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Two-layer Bethe lattice whose lattice sites are occupied with spin-3/2 atoms is solved exactly by using the
recursion relations in a pairwise approach for given coordination numbers ¢ = 3,4 and 6 with equal external
magnetic fields acting on the layers. The ferromagnetic (FM) and antiferromagnetic (AFM) interactions for the
spins of the upper and lower layers, respectively, and either FM or AFM type interactions between the adjacent
spins of the layers are assumed. The phase diagrams of the model are studied on different planes for given
system parameters by obtaining the ground state (GS) phase diagrams and the thermal variations of the order
parameters and the response functions, i. e. the susceptibility and the specific heat, in detail. It was found that
the model presents both second- and first-order phase transitions. The reentrant behavior is seen when the
model presents two Néel temperatures for higher g values. The existence of the tricritical point and critical end
points is also confirmed.
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1. Introduction

The spin-3/2 Ising model with only bilinear and biquadratic exchange interactions was intro-
duced earlier [1] to explain phase transitions in DyVO, and its phase diagram was obtained by
the use of the mean-field approximation (MFA). Another model was introduced later on to study
tricritical properties in ternary fluid mixtures (ethanol-water-carbon-dioxide) that was also solved
in the MFA [2]. Since then the spin-3/2 model was studied by many approximate techniques and
it was found that its phase diagrams are much richer in comparison with the lower spin systems,
i. e. spin-1/2 and 1.

In the recent years, in addition to one layer models, the study of magnetic thin films consisting
of various magnetic layered structures or superlattices has received intense attention for both
theoretical and experimental reasons. Especially the bilayer ones have attracted a great deal of
interest with FM/FM, AFM/AFM or FM/AFM type intralayer and either FM or AFM type
interlayer interactions. These materials present some interesting novel magnetic properties such as
giant magnetoresistance [3], surface magnetic anisotropy [4], enhanced surface magnetic moment
[5] and surface magnetoelastic coupling [6], etc. Thus, there is a high potential for technological
advances in information storage and retrieval and in synthesis of new magnets for a variety of
applications.

Even though the multilayer structures containing spin-1/2 or spin-1 have attracted a great deal
of interest, the multilayered spin-3/2 models have not received enough attention, i. e. we could only
report a few works; the two-layered model with competing interactions was studied by using the
interfacial approximation on a square lattice [7], a bilayer Bethe lattice with FM/FM interactions
by the use of the recursion relations [8] and on a model with the periodical arrangement of one
layer with spin-1/2 and the other layer with spin-3/2 were examined by the use of the effective field
theory [9]. We should note that the external magnetic field and bilinear interaction parameter are
always in competition for the AFM systems, i. e. the spins in a nearest-neighbor (NN) pair for the
AFM system are aligned oppositely but the external magnetic field tries to align them parallelly.
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Thus, due to this competition, one expects to get richer phase diagrams in comparison with the
FM/FM case.

Some of the experimental works with FM/AFM interactions may be listed as follows. A positive
unidirectional exchange anisotropy was discovered in AFM (FeF5) and FM (Fe) bilayers cooled
through the AFM critical temperature Tx in large magnetic fields [10]. A new route towards
enhancing the energy product of permanent magnetic materials, at room temperature, based on
FM-AFM exchange interactions has been developed [11]. Molecular beam epitaxy was used in
order to grow a FM/AFM (Fe/KCoF3) system and the structure and magnetic properties of the
exchange biased system were studied experimentally [12]. The synthesized thin film Co/CoO was
used to study the characteristics of FM/AFM interface such as unidirectional magnetic anisotropy,
rotational magnetic hysteresis in relatively high magnetic fields, unusual magnetic aftereffect, etc,
[13]. Exchange bias and coercivity enhancement in FM/AFM bilayer, i. e. CoO-Co bilayer [14], the
spin configurations in a frustrated FM/AFM thin film system [15], the exchange coupling between
FM and AFM layers across a non-magnetic interlayer: Co/Cu/FeMn on Cu(001) were investigated
by magnetic circular dichroism domain imaging [16]. The exchange coupling between AFM NiO
and FM films [17] and the magnetization reversal in exchange biased FM/AFM bilayer [18] were
investigated.

