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We review problems involving the use of Grassmann techniques in the field of classical spin systems in two
dimensions. These techniques are useful to perform exact correspondences between classical spin Hamilto-
nians and field-theory fermionic actions. This contributes to a better understanding of critical behavior of these
models in term of non-quadratic effective actions which can be seen as an extension of the free fermion Ising
model. Within this method, identification of bare masses allows for an accurate estimation of critical points or
lines and which is supported by Monte-Carlo results and diagrammatic techniques.
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1. Introduction

Classical and quantum spin models such as Ising model play an important role in the field of
statistical physics as they allow for an accurate understanding of critical phenomena in general.
Many techniques [1,2] were developed in order to deal with the difficulty of estimating the partition
function and other thermodynamical properties in the critical region in dimension more than one.
An exact mathematical description of the two-dimensional (2D) Ising model relies on the Jordan-
Wigner transformation [3] which maps the product of Boltzmann weights onto a fermionic action of
free fermions with a mass vanishing at the second order critical temperature given in dimensionless
units Tc = 2/ ln(1 +

√
2) ' 2. 2691851. Also a method based on the correspondence between the

Ising model and dimer problems [4] uses the notion of Pfaffians, which are directly connected to
integrals over Grassmannian objects. Both fermions and Grassmann variables are therefore closely
tied to the Ising model. A direct introduction of Grassmann variables as an alternative tool to
solve the Ising model was done long ago in the 80’s by Bugrij [5] and Plechko [6] (see also a
later discussion by Nojima [7]). It is based on a simple integral representation of the individual
Boltzmann weights and which has the property to decouple the spins. The price to pay is a non-
commutativity of terms arising from this representation. In order to deal with this particular
representation, Bugrij used two families of Grassmann variables which commute with each other,
then identified the resulting functional integral of the partition function with a determinant. From
another point of view, Plechko introduced symmetries which order the non-commuting quantities
so that the sum over the spins can be performed exactly. In this paper we review the process
of how to generalize Plechko’s method for Blume-Capel model [8], which is the simplest model
beyond Ising, to spin-S Ising models and how to construct an exact fermionic action for each case.
This would provide a natural extension of the exact fermionic quadratic action found for the spin
S = 1/2 Ising model. In particular, we will build on previous work on the Blume-Capel (BC) case
S = 1 [8] where a line of second-order critical points is terminated by a tricritical point. This is
the next case beyond the Ising model and which possesses a rich critical behavior. This model
was used to qualitatively explain the phase transition in a mixture of He3–He4 adsorbed on a 2D
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surface [9]. Below a concentration of 67% in He3, the mixture undergoes a λ transition and the
two components separate through a first order phase transition with only He4 superfluid. On a 2D
lattice, He atoms are represented by a spin-like variable, according to the following rule: an He3

atom is associated to the value 0, whereas a He4 is represented by a classical Ising spin taking
the values ±1. Within this framework, all the lattice sites are occupied either by an He3 or He4

atom. In addition to nearest-neighbor interactions, the energy includes a term ∆0

∑

mn S2
mn, with

S2
mn = 0, 1, to take into account a possible change in vacancies number. ∆0 can be viewed as a

chemical potential for vacancies, or as a parameter of crystal field in a magnetic interpretation of
atomic physics. It would be of particular interest to have a fermionic description of the BC model
in order to obtain more information about the kind of interaction fermions living on the 2D lattice
have compared with the Ising free fermion case.

So, one of the main questions is how to obtain a generic fermionic action for a spin-S model
and what this method teaches us for the BC model in particular. We explain in the next section
the main ideas of this method.

2. Description of the fermionization for general classical spin-S models

Let us consider the following Hamiltonian on a 2D lattice of size L× L

H = −
L

∑

m=1

L
∑

n=1

J
[

SmnSm+1n + SmnSmn+1

]

+ ∆0

L
∑

m=1

L
∑

n=1

S2
mn , (1)

where J is the Ising coupling constant and ∆0 is the splitting crystal field or represents a chemical
potential in the BC case. In particular for ∆0 large and positive, it favors small spin values. This
crystal field can be replaced by any potential V (S2

mn) depending on the square of the local spin.
Spins Smn take 2S + 1 values with Smn = −S,−S + 1, · · · , S. The partition function is the sum
over all possible spin configurations Z = Tr exp(−βH). Z contains products of the Boltzmann
weights exp(KSmnSm+1n) (where Smn and Sm+1n are neighboring spins and K = J/kBT ) which
take q + 1 = S(S + 1) + 1 different values if S is an integer, and q + 1 = (S + 1/2)(S + 3/2) values
if S is half-integer. Since there are q +1 possible values for each Boltzmann weight, we can project
each of them onto a polynomial function of degree q in the variable SmnSm+1n:

exp(KSmnSm+1n) =

q
∑

k=0

uk(SmnSm+1n)k = u0

q
∏

α=1

(1 + xαSmnSm+1n), (2)

where the q+1 constants uk are determined by solving the linear system of q+1 equations satisfied
by the above relation. To see on specific examples how it works, let us consider first the Ising case,
S = 1/2. Since S is half integer, we have q = 1. Therefore,

exp(KSmnSm+1n) = ch(K/4) + 4 sh(K/4)SmnSm+1n, u0 = ch(K/4), u1 = 4 sh(K/4). (3)

