Краткие сообщения

Низкотемпературный спектр ЭПР в порошковом образце $Cu(C_{10}H_8N_2)(H_2O)_2SO_4$

О.В. Кравчина, А.И. Каплиенко

Физико-технический институт низких температур им. Б.И.Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: kravchina@ilt.kharkov.ua

M. Kajnakova

Department of Experimental Physics Faculty of Sciences, P.J. Safarik University 9 Park Angelinum, Kosice 04154, Slovakia E-mail: feher@kosice.upjs.sk

Статья поступила в редакцию 19 апреля 2004 г., после переработки 11 мая 2004 г.

В интервале температур 2–30 К исследован спектр порошкового образца металлоорганического комплекса $Cu(C_{10}H_8N_2)(H_2O)_2SO_4$. Установлено, что основным орбитальным уровнем иона Cu^{2+} в этом соединении является дублет Крамерса $|x^2 - y^2 >$. Получены температурные зависимости компонент эффективного *g*-фактора и ширины резонансной линии ΔH индивидуальных частиц порошка. Обнаружено низкотемпературное уширение резонансной линии, обусловленное установлением ближнего магнитного порядка в системе. Оценена величина обменного взаимодействия в магнитной подсистеме.

У інтервалі температур 2–30 К досліджено спектр порошкового зразка металоорганічного комплексу Cu(C₁₀H₈N₂)(H₂O)₂SO₄. Встановлено, що основним орбітальним рівнем іона Cu²⁺ в цій сполуці є дублет Крамерса $|x^2 - y^2 \rangle$. Одержано температурні залежності компонент ефективного *g*-фактора та ширини резонансної лінії ΔH індивідуальних часток порошку. Виявлено низькотемпературне розширення резонансної лінії, що обумовлено встановленням ближнього магнітного порядку в системі. Оцінено величину обмінної взаємодії у магнітній підсистемі.

PACS: 76.30.Fc, 81.05.Lg

Металлоорганические соединения, являясь магнитоконцентрированными системами, зачастую демонстрируют свойства низкоразмерных магнетиков из-за особенностей пространственного окружения магнитного иона, формирующего направленные межионные связи. Информация об основном состоянии магнитного иона в этом соединении, позволяющая во многом прогнозировать его магнитные характеристики, может быть получена из спектра электронного парамагнитного резонанса. В случае монокристаллических объектов исследования резонансный метод весьма информативен. Для порошковых и поликристаллических образцов, которые обычно получаются при синтезе металлоорганических соединений, возможности этого метода существенно ограничены. Как правило, его используют только для комплексов со спином магнитного иона S = 1/2, спектр которых не имеет тонкой структуры, что позволяет однозначно трактовать результаты.

Целью настоящей работы является определение основного состояния иона Cu^{2+} (S = 1/2) в поликристалле бипиридинового металлоорганического комплекса $Cu(C_{10}H_8N_2)(H_2O)_2SO_4$ (в дальнейшем [$Cu(bpy)(H_2O)_2]SO_4$) и обменных взаимодействий в его магнитной подсистеме.

Кристаллическая структура этого соединения характеризуется моноклинной пространственной группой C2/c, ячейка содержит четыре молекулы и определяется параметрами a = 15,136 Å, b = 12,464 Å, c = 6,999 Å, $\beta = 105,97^{\circ}$ [1]. Эта структура подобна строению соединений, исследованных нами ранее [2]. Они характеризуются наличием цепочек аксиально

искаженных октаэдров, являющихся локальным окружением ионов двухвалентной меди и расположенных в направлении *с* ячейки. Между собой октаэдры соединены через вершинные атомы кислорода, которые принадлежат группам SO₄. Базисная плоскость октаэдров, образованная двумя ионами кислорода, принадлежащими молекулам воды, и двумя ионами азота из органического комплекса, является почти правильным квадратом.