It should also be noted that exact solutions for realistic systems on regular lattices are generally
unavailable. Thus, one has to rely on the approximation methods to obtain, at least, a qualitative
picture for the considered system. Thus, a two-layer Bethe lattice for an Ising model was studied
by using an iteration technique [19]. The role of interlayer coupling between CuOs planes on
bilayer-group high-Tc superconductors was studied within a simple randomly decorated bilayer
Ising model and a Bethe-lattice approach [20]. The behavior of the Ising thin films through the
use of layered Bethe lattices and Husimi trees was studied [21]. The phase diagrams of spin-1/2
Ising model on a two-layer Bethe lattice with FM/AFM interactions were studied [22]. Similarly,
the phase diagrams of spin-1 Ising model on a two-layer Bethe lattice for the cases of FM/AFM
and FM/FM interactions without [23] and with crystal field [24] were studied by using a pairwise
approach.

Meanwhile, a Bethe lattice is an infinitely Cayley or regular tree, i. e. a connected graph without
circuits, and historically gets its name from the fact that its partition function is exactly that of an
Ising model in the Bethe approximation [25]. In this study the original one-layer lattice is replaced
with the two-layer Bethe lattice with the same coordination number ¢. It should be mentioned
that the one-layer Bethe lattice provides solutions and the results of which are qualitatively better
approximations for the regular lattices than the solutions obtained by conventional mean-field
theories [26]. We should also point out that the cluster variation method in the pair approximation
studies on regular lattices yields the results that are solved exactly for the same model on the
Bethe lattice [27]. Of course, the Bethe lattice considerations also have got some limitations, i. e.,
it predicts a transition temperature which is higher than that for a regular lattice and they are not
reliable in predicting the critical exponents [19]. For more discussions about the Bethe lattices, the
readers are referred to the [19].

In this work in order to simulate the FM/AFM two-layer Ising model for spin-3/2, two sym-
metrically placed Bethe lattices with the upper layer having only FM and the lower one having
only AFM interactions, each with a branching ratio of ¢ Ising spins, and each of which are coupled
via either FM or AFM interactions is considered. In this model we have calculated the partition
function exactly and then the model was studied by the use of the recursion relations in a pairwise
approach. The name “pairwise approach” is used since we form a pair by taking the adjacent
nearest-neighbor (NN) spins from each layer, then one moves from root to the boundary sites (in
the thermodynamic limit it goes to infinity) by considering all the interactions at each step. In ad-
dition to the GS phase diagrams of the model, the order-parameters, free energy and the response
functions are studied to obtain the temperature-dependent phase diagrams for various values of
coordination numbers, i. e. ¢ = 3,4 and 6.

The remainder of this work is set up as follows. Section 2 is devoted to the introduction of
the two-layer Bethe lattice and its Hamiltonian, and to the formulation of the model. The GS
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configurations and its phase diagrams are given in section 3. The thermal variations of the order-
parameters and the response functions are presented in section 4. The illustrations of the phase
diagrams are given in section 5. Finally, a brief summary and conclusions were given in the last
section.

2. Two-layer Bethe lattice and exact formulations

The spin-3/2 two-layer model is simulated on a Bethe lattice and a pairwise approach is em-
ployed for its investigation. In this approach one picks an adjacent NN spin pair from deep inside
the two layer lattice, referred to as the central pair, which forms the first-generation spins. This
central pair of spins is connected to ¢ NN spin pairs (i. e. ¢ is the coordination number) which form
the second-generation spins. Each pair of spins in the second-generation is joined to (¢-1) NN’s.
Therefore, in total, the second-generation has g(¢-1) NN’s which form the third-generation and so
on to infinity. As a result each spin has (¢ + 1) NN spins, ¢ from its own layer and one from the
adjacent layer.