In the Blume-Capel model, since S is integer, we have q = 2 and it is straightforward to show that

exp(KSmnSm+1n) = 1 + sh(K)SmnSm+1n + (ch(K)− 1)(SmnSm+1n)2,

u0 = 1, u1 = sh(K), u2 = ch(K)− 1. (4)

For S integer the first coefficient u0 is always unity, and from equation (2) we can write

uk = u0

∑

α1<α2<···<αk

xα1
xα2
· · ·xαk

, 1 6 k 6 q. (5)

We will set for convenience in the following uk>q+1 = 0 since the polynoms are all finite. Our
purpose is to transform the partition function Z which is a sum over spin variables into a multiple
integral over Grassmann variables. For this, let us introduce q pairs of Grassmann variables [6,8,10]

464



Grassmann techniques applied to classical spin systems

(aα
mn, āα

mn) on each site for the horizontal direction and q additional pairs (bα
mn, b̄α

mn) for the vertical
direction. Here α takes the values 1, . . . , q. There are, therefore, 4q Grassmann variables at each
site of the lattice. In particular, the Ising model is represented by two pairs of Grassmann variables
per site which can afterward be reduced to only one pair [6]. For each couple of terms

(1 + xαSmnSm+1n)(1 + xαSmnSmn+1) (6)

appearing in the partition function, we introduce the following integral representation

1 + xαSmnSm+1n =

∫

dāα
mndaα

mneaα

mn
āα

mn(1 + aα
mnSmn)(1 + xαāα

mnSm+1n),

1 + xαSmnSmn+1 =

∫

db̄α
mndbα

mnebα

mn
b̄α

mn(1 + bα
mnSmn)(1 + xαb̄α

mnSmn+1). (7)

From the last expression, we introduce the link factors Aα
mn = 1 + aα

mnSmn, Āα
m+1n = 1 +

xαāα
mnSm+1n, Bα

mn = 1 + bα
mnSmn, and B̄α

mn+1 = 1 + xαb̄α
mnSmn+1, so that the partition function

can be written as

Z = u2L2

0 Tr{S,a,b}

[

∏

mn

e∆S2

mn ×
[

∏

α

(Aα
mnĀα

m+1n)
∏

β

(Bβ
mnB̄β

mn+1)
]



 ,

where ∆ = −β∆0. The mixed trace operator introduced in the last expression is defined by the
following sums and integrals:

Tr{S,a,b}[.] = Tr{S}

∫

[

∏

mn,α

dāα
mndaα

mndb̄α
mndbα

mn × eaα

mn
āα

mn
+bα

mn
b̄α

mn

]

[.].

Inside the integral symbols, the pairs of Grassmannian link factors in brackets
(

Aα
mnĀα

m+1n

)

,
(

Bα
mnB̄α

mn+1

)

(8)

can be moved freely with the other terms since they correspond to commutative scalars after
integration. In particular, it is convenient to rearrange the products over α in order to put together
the link factors of different α with the same site indices (m, n) using the mirror ordering symmetry
introduced in Plechko’s method [6] in the context of the 2D Ising model, and which is still relevant
in the spin-S case:

q
∏

α=1

(Aα
mnĀα

m+1n) = (A1
mnĀ1

m+1n) . . . (Aq
mnĀq

m+1n)

= (A1
mn(A2

mn . . . (Aq−1
mn (Aq

mnĀq
m+1n)Āq−1

m+1n)..Ā1
m+1n)

=





−→
q

∏

α=1

Aα
mn









←−
q

∏

α=1

Āα
m+1n



 ,

where the arrows indicate that the product is ordered, i. e. increasing label α in the first product
from left to the right and in the second one from right to the left. For convenience, we will use the
notation

Omn =

−→
∏

α

Aα
mn , Ōm+1n =

←−
∏

α

Āα
m+1n , (9)

for objects on the horizontal links and

Pmn =

−→
∏

α

Bα
mn , P̄mn+1 =

←−
∏

α

B̄α
mn+1 (10)
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for the ones on vertical links. Then the partition function can be rewritten as

Z = u2L2

0 Tr{S}

∫

[

∏

mn,α

dāα
mndaα

mndb̄α
mndbα

mneaα

mn
āα

mn
+bα

mn
b̄α

mn

]

×
∏

mn

e∆S2

mn(OmnŌm+1n)(PmnP̄mn+1)

≡ u2L2

0 Tr{S,a,b}

[

∏

mn

e∆S2

mn(OmnŌm+1n)(PmnP̄mn+1)

]

. (11)

At this stage of the algebra, we use the mirror and associative symmetries which were used
for solving the Ising model [6,10] and which are still valid here to rearrange the operators O and
P. In principle boundary terms should be treated separately in order to obtain the exact finite
size partition function depending on boundary conditions [6] but they are not relevant in the
thermodynamical limit L→∞ we are interested in here. Instead, here we consider the simple case
of free boundary conditions, and we obtain the exact expression after rearrangement of the O and
P operators:

Z = u2L2

0 Tr{S,a,b}





−→
L

∏

n=1

(

−−→
L

∏

m=1

e∆S2

mn

(

ŌmnP̄mnOmn

)

←−−
L

∏

m=1

Pmn

)



 .