Резонансные спектры измерены в области длин волн $\lambda = 4$ мм, что позволило получить повышенное разрешение спектров по значению *g*-фактора. Низкотемпературные свойства комплекса исследованы в температурном интервале 4,2–30 К. Точность стабилизации и измерения температуры составила 0,1 К на участке 4,2–15 К и 0,5 К при *T* > 15 К.

Данное соединение было синтезировано в виде мелкодисперсного порошка. Спектр ЭПР такого образца является суперпозицией спектров мелких монокристаллических частиц, хаотично ориентированных относительно направления внешнего магнитного поля, и представляет собой полосу поглощения, занимающую довольно широкий диапазон полей. В случае аксиальной симметрии локального окружения парамагнитного иона ось симметрии основной массы частиц порошка ориентирована перпендикулярно внешнему полю $\mathbf{H} \perp \mathbf{c}$. Это приводит к появлению довольно узкого пика на высокополевом краю полосы поглощения, как показано на рис. 1. Частицы с ориентацией локальных осей $\mathbf{H} \perp \mathbf{c}$ дают

Рис. 1. Полоса ЭПР поглощения в порошковом образце $Cu(bpy)(H_2O)_2SO_4$ на частоте v = 72,81 Гц при *T*, К: 15 (1), 8 (2). Пунктирная линия — расчет по (1) при значениях параметров: $g_{||} = 2,26$, $g_{\perp} = 2,057$, $\Delta H = 13,1$ Э (1); $g_{||} = 2,27$, $g_{\perp} = 2,055$, $\Delta H = 19,1$ Э (2). Слабый пик поглощения при H = 26 кЭ — сигнал ЭПР эталонного образца.

вклад в интенсивность противоположного края полосы поглощения.

В этих экстремальных ориентациях частиц значения резонансных полей $H_{||}$ и H_{\perp} определяются значениями эффективного *g*-фактора $g_{||}$ и g_{\perp} , и при условии лоренцевой формы линии для индивидуальных частиц порошка форма полной полосы поглощения принимает вид [3]

$$I(H) \sim \int_{H_{\parallel}}^{H_{\perp}} \frac{H(1+H_{\parallel}^{-2}H'^{2}) dH'}{[(H-H')^{2}+\Delta H^{2}] H'^{2} (H_{\perp}^{2}-H'^{2})^{1/2}}.$$
(1)

Здесь $H_{\parallel,\perp} = h\nu/g_{\parallel,\perp}\mu_B$, ν — рабочая частота, μ_B — магнетон Бора, h — постоянная Планка.

Это выражение использовано для компьютерного моделирования экспериментально наблюдаемой полосы поглощения. Подгонка проведена методом наименьших квадратов на всей ширине полосы, значения g_{\parallel}, g_{\perp} и ΔH — ширина линии индивидуальных частиц порошка, служили подгоночными параметрами.

Температурные изменения формы полосы поглощения позволили проследить температурные зависимости этих параметров, показанные на рис. 2. Как видно, значения $g_{||}$ и g_{\perp} почти не зависят от температуры, в то время как наблюдается заметное низкотемпературное уширение линии ΔH , которое можно связать с установлением ближнего магнитного порядка в магнитной системе.

На высокотемпературном участке исследуемого диапазона температур значения *g*-фактора составляют $g_{||} = 2,26$ и $g_{\perp} = 2,05$. Согласно [4], выполнение соотношений $g_{||} > g_{\perp}$ и $(g_{||} - 2)/(g_{\perp} - 2) \approx 4$ означает, что локальное окружение иона меди в этом соединении является октаэдром, вытянутым вдоль оси четвертого порядка, а нижним орбитальным состоянием — дублет Крамерса $|x^2 - y^2 >$. Тем самым

Рис. 2. Температурная зависимость экстремальных значений *g*-фактора: $g_{\parallel}(O)$; $g_{\perp}(\Box)(a)$ и ширины резонансной линии ΔH (\blacktriangle) (*б*).