The Ising Hamiltonian of such a two-layer Bethe lattice with an external magnetic field linked
to the layers may be given as

H = *Jl ZSzSJ - JQ Z O'i/O'j/ — J3 Z SiO'i/ — H1 ZSZ — HQ ZO’Z'/ 5 (1)
(i5) ('57) (i) @ 4

where S; and o/ are spin-3/2 with the values £3/2 and +1/2 and refer to the spins in the upper,
(1, and lower, G5, layers, respectively. J; > 0 and Jo < 0 are the intralayer bilinear interactions of
the NN spins of the layers. Thus, the first and second summations are over all NN sites of G; and
G5, respectively. J3 is the interlayer bilinear interaction of adjacent NN spins between the layers.
Therefore, the third summation runs over all the adjacent neighboring sites of G; and Gs. The
layers are assumed to be under the effect of external magnetic fields H; and Hs. Therefore, the
fourth and final sums run over all the lattice sites in each layer, respectively. Let us come to the
formulation with the partition function which is given by the definition as

Z= Y e =%" P(Spe) (2)

All config. Spc

where P(Spc) is the unnormalized probability distribution, see [28] for its detailed presentation,
B = 1/kT is the inverse temperature and k is the Boltzmann constant, and the summation runs
over all the spin configurations (Spc). Starting from the central pair of spins on the Bethe lattice
made up of ¢ separate branches connecting each pair of spins, one follows only one of the branches
of the tree out of ¢q. Therefore, for a full formulation we have to define the partition function for
each of these separate branches referred to as ¢, (S, o). It should be mentioned that each spin S;
and spin o; with spin-3/2 can take the values +3/2 and £1/2. Thus, we have to define sixteen
gn (S, o) functions for 42 = 16 configurations for each pair of spins. As a result, we have obtained
15 functions as the ratios of these partition functions of the separate branches on the two layer
Bethe lattice as follows:

_ gn(%a%) _ gn(%vfg) . gn(%a%)
A” - 1 1y B” - 1 1y C” - 1 1y
gn(fﬁafﬁ) gn(7§7*§) gn(7§a7§)
gn(%vf%) _ gn(fgvg) . gn(*%,*%)
DTL - 1 1 ) ETL - 1 1 ) Fn - 1 1 )
gn(7§a7§) gn(7§7*§) gn(7§a7§)
_ gn(fgvé) _gn(fgafé) . gn(%a%)
GTL - 1 1 b) H?”L - 1 1 b In - 1 1 )
gn(7§7*§) gn(7§a7§) gn(7§a7§)
_ gn(%vfg) o gn(%a%) . gn(%afé)
Jn - 1 1y K" - 1 1y L" - 1 1y
In *57*5) gn(*aafa) gn(7§a7§)
M, — gn(févg) N, — gn(févfg) . gn(f% ) %)
n 1 1y n 1 1y R” - 1 1y ° (3)
gn 7§a7§) gn(7§7*§) gn(*ﬁafﬁ)
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They are related to each other as follows:
A, = f(An—lan—lv---an—lan—1)7 (4)

where A refer to the 15 functions given in equation (3). Thus, each of these functions with n
(number of the shells from root to the boundary sites) is a function of itself and the other functions
with (n—1). Therefore, they are totally nonlinear and so they form recursion relations, the explicit
expressions of which are too long to be given in here. Their numerical values, therefore, can easily
be obtained by using an iteration method for the given system parameters. Meanwhile, the choice
of the recursion relations, i. e. the ratios of these g, (.5, o) functions, are completely arbitrary, i.e,
this choice does not change the behavior of the system.

These recursion relations may not have any physical meaning, but they do reflect the critical
behavior of the system as it will be obvious from the behavior of the order-parameters. One
can easily express the magnetizations and other thermodynamic quantities in terms of these exact
recursion relations. Thus, we can say that in the thermodynamic limit, i. e. n — 0o, these recursion
relations determine the states of the system, and they may be refereed to as equations of state.