Now, from this expression, the spins can individually be summed up from SLn to S1n for any given
n. We will need to introduce the following weights Wmn which include all the dependence on the
individual spins Smn

Wmn =
∑

Smn=±1

e∆S2

mnŌmnP̄mnOmnPmn ≡
∑

Smn=±1

e∆S2

mn

−→
4q
∏

α=1

(

1 + cα
mnSmn

)

, (12)

where we have defined the following 4q sets of Grassmann variables cα
mn in the following order:

c1
mn = xq ā

q
m−1n, c2

mn = xq−1ā
q−1
m−1n, · · · , cq

mn = x1ā
1
m−1n,

cq+1
mn = xq b̄

q
mn−1, cq+2

mn = xq−1b̄
q−1
mn−1, · · · , c2q

mn = x1b̄
1
mn−1,

c2q+1
mn = a1

mn, c2q+2
mn = a2

mn, · · · , c3q
mn = aq

mn ,

c3q+1
mn = b1

mn, c3q+2
mn = b2

mn, · · · , c4q
mn = bq

mn . (13)

The sum over Smn = ±1 in equation (12) can be performed by noticing that only products involving
an even number of Smn give a non-zero contribution. We also define the scalars (we remind that
∆ = −β∆0)

αk =

S
∑

Smn=−S

S2k
mn exp(∆S2

mn), (14)

and the ordered products

q(k)
mn =

∑

α1<α2<···<αk

cα1

mncα2

mn · · · cαk

mn, q(0)
mn ≡ 1, (15)

with q
(4q)
mn = c1

mn · · · c4q
mn the term of highest degree in Grassmann variables. Using these quantities,

it is easy to show that the partial Boltzmann weights (12) are given by

Wmn =

2q
∑

k=0

αkq(2k)
mn . (16)
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Then the fermionic representation of the partition function can be expressed as a multiple integral
over Grassmannian variables only

Z = u2L2

0 Tr{a,b,ā,b̄}

∏

mn

Wmn . (17)

For small values of S, the weights Wmn can be exponentiated so that a fermionic action can be
defined. Indeed, since the first term of Wmn is the pure scalar α0 and the others are products of pure
commutating Grassmannian objects, it is tempting to exponentiate the sum (16) to obtain directly
a fermionic action. This comes from the simple observation that for any Grassmann variable a, we
have 1 + a = ea. Of course, the exponentiation of the sum (16) is more complicated. For example,
for commuting objets a and b such as the qk

mns, we have 1 + a + b = exp(1 + a + b − ab). In this
case the order of the polynomial object inside the exponential is bigger than in the original sum
since the extra counter-term ab is necessary for the identity to be exact. Moreover, these weights
are connected by nearest-neighbor interactions hidden in the variables cα

mn. In the case of the Ising
model, where the exponentiation can be done quite easily, the argument of the exponential is purely
quadratic in the cα

mn’s and, therefore, the partition function can be integrated out with the use of a
determinant or a Bogoliubov transformation in the Fourier space. Moreover, the 4q = 4 Grassmann
variables in this case can be reduced to 2 by partial integration of non-relevant variables. In the
BC model, the argument is a polynomial of degree 8 in Grassmann variables since there are 8
independent variables (4q = 8). In general we naturally expect the argument to be at most a
polynomial of degree 4q in these variables, which can be reduced or not by partial integrations.
Except for the case q = 1, however, the partition function cannot be expressed as a determinant,
so that a full exact solution of the partition function cannot be found this way. If the action is
quadratic, the use of the following Gaussian integral [11], defined on Grassmann set of variables
{ai, āi}i=1,..,N , and for a square matrix A

∫ N
∏

i=1

dāidai exp





N
∑

i,j=1

aiAij āj



 = det A , (18)

allows us to express the partition function as a determinant. Quadratic fermionic form in the
exponential (18) is typically called action for a free-field theory. When the action is non-quadratic,
the integral is not Gaussian and cannot be expressed as a determinant, which yields in principle
to a non-integrable theory. However, physical information such as bare masses (see last section)
can be extracted from these non-quadratic actions which represent generic theories of interacting
fermions.

3. Fermionic action of the Blume-Capel model

In this section, we consider the case S = 1 (Blume-Capel model) which is the simplest example
of a classical spin beyond the Ising model. It possesses in the phase diagram (T, ∆0) a second-order
critical line separating an ordered phase from a disordered one and terminated by a tricritical
point (see figure 1). From the previous section equation (17) allows us to write an action after
exponentiation of the Grassmann variables which can be done exactly after some tedious algebra.
The 4 pairs of variables per site can, however, be reduced to 2 pairs by partial integration. Another
simpler way of obtaining this BC fermionic action is possible [12] using the Z2 symmetry of the spin
variables Smn. Indeed the partition function is invariant if we perform the gauge transformation
Smn → σmnSmn with σmn = ±1. In this case it is possible to simplify the process of the previous
method and write an action containing only 2 pairs of variables per site instead of 4:

Z = (2e∆ cosh2 K)L2

∫ L
∏

m=1

L
∏

n=1

dāmndamndb̄mndbmn exp
{

L
∑

m=1

L
∑

n=1
[

amnāmn + bmnb̄mn + amnbmn + t(ām−1n + b̄mn−1)(amn + bmn) + t2 ām−1nb̄mn−1
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Figure 1. (color online) Figure taken from reference [12] showing comparison between critical
line defined by the vanishing mass (35) (plane red line) and numerical results from Monte Carlo
simulations. The black dots are from figure 1, da Silva et al. [19] (Wang-Landau method). The
cross symbol indicates the tricritical point identified by [12] using a Hartree-Fock-Bogoliubov
approximation for the quartic part (33) of the effective action. The blue diamond symbols are
from [20], the magenta triangles from [21], and the green squares from [22] (see also table 1 for
other numerical values at ∆0 = 0).

