,~p ′; t , t ′) only in the first

term in the right-hand side of elements (7) and hence in (13). After these transformations we can ob-

tain a spectrum of collective excitations in the hydrodynamic limit kσ≪ 1: heat mode zH(k) =−DTk2,

where DT is the thermal diffusivity coefficient for the system with the potential of interaction (8). It

has the following structure: DT = DTE +D l
T
, D l

T
is determined through the corresponding elements (7)

of matrix of transport kernels (6). D l
T
= λl

nmcp
, cp is a heat capacity at constant pressure, λl is the heat

conductivity coefficient in the hydrodynamic limit: λl = limk→0,ω→0λ
l(k,ω). λl(k,ω) is the generalized

heat conductivity coefficient defined via elements of the matrix (6): λl(k,ω) = cV (k)

kBβ
2

1

k2 Π
′′
hh

(k,ω), where

cV (k) is the generalized heat capacity at constant volume dependent on the wave vector ~k ; two sound

modes z±(k) = ± ick − Γk2, where Γ is the sound damping and c = cp

cV βmS(0)
is the sound velocity in

the system with the potential of interaction (8), S(0) = S(k = 0), S(k) is a static structure factor of the

system with potential (8). Γ = 1
2

(cp /cV −1)DT + 1
2
ηL, where cV = cV (k = 0), ηL =

(

4
3
η⊥+ηb

)

/mn is the

longitudinal viscosity defined via the bulk viscosity ηb = ηb
E
+ηb

l
and the shear viscosity η⊥ = η⊥

E
+η⊥

l

coefficients. η⊥
E

is the shear viscosity in Enskog theory, and η⊥
l

is calculated in the hydrodynamic limit

η⊥
l
= limk→0,ω→0η

⊥
l

(k,ω). η⊥
l

(k,ω) is the generalized shear viscosity coefficient defined via elements

of the matrix (6) η⊥
l

(k,ω) = mn
β

1

k2 Σ
′′⊥
j j

(k,ω). Σ⊥
j j

(k, z) is the transverse component of the generalized

transport kernel Σ j j (k, z), where the wave vector ~k is directed along the 0Z axis. The longitudinal vis-

cosity coefficient ηL
l
is calculated in the hydrodynamic limit ηL

l
= limk→0,ω→0η

L
l

(k,ω), where ηL
l

(k,ω) is

the generalized longitudinal viscosity coefficient defined via longitudinal components of the generalized

transport kernel Σ j j (k, z): ηL
l

(k,ω) = mn
β

1

k2 Σ
′′L
j j

(k,ω); two shear modes with the eigenvalues given by

zν(k) =−νk2. ν= νE +νl is the kinematic viscosity ν= η⊥/nm for the system with the potential of inter-

action (8). Here, νl is a contribution determined by the corresponding elements (7) of the matrix of trans-

port kernels (6). In the limit kσ≫ 1, we obtain a diffusion mode, with the eigenvalue zD(k) = −DEk2,

which is the same as in the Enskog theory.

As we can see from the above expressions, presence of the long-range part in the potential of in-

teraction entails a renormalization of all the damping coefficients in the collective modes spectrum. In

particular, contributions related to long-range potential appear in heat and sound modes as well as in

shear modes. Nevertheless, diffusion mode remains unchanged.

4. Conclusions

In this brief report within the framework of consistent description of kinetic and hydrodynamic pro-

cesses we considered a set of kinetic equations for the potential of interaction of the system presented by

the sum of hard spheres potential Φhs(|~ri j |) and a certain smooth one Φl(|~ri j |). In this case, we separated

the Enskog-Boltzmann collision integral describing a collision dynamics at short distances from the colli-

sion integral of the kinetic equation for the nonequilibrium distribution function. Applying the procedure

of projecting onto the moments of the nonequilibrium distribution function to the equations (2), (9) we

obtain a set of equations for hydrodynamic variables. Based on this set of equations a spectrum of collec-

tive excitations was obtained in the limits kσ≪ 1 and kσ≫ 1. We showed that, besides the contribution
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from the hard spheres potential, all hydrodynamic modes contain contributions from the long-range part

of potential. These contributions make the damping coefficients closer to the ones known from the hy-

drodynamic theory. Here, we formally presented the contribution from the long-ranged part of potential,

since the latter, for example the Coulomb one, will contribute into the transport kernels (3). Moreover, we

can separate the linearized Landau-like collision integral describing pair collisions in ϕnn(~k;~p,~p ′; t , t ′),
while ϕhn(~k;~p; t , t ′), ϕnh (~k;~p; t , t ′), ϕhh (~k;~p; t , t ′) take into account collective Coulombic interactions.

Evidently, calculation of the elements (7) of matrix Π̃(~k ; z) will depend on the model of time dependence

(exponential, Gaussian etc.) for transport kernels (3). When a spectrum of collective excitations is known,

awhole set of time correlation functions can be investigated. In particular, it makes possible to investigate

the behaviour of the dynamic structure factor and, in the case of potential (8), to separate a contributions

from the hard spheres potential and the long-range part of potential in it.
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До проблеми узгодженого опису кiнетичних та

гiдродинамiчних процесiв у густих газах та рiдинах:

спектр колективних збуджень

Б.Б. Маркiв, I.П. Омелян, М.В. Токарчук

Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна

На основi отриманих ранiше узагальнених немаркiвських рiвнянь для нерiвноважної одночастинко-

вої функцiї розподiлу та середнього значення густини потенцiальної частини ентальпiї [Markiv B.B.,

Omelyan I.P, Tokarchuk M.V., Condens. Matter Phys., 2010, 13, 23005] дослiджується спектр колективних збу-

джень, коли потенцiал взаємодiї мiж частинками представлено сумою потенцiалу твердих сфер та деякого

далекосяжного потенцiалу.

Ключовi слова: кiнетика, гiдродинамiка, кiнетичнi рiвняння, функцiї пам’ятi, колективнi моди
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