Magnetizations M7 and Ms of the layers G1 and Go, respectively, are the order-parameters and
are defined as follows:

M; =(S) and Ms = (o), (5)
where (...) denotes the usual thermal average. Magnetizations M; and Ms are calculated in terms
of recursion relations as follows:

M, = {3|:eﬁ(%~73+%H1+%H2)A%+eﬁ(*%J3+%H1*%H2)B;II+eﬁ(%~73+%H1+%Hz)CZ
4 B(—iJat 3= Ha) pa _ oB(—§Ja—3Hi+3Ho) g _ oB(3Js—§Hi—§Ha) pa
_ B33 Hi+1H2) (a _J(%Jg—ng—%HQ)Hq} + {eﬁ(%Js+%H1+%Hz)Iq
n n n
+eﬁ(—%J3+%H1—%H2)Jg+eﬁ(iJ3+%H1+%H2)Kz+eﬁ(—iJ3+%H1—%H2)L%
— AR B N g (P Ism 3 =3 ) No _ oB(—3 s 3 it 3H2) R
_eﬁ(iJg—%Hl—%Hz)} }/QZ (6)
and
M, = {3[66(%J3+%H1+%H2)AZ 765(*%73+%H1*%H2)Bz+eﬁ(*%J3*%H1+%H2)EZ
B(2Js—3H —3Ho) g | PBBJs+LH +3Ho)7q _ B(—3Js+1H,—3Hy) 1q
_ BGJs—5Hi—3 2)Fn+e(43 1H +3 2)In,e( 2Js+5H1—3 2)‘]n
4 A(—3Ja—FHi+3H:) _eﬁ(%Jg—%Hl—%Hqu} + [eﬁ(%J3+%H1+%H2)Cq
n n n
_eﬁ(—%J3+%H1—%H2)D%_’_eﬁ(—%Jz.—%Hl-i-%HﬂG% _eﬁ(%J3—%H1—%H2)HZ
T eﬁ(%Jng%HlJr%HQ)Kg _ eﬁ(*%Jer%Hl*%HﬂL% + eﬁ(*%h*%Hﬁ%HﬁRZ
_eﬁ(%Jr%Hl—%Hﬂ}}/QZ’ (7)

where
_ B(2Js+EH1+5Hs) gq B(—2J3+2H,—3 Hy) g
Z*6(432122)An+e(432122)Bn

B(3Js+3Hi+ 35 Hz2) g B(—3Js+3H,—LHy) g
+ePlalsTo T )0 4 ePlT el 242) D1
B(—3Js—SHi+35H2) g B(§Js—5H1—3 Hs) g
+e 1 2172 En+e P 24173 Fn
B(—3Js—SH1+1Hz) g B(3Js—5H1— 4 Hs) 179
+ el TalsTa i ) Qi 4 ePla T 22 {1

B(3Js+LH +2H q B(—3Js+iH—3H q
+ Bl dstaHits 2)In+e( gJ3t+5Hi—3 2)Jn
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BTt i+ H) [ea | oB(—3Ja+iHi—$Ha) g
+ eﬁ(—%h—%Hl-i-%Hz)Mg + eﬁ(+%J3—%H1—%H2)Ng
Jreﬁ(—ih—%Hl-i-%HﬂRz+eﬁ(+iJ3—%H1—%H2)' (8)
The two response functions are susceptibility and specific heat. Thus, the constant field sus-
ceptibilities of the layers G; and G4 are given by the definitions as follows:

. a—]\41 . 8M2
X1t = llanlﬁHa—Hl and xor = 11111HQHH6—H2 (9)

and the total susceptibility of the two-layer is just the sum of the susceptibilities

XT = X1T + X2T - (10)

In order to obtain the specific heat, the free energy in terms of recursion relations is needed.
Therefore, using the definition of the free energy F' = —kT log Z and equations (3) and (8) in the
thermodynamic limit as n — 0o, one can obtain an exact expression for the free energy in terms
of recursion relations. Thus, after some straightforward mathematical calculations there was found
the following:

2—q

—BF = %logW—i— log Z, (11)

where
— WBEI -8 T4 s+ S Hi+ 5 H2) fq—1 B(—2J1+5J2— G Js+5Hi—5 H2) pg—1
W = e 1 1 1 2 2 An +e 1 1 1 2 2 Bn
+eﬁ(*%J1*%J2+%J3+%H1+%H2)Cz*1+eﬁ(*%’ﬁrf’z*%J3+%H1*%H2)D;1;1
B(3J1—3J2—%J3—3Hi+3 Hs) pg—1 B(3J1+3J2+2J3—3 Hi—5 Hs) ppg—1
4+ Pl 1 1 2 2 En + ePla 1 1 2 2 Fn
B(3J1—3J2—2Js— 5 Hi+ 3 Hz) rg—1 B(3 145 J2+5 Js— 53 Hi— 3 Ha) prq—1
+ ePla i 1 2 2 Gn + ePla 1 1 2 2 Hn
+eﬁ(*iJl*%J2+%J3+%H1+%H2)IZ*1 +eﬁ(*%JlJr%Jz*%Jer%Hl*%H2)Jg*1
+eﬁ(—iJ1—%J2+iJ3+%H1+%H2)Kz—1 +eﬁ(—iJ1+iJ2—%J3+%H1—%H2)L;}l—1
B l(]17§J27§(]371H1+§H2 q—1 16} l.]1+§J2+§J37lH17§H2 q—1
+e (2 1 1 2 2 )Mn +e (3 1 1 2 2 )Nn
+eﬁ(iJl—iJ2—iJ3—%H1+%H2)Rq—1 +eﬁ(iJ1+iJ2+iJ3—%H1—%H2) (12)
n

which is used to find the places of the first-order phase transition temperatures, if any exist, and
the stable solutions of the model. As a result, the specific heat at a constant magnetic field is

defined as 95 o2
F
=T|—= =-T| = 1

ou=1(5),~7(5m), "

where H refers to either Hy or Hs, and S is the entropy and it may be given in a more suitable
form as o(F) 1) 2 (F/ )
F/J; F/J;

k=-p3 |26 ! 2 : 14

ok =g |20 2L 1 g2 (19

where ¢ = 1 or 2, i. e. J; refers to intralayer interaction of the upper or lower layer, respectively,
and which is not as simple as it is seen, since it includes the first- and second-partial derivatives
of the recursion relations with respect to 3’ = 8J;. Therefore, the explicit equation is too long to
be given here.

So far we have obtained the formulations for general interactions only, but for the lower layer
G we have assumed AFM interactions. Therefore, we have to divide the layer G5 into sublattices A
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and B. But for the sake of the formulations, we have to partition the upper layer G; into sublattices
A and B too in a pairwise approach. Hence, the recursion relations for each layer in terms of the
sublattices may be written as follows:

{AA,BA, ... N R} “for even n”,

An,By,...,Np, Ry} —
{An, Bn w 4B BB NP R Sfor odd

(15)

The notable point of this approach is that non-staggered phases are described by the single fixed
points {A,, By, ..., Nn, Ry} — {A, B,..., N, R}, while the staggered phases appear as two-cycle
double points as indicated above.

In addition, the sublattice magnetizations for the layers G; and G5, since each spin only interacts
with its NN’s from its own layer and a NN from the adjacent layer with the same sublattice, i. e.
A or B, could be written as

(M) — {Mia, M2p} “for even n”, (16)
b {Mip, Mop} “for odd n”.

The free energies of the sublattices are of the form

{F(AZ,... R} “for even n”,

F(An,...,Rp)} — 17
(A, )} {F(AE,...,RE)}  “for odd n”, 1)

and then the specific heat is to be defined accordingly, that is
(oA R} {C(A4,... R} “for even n”, (1)

mny n -
{C(AB,...,RB)}  “for odd n”,
and finally the susceptibility is given as
AR +xa(Ad . RA “for even n”,

ORI ) S Sl !} (19)

{x1(AB ... RBY 4 xo(AZ, ... RE)} “for odd n”.

The next section is devoted to the obtaining of the GS phase diagrams and to the thermal
variations of the order-parameters and response functions.

3. The ground state phase diagrams

In this section, the GS phase diagrams are calculated in order to determine the stable solutions
of the model together with the free energy. Although the GS phase diagrams can only help us at
zero temperature, the zero temperature configurations are very important as a starting point in
obtaining the temperature dependent phase diagrams.