+ g0 amnāmnbmnb̄mn exp
(

−γam−1nām−1n − γbmn−1b̄mn−1 − t2 ām−1nb̄mn−1

)

]}

, (19)

where we have introduced the following constants:

g0 =
e−∆

2 cosh2 K
, γ = 1− 1

coshK
= 1−

√

1− t2, t = tanh K. (20)

The fermionic integral (19) is the exact expression even for a finite lattice, provided we assume
free boundary conditions for both spins and fermions. The other possible form for the partition
function with periodic boundary conditions in both directions can be written in a similar way
as the Ising model on a torus [6,13,14]. The partition function would be the sum of 4 fermionic
integrals with periodic-antiperiodic boundary conditions for the fermions. In the expression (19),
we can recognize the sum of the Ising action, which here appears as the Gaussian part of the total
action [6,10]:

SIsing =

L
∑

m,n=1

amnāmn + bmnb̄mn + amnbmn + t(ām−1n + b̄mn−1)(amn + bmn) + t2ām−1nb̄mn−1,

and a non-quadratic interaction part, which is a polynomial of degree 8 in Grassmann variables
(which can be seen if we expand the exponential inside the action):

Sint = g0

L
∑

m,n=1

amnāmnbmnb̄mn exp
(

− γam−1nām−1n − γbmn−1b̄mn−1 − t2 ām−1nb̄mn−1

)

. (21)

This allows us to rewrite the partition function as a fermionic field-theory in a compact form

Z = (2e∆ cosh2 K)L2

∫

DāDaDb̄Db exp(SIsing + Sint) . (22)
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The BC model differs from the Ising model by the interaction term in the action (21) which is not
quadratic. Therefore, the BC model is not solvable in the sense of free fermions as a determinant
of some matrix, unlike the 2D Ising model.

3.1. Mixed representation of the BC model

The coupling of Grassmann variables in equation (21) prevents us from integrating further and
reducing the number of variables per site unlike the Ising model where the minimal action contains
one pair only [7,18]. The minimal action of the Ising model admits an interpretation in term of
Dirac representation of free fermions which become massless at the critical point. In the previous
work we were able to reduce the number of Grassmann variables by partially introducing hard core

bosons in the previous action, since terms such as ηmn = amnāmn or τmn = bmnb̄mn may have
an interpretation of local densities or occupation numbers. Variables ηmn and τmn are commuting
and nilpotent, η2

mn = τ2
mn = 0. We can replace the quantities depending on amnāmn and bmnb̄mn,

especially in the interaction part, by their respective nilpotent variables, using, for this task, a
general definition of Dirac distribution for any polynomial function f of amnāmn or bmnb̄mn [12]:

f(amnāmn) =

∫

dηmndη̄mnf(ηmn) exp [η̄mn(ηmn + amnāmn)] ,

f(bmnb̄mn) =

∫

dτmndτ̄mnf(τmn) exp
[

τ̄mn(τmn + bmnb̄mn)
]

. (23)

A natural definition [15] of the integrals involving commuting nilpotent variables is to impose the
following rules (and similar for η̄mn, τ̄mn):

∫

dηmn (1, ηmn) = (0, 1) ,

∫

dτmn (1, τmn) = (0, 1) . (24)

This change of variables allows us to integrate over the amn’s and bmn’s in the new action. One
advantage is that after this operation there are only two fermionic variables per site, although
two additional pairs of bosonic variables have been introduced. In fact we can integrate over one
pair of bosonic variables [12], for example η̄mn, τ̄mn, using the help of integration rules and Dirac
function given by (23). At the end, it remains a mixed action made of one pair per site of fermionic
and bosonic variables respectively, with an interaction between fermions and bosons. A convenient
replacement of the variables āmn by cmn and b̄mn by −c̄mn in the final integral leads us to isolate
the minimal local action for the pure Ising model [16,17] with one pair of Grassmann variables
per site:

SIsing = cmnc̄mn + t(cmn + c̄mn)(cm−1n − c̄mn−1)− t2cm−1nc̄mn−1 , (25)

and the interaction part

Sint = g0

∑

m,n

ηmnτmn

[

(1− γηm−1n)(1− γτmn−1) + t2cm−1nc̄mn−1

]

, (26)

with the quantities

q̄mn = cmnc̄mn + tcmn(cm−1n − c̄mn−1) = cmn[c̄mn + t(cm−1n − c̄mn−1)] ,

qmn = cmnc̄mn + tc̄mn(cm−1n − c̄mn−1) = [cmn − t(cm−1n − c̄mn−1)]c̄mn . (27)

The Ising part is the same action that results from the integration over amn, bmn from the original
Ising case. The introduction of nilpotent variables was necessary to achieve this partial extraction
of the Ising contribution. The physical interpretation of the previous mixed representation is that
it can be possible to describe the BC model with fermionic variables for the states S = ±1 and
bosonic ones for states S = 0. In the limit ∆0 → −∞, the system is completely described in terms
of fermions (Ising sector), while when ∆0 is increasing, fermions and bosons begin to interact.
Beyond a critical value of ∆0, fermions form bosonic pairs and in the limit ∆0 → +∞, all fermions
condense into bosons, leading to a purely bosonic system. This view should be supported by further
analysis.
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3.2. Corrections to the effective action in the continuum limit