подтверждаются результаты рентгеноструктурных исследований [1] о структуре локального окружения иона Cu²⁺. Поскольку угловое распределение электронной плотности, характерное для состояния $|x^2 - y^2 \rangle$, должно лежать в базисной плоскости октаэдра, следует вывод об отсутствии или, по крайней мере, существенном ослаблении обменных взаимодействий вдоль цепочек, образованных этими октаэдрами.

В то же время признаки возможного магнитного упорядочения, проявляющиеся в низкотемпературном уширении резонансной линии, свидетельствуют о наличии обменного взаимодействия в системе, которое должно осуществляться преимущественно в межцепочечных направлениях. Расчет обменного интеграла затруднен из-за сложности лигандной структуры, однако он может быть оценен из выражения, связывающего обменное поле $H_e = zJ$ со вторым моментом линии M_2 и ее шириной [5]:

$$H_{\rho} = 2M_2 / \Delta H, \tag{2}$$

здесь *z* — число ближайших магнитных соседей данного иона.

Второй момент линии для порошкового образца при малой анизотропии *g*-фактора может быть рассчитан численно [6], исходя из межионных расстояний в решетке. Для Cu(bpy)(H₂O)₂SO₄, при учете прямого суммирования вклада 10⁶ узлов, эта величина составляет 1,105·10⁴ \ni ². При значении ширины линии $\Delta H = 15,7$ Э, полученном в нашем эксперименте для высокотемпературного участка зависимости $\Delta H(T)$, величина обменного поля $H_e = 1,404 \cdot 10^3$ Э будет соответствовать критической температуре магнитного упорядочения 0,094 К. Столь слабое обменное взаимодействие может реализоваться с участием водородных связей, присутствующих в межцепочечных направлениях в структуре этого соединения.

Таким образом, в соединении $Cu(bpy)(H_2O)_2SO_4$ основное орбитальное состояние иона меди

 $|x^2 - y^2 >$ должно формировать квазидвумерную магнитную структуру с обменными взаимодействиями в направлениях *a* и *b* ячейки. О низкоразмерном характере магнитной структуры может также свидетельствовать весьма широкий диапазон критического уширения резонансной линии.

Авторы выражают признательность профессору А.Г. Андерсу за интерес к работе и полезные обсуждения.

- 1. J.C. Tedenac and E. Philippot, *J. Inorg. Nucl. Chem.* **37**, 846 (1975).
- 2. О.В. Кравчина, А.И. Каплиенко, А.Г. Андерс, М. Orendach, А. Orendachova, М. Kajnakova, and A. Feher, *ФНТ* **30**, 198 (2004).
- 3. James A. Ibers and J.D. Swalen, *Phys. Rev.* **127**, 1914 (1962); Т.С. Альтшулер, *ЖЭТФ* **55**, 1821 (1968).
- 4. А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, Мир, Москва (1973).
- 5. P.W. Anderson and P.R. Weiss, *Rev. Mod. Phys.* 25, 269 (1953).
- 6. J.H. Van Vleck, Phys. Rev. 73, 1249 (1948).

Low- temperature ESR spectrum in a powder sample of $Cu(C_{10}H_8N_2)(H_2O)_2SO_4$

O. Kravchyna, A. Kaplienko, and M. Kajnakova

The spectrum of a powder metal-organic complex $\text{Cu}(\text{C}_{10}\text{H}_8\text{N}_2)(\text{H}_2\text{O})_2\text{SO}_4$ has been investigated in the temperature range 2–30 K. It is found that the Kramers doublet $|x^2 - y^2\rangle$ is the orbital ground state of the ion Cu^{2+} in this compound. The temperature dependences of the effective g-factor components and the resonance linewidth ΔH of individual powder particles are determined. The low-temperature broadening of the resonance line was observed, which is connected with short-range magnetic order. The exchange interaction in the magnetic subsystem was estimated.