With the assumption that the layers are linked with equal external magnetic field, i. e. H =
H, = H», the GS phase diagrams are obtained on the (J;/|J;|, J3/¢|J;|) planes for the given values
of H/q|J;| and on the (H/q|J;|, Js/q|J;|) planes for the given J;/|J;| values with ¢, j =1 or 2 and
i # j. The GS energies are obtained from equation (1) in units of |Ji| by rewriting it as:

E Jy Jo Js3 H
—_— = — —5:S; + ——opojy + ——(Sioy + Sjop) + ——(Si+S; +oy +0)|, (20
qlel (I%n[l‘]kl J |Jk| J Q|Jk|( J J) Q|Jk|( J J) ( )

where £ = 1 or 2 and the summation is over all the central plaquette which consists of four NN
pairs of the two-layer system with one pair (ij) from layer G1, one pair (i’j’) from layer G5, and two
pairs (7i’) and (jj') connecting layers G; and G5 between the adjacent spins only. The GS phase
diagrams are calculated by comparing the values of the energy for different spin configurations
and then the GS configurations are the ones with the lowest energy. The coordination number ¢
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I F3/2 +3/2 - £3/2 73/2 I F3/2 +3/2
+3/2  +3/2 T3/2 +3/2 T3/2 +3/2
v £3/2 £3/2 v T3/2 =£3/2
F3/2 F3/2 F3/2 +£3/2

is hidden in the GS energy equations. Thus, they are obtained for general q. We only consider
the case with positive values of H/q|Jg|, then there is a preferred direction in space. For negative
values of H/q|Ji| the magnetizations only change the sign due to the symmetry requirements,
M(—H) = —M(H). Thus, the following five different types of GS configurations are found for
the central plaquette deep inside the two-layer Bethe lattice as: While phase I is the FM phase,
phase IT is the AFM phase. Phase III is the surface FM phase, i. e. layers G; and G5 are FM and
AFM types, respectively. Phase IV is a compensated phase with the layers being FM type but
the interactions between them is AFM type. The last one, phase V, is a mixed phase with AFM
intralayer interactions and with FM interlayer interactions. Thus, these last two phases are exactly
opposite to each other.

10 10
H/qJ,=1.0 Hal05
8 8
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6 I 6 I
\4
4 4
- ] _—
7 =
;"‘ 0 - 11 \c; 0 1
— I
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2 s 27 8 Higll=10
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P ol
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Figure 1. The GS phase diagrams of the bilayer FM-AFM spin-3/2 Ising model; (a) on
the (J2/J1,J3/qJ1) planes for H/qJi = 1.0 and in the inset for H/qJ; = 4.0, (b) on the
(J1/|J2|, J3/q|J=|) planes for H/q|J2] = 0.5 and in the inset for H/q|J2| = 1.0, (c) on the
(H/qJv, Js/qJ1) planes for Jo/J1 = —4.0 and in the insets (i) for Jo/J1 = —1.0 and (4) for
J2/J1 = —0.5 and (d) on the (H/q|J2|, J3/q|J2|) planes for Ji/|J2] = 0.05 and in the inset for
Ji/|J2| = 2.0.
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The GS phase diagrams are studied for the cases with J; > 0, J; < 0, H > 0 and either J; > 0
or J3 < 0. The first GS phase diagrams are obtained on the (Jy/.J1, J3/qJ1) plane for H/qJ; = 1.0
and in the inset for H/qJ; = 4.0, see figure 1a. It is clear that all five GS configurations exist and,
as H/qJy increases the regions covered by the phases, containing the FM configurations, increase.
The next two GS phase diagrams, figure 1b, are obtained on the (J1/|J2]|, J3/q|J2|) planes for
H/q|J2] = 0.5 and in the inset for 1.0. Only phase I is seen in the upper half plane, the phases II,
IIT and IV are contained in the lower half for H/q|Jz| = 1.0. But for H/q|J2| = 0.5, phase V is also
seen at lower values of J/|Jz2| in the upper half plane. And the next two are obtained by changing
the roles of J/.J; and H/qJ; in comparison with the figure 1a and presented in figure 1c. They are
obtained for Jy/J; = —4.0 and in the insets (i) and (i¢) for J2/J; = —1.0 and —0.5, respectively.
We see that the phases II and IV exist in the same region and which are separated by a diagonal
multiphase line from phase III and which is separated from phase I with another multiphase line
parallel to the first one as seen in the inset (¢). In the inset (i¢) for J/J; = —0.5, the phases IT and
IV do not coexist anymore. Instead, only phase IV is seen. The opposite occurs in the main figure for
Jo/J1 = —4.0, i. e. now we see phase II instead of phase IV. The phase V also appears in the main
figure in comparison with the insets. The last two are illustrated in figure 1d and are obtained on
the (H/q|J2|, J3/q|J2|) planes for J;/|J2| = 0.05 and in the inset for 2.0. Again the roles of J; /| Jz]
and H/q|.Jz| are exchanged in comparison with figure 1b. The phases I, IT, IIT and V are seen in the
main figure, but for Jy/|Jz2| = 2.0, phase V has disappeared and phase II is replaced by phase IV.