The integration of the previous action (26) over variables (ηmn, τmn) can be performed pertur-
batively, as part of an expansion in the low momentum limit. We will formally define the derivatives
of Grassmann variables [18], ∂xcmn = cmn− cm−1n and ∂ycmn = cmn− cmn−1 in the limit of large
L. In this limit and in the Fourier space, the high order derivatives account in the action for a
small contribution in momenta k = 2π(m, n)/L, with m, n � L positive integers. We would like
to obtain in this limit the non-trivial part of the non-quadratic interaction in terms of variables
cmn, c̄mn only. The procedure is described in reference [12] and based partially on substitution
rules such as

ηmnτmn → cmnc̄mn , ηmn → q̄mn , τmn → qmn . (28)

There are unfortunately more complicated terms in the resulting action than by using the substi-
tution rules alone, such as

g2
0γ

2cmnc̄mncm+1nc̄m+1ncmn+1c̄mn+1, (29)

but they can be discarded in the approximation scheme above in the sense they correspond to
corrective terms higher than quartic polynomials or quantities of the order of O(g0) where g0 is
the natural parameter of the expansion. It is exponentially small in the region where ∆0 is large
and negative (Ising behavior). At the lowest order we found that the effective action (25), (26) can
be approximated by the following expansion with respect to g0

Seffective = SIsing + g0

∑

m,n

cmnc̄mn

[

(1− γq̄m−1n)(1− γqmn−1) + t2cm−1nc̄mn−1

]

+ g2
0γ

2
∑

m,n

cmnc̄mncm+1nc̄m+1ncmn+1c̄mn+1 + · · · . (30)

From the previous result, it appears to be suitable to express the quadratic and quartic parts in
the Fourier space (in the large but finite L limit), where we define the following transformations

c(r) =
1

L

∑

k

ck exp(ik.r) , c̄(r) =
1

L

∑

k

c̄k exp(−ik.r) . (31)

The Ising part of the action can be written as

SIsing =
∑

k∈S

[mBC + it(t + 1)(kx − ky)](ckc̄k − c−kc̄−k) + 2itkxckc−k + 2itky c̄kc̄−k , (32)

with mBC = 1− 2t− t2 + g0 and the quartic term can be expressed as

Sint = g0
1

L2

∑

k′,k′′,q

Vk′′,k′′−qck′ck′′ c̄k′+qc̄k′′−q , (33)

with the potential

Vk,k′ = −αkxk′
y + α′(kxk′

x + kyk′
y),

α = t(t + 2γ) , α′ = γ(1− t) . (34)

We notice that the bare mass of the theory is given by

mBC = 1− 2t− t2 + g0 = mIsing + g0 , (35)

where mIsing = 1− 2t− t2 is the Ising mass which vanishes at the critical value tanh(Kc) =
√

2− 1
corresponding to the second order transition point Tc = 2/ ln(1 +

√
2) ' 2. 2691851 in units of

J/kB. In the BC model, the critical temperature is shifted by the parameter g0 which depends on
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the temperature and ∆0. The location of the second order critical line goes from the previous Ising
critical value Tc = 2/ log(1 +

√
2) when ∆0 → −∞ to the zero temperature point (Tc = 0, ∆0 = 2)

continuously where the transition can be proved to be first order by a simple energetic argument.
In figure 1, we have reported the critical line given by mBC = 0 and the different numerical results
found in literature [12]. In general, the agreement is good, which validates the fermionic theory
giving a bare mass vanishing at locations close to critical point values found by numerical methods.
The presence of a tricritical point is induced by the interaction term (34) which renders the second
order line instable. To see why, let us consider the infrared limit on the critical line. The spectrum
is given by the lowest terms of an expansion of the effective action with respect to kinetic terms, an
the contribution to the partition function, in the Fourier space, is the product of partial integrals
Zk such as Z =

∏

k Zk, up to the second order in the momentum k. For the Ising model and for
small momenta, the factors Zk are exactly of the form (mIsing + Ak2), with A a constant equal
to t(1− t2) [18]. The coefficient in front of the term k2 in factors Zk can by described physically
as a stiffness coefficient. For the Ising model, the stiffness is always strictly positive even at the
critical point. In the BC case, however, we have a line of critical points as ∆0 varies from negative
to positive values up to ∆0 = 2. The effect of the interaction potential (34) is to modify the
expression of the stiffness, which now is no more constant but depends on the angle of the vector
k as well as the temperature and ∆0 (see reference [12] for explicit details). The result is that in
the BC case the effective stiffness coefficient vanishes at some point on the critical line, at a value
close to ∆0 = 2, which eventually indicates the presence of a tricritical point. It can be shown that
the partition function can be indeed written as a product over the Fourier modes Z =

∏

k∈S Zk

with

Zk = m2
BC + k2[A + B sin 2θk], (36)

θk being the angle of the vector k, and A and B depending on temperature and ∆0. As long as
|A| is larger than |B| on the critical line, the transition is second order. A singular point can be
reached if A2 = B2, in such case Zk are not all strictly positive if mBC = 0. Beyond this point the
effective action (30) is not sufficient to describe the critical properties of the model. If we compare
the fermionic description of the BC model to a bosonic Ginsburg-Landau Φ6 theory describing the
first order transitions, the presence of a tricritical point would be equivalent to the fact that both
coefficients of Φ2 and Φ4 terms vanish.

3.3. Critical behavior of the BC model: diagrammatic expansion

In this section, we further analyze the effect of the interaction potential Vk,k′ on the renor-
malized mass, in particular the shift of the critical temperature which was in reference [12] as-
sumed to be given by the point where the bare mass mBC vanishes. We would like, in particular,
to apply diagrammatic expansion of the effective action (30). To this end, it is useful to express
the Ising part of the action in terms of Nambu-Gorkov representation of the fermions [23,24], using
the two-component objects

Φk =

(

ck
c̄−k

)

, Φ̄k = (c̄k, c−k). (37)

Formally, the Green functions can be defined within this representation by 2× 2 matrices

Ĝ(k) = 〈ΦkΦ̄kτ3〉, (38)

where τ3 is the Pauli matrix

τ3 =

(

1 0
0 −1

)

. (39)

The unperturbed part of the Green function Ĝ0 is evaluated using the elements of the non-diagonal
but quadratic Ising action (32):

Ĝ0(k) =
−1

|mk|2 + 4t2kxky

(

m̄k 2itky

2itkx mk

)

, (40)
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where the momentum-dependent mass is defined by mk = mBC + it(t + 1)(kx− ky). The inverse is
given by

Ĝ−1
0 (k) =

(

−mk 2itky

2itkx −m̄k

)

. (41)

With this representation and the unperturbed Green function, we can write the Ising part as

SIsing =
∑

k∈S

Φ̄kτ3Ĝ
−1
0 (k)Φk , (42)

where the set S contains half the momenta of the Brillouin zone. It is defined by the rule that if
k ∈ S, then −k does not belong to S. The interaction part can be put, after some algebra, into
the following form

Sint = −g0
1

4L2

∑

k′,k′′,q

(

Φ̄k”−qτ3V̂k”−q,k”Φk”

)(

Φ̄k′+qτ3Φk′

)

, (43)

where the sum is not restricted to the ensemble S. We define the potential matrix V̂ by

V̂k”−q,k” =

(

Vk”,k”−q 0
0 Vk”−q,k”

)

. (44)

The two diagonal elements of this matrix are not equal since Vk,k′ is not symmetric by exchange
of the two momenta k and k′ except when k = k′.

Figure 2. Representation of the interaction part of the potential. The blob represents the po-
tential interaction with incoming vector k′′ and outgoing k′′

− q.

We now perform a diagrammatic expansion with respect to g0 of the perturbed Green function
Ĝ(k) which will allow us to compute the corrections to the mass, i. e. the shift of the critical
temperature, by identification of the diagonal elements of the inverse propagator Γ̂(k) = Ĝ(k)−1.
The graphical representation of the matrix potential in terms of diagram is displayed in figure 2.
To do so we formally follow the Feynman rules which lead to the Dyson equation of the inverse-
propagator in terms of the self-energy Σ̂(k):

Γ̂(k) = Ĝ(k)−1 = Ĝ0(k)−1 − Σ̂(k). (45)

The first terms contributing to the self-energy are given in figure 3:

Σ̂(k) = −g0
1

4L2

∑

q

[

V̂k,k+qĜ0(k + q) + Ĝ0(k− q)V̂k−q,k

]

−g0
1

4L2

∑

q

[

V̂k,kTrĜ0(q) + V̂q,qTrĜ0(q)
]

. (46)

The renormalized mass mR is given in the limit when k is zero by the diagonal components
of the inverse-propagator Γ11(0) = Γ22(0). In this limit, only one diagram is not vanishing, which
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Figure 3. The four diagrams appearing at the lowest order in g0. Only diagram (b) contributes
to the mass in the low momentum limit k → 0.

corresponds to the diagram (b) of figure 3:

mR = Γ11(0) = mBC + g0
1

4L2

∑

q

Vq,qTrĜ0(q)

= mBC −mBC × g0
1

2L2

∑

q

Vq,q

m2
BC + t2(1 + t)2(qx − qy)2 + 4t2qxqy

. (47)

The last sum over q can be evaluated in the continuous limit L → ∞. Setting q = 2π( m
L , n

L ), we
define for large L the two following integrals

I1(mBC) =
g0

8π2

∫ 2π

0

∫ 2π

0

dqxdqy
qxqy

m2
BC + t2(1 + t)2(qx − qy)2 + 4t2qxqy

,

I2(mBC) =
g0

8π2

∫ 2π

0

∫ 2π

0

dqxdqy

q2
x + q2

y

m2
BC + t2(1 + t)2(qx − qy)2 + 4t2qxqy

. (48)

These two quantities are finite when mBC vanishes. To see why, we can consider polar coordinates
qx = q cos θ and qy = q sin θ, so that, near the origin q = 0 the second integral for example behaves
like

I2(mBC) ∝ g0

8π2t2(1 + t)2

∫

0

∫ 2π

0

q dq dθ
1

{mBC/qt(1 + t)}2 + 1 + {−1 + 2/(1 + t)2} sin(2θ)
. (49)

When mBC = 0, this integral is finite since there is no singularity in the denominator. Indeed when
θ = ±π/4 the modulus of the term −1+2/(1+ t)2 is strictly less than one on the critical line. This
would not be the case if the last term 4t2qxqy in the denominator and coming from the off-diagonal
part of the Green function was absent. In this case the integrals would be singular in the limit of
small mass mBC, the denominator would instead be equal to {mBC/qt(1 + t)}2 + 1− sin(2θ), and
the singular part would behave like 1/|mBC| by a simple scaling argument, which would cancel the
other mass term mBC in front of the integrals (47). Then the renormalized mass would be shifted
by a finite quantity, as well as the critical line. Here the renormalization only concerns the total
coefficient of mBC and this does not affect the critical line location:

mR ' mBC

(

1− αI1(0) + α′I2(0)
)

. (50)

A plot of the positive ratio mR/mBC evaluated at criticality mBC = 0 as function of ∆0 is given
in figure 4. It is close to unity for almost all values of ∆0.
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Figure 4. Plot of the coefficient renormalizing the BC bare mass as function of ∆0 on the critical
line. The values are close to unity except near the region of the terminating point ∆0 = 2 where
g0 is not small.