These are all the distinct types of the GS phase diagrams of the spin-3/2 Ising model and
which are to be used as our guide in obtaining the temperature dependent phase diagrams. Our
next step is to analyse the order-parameters and the response functions, since the nature of the
phase transitions are determined from their thermal behavior.

4. Thermal variations of the order-parameters and response functions

Now we study the temperature variations of the order-parameters and the response functions to
determine the types of the phase transitions. The existence and the behavior of the second-order
phase transition temperatures, T, i. e. Néel temperatures, and the first-order phase transition
temperatures, T;, are studied in different phase regions. While the thermal variations of the sub-
lattice magnetizations of layers are given as main figures, the thermal variations of the response
functions are given as insets. We only illustrate the case with ¢ = 6 due to the similarities with
the cases for ¢ = 3 and 4.

Thermal variations of the order-parameters and response functions of phase II, the AFM phase,
are illustrated in figure 2a. As seen M15 = Mo = 1.5 and Mss = Mg = —1.5 at zero temperature
as expected, but as the temperature increases they split very slowly. The sublattice magnetizations
decrease as the temperature increases. Then, at the Ty, Mia and Msa combine with Mig and
Mg at different values of the layer magnetizations, respectively. The total susceptibilities and the
specific heat present peaks at the Ty as expected. Figure 2b shows the outcome of varying the
temperature for phase III. As expected M1a = Mg and Msg = —Msa at zero temperature and
as the temperature increases My and Mg separate slowly and as kT'/J; increases further, they
combine at the Tx. Similarly, M>s and Msp decrease from above and below with the increase of
kT /J; and they also combine at the same T as M5 and Mip. Again, the response functions show
that the peaks are located at the T. Phase IV is the compensated phase with a big competition
between H and J3, since H and J3 < 0 favor FM and AFM phases, respectively. Moa = Mo = 1.5
and Myja = Mg = —1.5 at zero temperature as shown in figure 2c, and as the temperature
increases they decrease and at the T;, Mip = Mg jump discontinuously from their negative
values to the positive values (Maan = Map do exactly the opposite). The response functions also
present jump discontinuities at the T;. However, in figure 2d, instead of T; we have observed Tx
for the given system parameters. Map = Mog = 1.5 and Myjp = Mg = —1.5 at kT/J1=0.0,
but as kT'/J; increases they decrease and combine at the TN where the response functions again
present peaks. The next figure is for the mixed phase V and is shown in figure 2e. At k¥T'/.J; = 0.0,
Msop = —Map = 1.5 and Mg = —Mia = 1.5, as kT/J; increases they decrease again and at the
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TN, Mia = Mip and Msp = Msp at different values of magnetizations. The response functions
again show their peaks at the Ty. Phase I is the FM phase and no phase transitions are expected
when there are external magnetic fields acting on the layers which is well-known. On the contrary, in
a very small transition region from AFM to FM phases two Tx’s are observed as shown in figure 2f
(this will be clear when we present the phase diagrams). As seen Mia = Mg and May = Mop at
zero temperature and they go together respectively until the first T1 at which they are separated.
The separation of the sublattice magnetizations for each layer continue until a higher temperature
TNz is reached, with Tn1 < Tn2, where they combine again. This behavior is only seen for ¢ = 4
and 6 and which is the cause of the reentrant behavior of the Tn-lines in the phase diagrams.
The response functions present two peaks at these temperatures TNy and Tno. Even if we did not
present, we have also obtained two Tn’s in small transition regions from AFM phases to FM phase
IV as in figure 2f.