This analysis shows that corrections to critical temperatures are indeed small and are of the
order higher than g0. A further analysis should be carried out to obtain a finite shift by considering
more complex diagrams. It is also supported by analytical values of mBC = 0 which are close to
numerical results reported in figure 1.

4. Extension to other spin-S models: generalization of the bare mass

The previous bare mass computed in the BC model, mBC, allowed us to obtain a precise
description of the second-order critical line in the phase diagram. This was obtained by taking the
limit of low momentum in the effective action, see (30). This can be generalized for any value of
the spin S, in particular for higher values of S. The equations obtained in section 2, equations (16)
and (17), are general for they represent the fermionization of any spins-S model.

The construction of the fermionic action is, however, not an easy task, unlike the BC model
which is a simpler case, but we expect to be able to extract a bare mass associated to non-kinetic
terms, or term involving derivatives with respect to space variables. At first approximation, we
assume that the partition function and the free energy are singular in the low momentum limit
when this bare mass vanishes. In the continuum limit, the c’s coefficients defined by relations (13)
can be rewritten using formal derivatives, such as c1

mn = xq(ā
q
mn − ∂xāq

mn), etc. The derivatives
contribute only to the kinetic energy and not to the bare mass. Keeping the first terms of the
expansion, c1

mn ' xq ā
q
mn (as well as for the other coefficients c’s), the weights Wmn become

uncoupled in the sense they contain variables depending only on local site (m, n) and we define
the mass mS as:

mS ≡ u2
0

∫

[

q
∏

α=1

dāα
mndaα

mndb̄α
mndbα

mneaα

mn
āα

mn
+bα

mn
b̄α

mn

]

Wmn ,

with c1
mn ' xq ā

q
mn, · · · , cq

mn ' x1ā
1
mn and cq+1

mn ' xq b̄
q
mn, · · · , c2q

mn ' x1b̄
1
mn. The integral can be

evaluated exactly by noticing for example that the arguments of the exponential bα
mnb̄α

mn can be

combined with a aα
mn(xαāα

mn) that appears in some of the q
(2k)
k=1...2q products to give a contribution

474



Grassmann techniques applied to classical spin systems

xα. Indeed using the Grassmann integration rules
∫

da.a = 1 and
∫

da.1 = 0, we can write

∫

dāα
mndaα

mndb̄α
mndbα

mneaα

mn
āα

mn
+bα

mn
b̄α

mnaα
mn(xαāα

mn)

=

∫

dāα
mndaα

mndb̄α
mndbα

mn

(

1 + aα
mnāα

mn + bα
mnb̄α

mn + aα
mnāα

mnbα
mnb̄α

mn

)

aα
mn(xαāα

mn)

=

∫

dāα
mndaα

mndb̄α
mndbα

mnbα
mnb̄α

mnaα
mn(xαāα

mn) = xα.

Also a term aα
mnāα

mn can be combined with bα
mn(xαb̄α

mn) to give the same contribution. Since the
q(2k) are ordered, there are also signs to take into account and coming from the fact the variables
cα
mn have to be moved in the correct order before integration. We obtain after some algebra the

general relation

mS =

2q
∑

k=0

αkRk , (51)

where we have defined the following quantities with initial condition R0 = u2
0 ,

Rk =

k
∑

l=0

uluk−lσ(l, k − l), (52)

and σ(k, l) = 1 if k and l are both even, and σ(k, l) = −1 otherwise. We can apply this result
to different cases to check the validity of this relation. For the Ising model (S = 1/2, q = 1)
u0 = ch(K/4) and u1 = 4sh(K/4), we obtain m1/2 = 2 cosh(∆/4)(u2

0 − u0u1/2− u2
1/16), or

m1/2 = 2e∆/4[1− sh(K/2)], (53)

which vanishes at the Ising critical temperature Tc ' 0.567 296 or with the normalization tc ≡
Tc/S2 = 2.269 185, which is independent, as expected, of ∆0. For the Blume-Capel model (S =
1, q = 2) we have m1 = 1 + 2 exp(∆)(1− 2u1 + 2u2 − u2

1 − 2u1u2 + u2
2), or more explicitly

m1 = 1 + 2e∆[1− sh(2K)]. (54)

This mass is directly proportional to the mass mBC found in the previous section. Indeed, we have
the relation

mBC = g0m1 (55)

and, therefore, both masses vanish on the same line of critical points. The coefficient g0 comes
from a global rescaling of the Grassmann variables in the original weights Wmn which leads to the

coefficient g−L2

0 in the BC function partition (19) and (22), instead of the coefficient (u0)
2L2

= 1 in
front of (17). For ∆0 = 0 we find, in particular, that tc = 2/arcsinh(3/2) ' 1.673 971 (see table 1).

The other masses are deduced by iteration of formula (51) and (52). For higher values of spin
S, we find:

m3/2 = 2e∆/4[1− sh(K/2)] + 2e9∆/4[1− sh(9K/2)] + 2e∆/4[1− sh(K/2)],

m2 = 1 + 2e∆[1− sh(2K)] + 2e4∆[1− sh(8K)],

m5/2 = 2e25∆/4[1− sh(25K/2)] + 2e9∆/4[1− sh(9K/2)] + 2e∆/4[1− sh(K/2)],

m3 = 1 + 2e9∆[1− sh(18K)] + 2e4∆[1− sh(8K)] + 2e∆[1− sh(2K)]. (56)

For general spin S, we can extend the previous results to the formula

mS =

S
∑

σ=−S

e∆σ2

[1− sh(2σ2K)]. (57)
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Table 1. Comparison of critical temperature values at ∆0 = 0, solutions of equation (57), with
other methods found in bibliography.

Spin S S = 1/2 S = 1 S = 3/2 S = 2
q 1 2 5 6
Tc 0.567 296 1.673 971 3.277 561 5.351 248

tc = Tc/S2 2.269 185 1.673 971 1.456 694 1.337 812
Refs. 2.269 [25] 1.689 [26], 1.695 [19] 1.461 [27,25,28] 1.336 [25]

1.694 [25], 1.681 [27]
Spin S S = 5/2 S = 3 S =∞

q 11 12 ∞
Tc 7.890 888 10.894 806 ∞

tc = Tc/S2 1.262 542 1.210 534 0.925 148
Refs. 1.257 [25] 1.203 [25] 0.915 [25,29]

This is a simple result giving a precise location of the second-order critical lines by solving the
equation of the bare mass mS = 0. For comparison we give tabulated values of tc at ∆0 = 0
in table 1 for different values of S, and references to numerical results (Monte-Carlo simulations,
high-temperature expansions) given in the literature. In general, the agreement is good up to 1%
in most cases. For half-integer values of S, the models possess an asymptote in the (T/S2, ∆0)
plane. Indeed, for S = 3/2, for example, the equation given in (56) predicts the solution

∆0 = −9t

8
log

[

−1− sh(2/9t)

1− sh(2/t)

]

, (58)

which is bounded by tc = 2/9 log(1 +
√

2) = 0.252 131 below which there is no continuation of
the second-order critical line. In the limit of large integer S, the model defined in equation (1) is
described by a continuous variable −1 < xmn = Smn/S < 1 and is called continuous Ising model.
We can still obtain a finite value of the critical line by taking the asymptotic value of equation (57)

mS�1 ' S
√

2t

∫

√
2/t

0

dx e−∆0x2/2
[

1− sh(x2)
]

, (59)

and, in particular, for ∆0 = 0, we have the following expansion for large S

mS(t, ∆0 = 0) ' a(t)S − 1 +
4

3tS
+

8

21t3S6
+ · · · (60)

with a(t) = 2− 2
√

2/t
∫

√
2/t

0
sh(x2) dx. We observe that the rescaled mass mS/S vanishes in this

case when tc = 0.925 148, in good agreement with numerical works for this model [25,29], and it
is worth noting that equation (59) also possesses a non-trivial solution at t = 0 which is simply
given by ∆0 = 4/

√
3 = 2.309 401. This value is different from the value 2 expected for all finite

S models [8]. It can be suggested that there also exists a tricritical point before this non-physical
value is reached.

5. Conclusion

In this review paper, we have presented a method which tries to operate a correspondence
between classical spin models and fermionic systems. We have extended Plechko’s method [6,10]
based on Ising model to generalized spin-S systems. The method is based on the projection onto q
polynomial components, q depending specifically on the value of spin S, of Boltzmann local weights
given by equation (2). Then the introduction of 2q pairs of Grassmann variables per site and the
use of special symmetries such as mirror and associative symmetries in 2D for Grassmannian

476



Grassmann techniques applied to classical spin systems

objects allows us to perform exactly the sum over the spin variables. This gives a representation
of spin-S models in terms of fermionic multiple integrals (17). Effective actions can in principle
be deduced from this representation. We have shown that such an action can be built exactly
for the Blume Capel model S = 1 (30) and the bare mass (35) gives accurate description of
the second-order critical line. We have seen that there is no shift of this mass due to the effect of
quartic potential of the effective theory at the lowest order expansion in the coupling parameter g0,
implying that corrections to the critical temperature may be indeed small. This quartic potential is,
however, responsible for the presence of a tricritical point, rendering the second order line instable
by changing the sign of the stiffness coefficient or making the free-fermion spectrum itself instable.
For general spin-S model, the bare mass can also be generalized and calculated directly in the
low momentum limit (51) without knowing the full effective action, and it still gives an accurate
description of second-order critical points even in the limit of the continuous Ising model.
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Унiверситет Нансi, поштова скринька 70239, F–54506 Вандевр лє Нансi Седекс, Францiя

Отримано 22 квiтня 2009 р., в остаточному виглядi – 20 травня 2009 р.

Ми оглядаємо задачi, у яких використовуються грасмановi технiки для класичних спiнових систем
у двох вимiрах. Цi технiки є корисними для встановлення точної вiдповiдностi мiж класичними спi-
новими гамiльтонiанами i теоретико-польовими фермiонними дiями. Це дає змогу краще зрозумiти
критичну поведiнку цих моделей у термiнах неквадратичних ефективних дiй, на якi можна дивитися,
як на розширення вiльнофермiонної моделi Iзинга. У межах цього методу iдентифiкацiя затравочної
маси дозволяє виконати точну оцiнку критичних точок чи лiнiй, що пiдтверджується результатами
Монте Карло чи дiаграмних технiк.

Ключовi слова: грасманова алгебра, спiновi системи, критичнi явища
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