In conclusion we have illustrated the thermal changes of the order-parameters and the response
functions and explained how they are used to determine the nature of the phase transitions. Now
we are ready to give all possible distinct types of the temperature dependent phase diagrams for
q = 3,4 and 6 in the next section.

5. The temperature dependent phase diagrams

In the light of the previous two sections, we now give some of the distinct phase diagrams
of the model. In the phase diagrams the Tx-lines, the lines of the second-order phase transition
temperatures, are indicated with dotted, dashed and solid lines for ¢ = 3,4 and 6, respectively.
Similarly, the arrows indicate the phase separation points according to the GS phase diagrams.
The Ti-lines are shown with chain lines. The temperature dependent phase diagrams are obtained
on the (Jg/Jl, k‘T/Jl), (Jg/Jl, ]CT/Jl), (H/Jl, k‘T/Jl), (J3/|J2|7 ]CT/|J2|), (J1/|J2|, k‘T/|J2|) and
(H/|J2|,kT/|J2|) planes and we refer to them as the types A, B, C, D, E and F. The possi-
ble phase transitions involve the phases (V.,I), (IILI), (ILIV), (IILIV), (V,III), (IT,IIT) (IT,III,V),
(ILIILI), (IV,IILI) and (V,IILI) and which are labeled with 1,2,...,9,10, respectively, for easiness.
For example Al is understood as the phase diagram on the (J3/Jy,kT/J1) plane involving the
phases (V.I) etc...The constant values of the system parameters that they are obtained for are
indicated in the figures.

The first four phase diagrams are obtained for H/q.J; = 1.0 according to the GS phase diagram
figure la. Figure 3a is type A7 phase diagram. The Tn-lines separate the ordered phases from the
paramagnetic (P) phase. As seen, they are constant at higher negative values of Js/J; and which
are at higher temperatures for higher ¢q. As J3/J; increases the Tx’s decrease and Ty-lines present
concavities for all g about J5/J1=0.0. As J3/J; increases further they become constant at some
temperatures again. However, the Tn’s of the left wings are higher than the right wings. Since
Jo < 0 and J3 < 0 favor the AFM phase II but while Jo < 0 favor AFM phase, J3 > 0 favor FM
phase, so phase II is more resistive to temperature than the phase V. The Tx-lines do not terminate
since both phases IT and V are AFM type. The next one is presented in figure 3b and it is A8 type.
Again the Tn-lines have constant temperatures in the phase region II at higher negative values
of J3/Jy, but as Js3/J; increases their temperatures increase continuously in the phase region III.
As J3/Jp is increased further the Tn-lines go to zero sharply in passing from phase III to phase I.
This happens at lower Js/J; for lower ¢g. The Tn-lines present a reentrant behavior for ¢ = 4 and
6, due to the existence of two Tx’s (see figure 2f). The transitions take place smoothly, i. e., the
Tn-lines start from AFM phase II, then go to the surface FM phase III and then pass FM phase I
with a little reentrant part and finally terminate in the P phase. Figure 3c consists of three phase
diagrams, i. e. while the main figure is for J3/qJ; = 4.0 and type B1, the insets (i) and (i7) are for
J3/qJ1 = 1.0 and —4.0, and types B2 and B3, respectively. They are very similar to each other,
that is, they start from higher temperatures at higher negative values of Jy/J; for higher q, and as
Jo/Ji1 increases their TN’s decrease linearly and close to zero temperature some of them make little
curves and then they all go to zero temperature at the same value of J5/.J;. The reentrant behavior
is seen for ¢ = 6 in B1 and for ¢ = 4 and 6 in B2, but none was seen in B3. The final figure obtained
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from figure la is B4 type and is presented in figure 3d. The behaviors of the Tx-lines are similar to
the previous figure. But now we also see the existence of the Ti-lines (see figure 2¢) which emerge
from the Tn-lines in phase region IV and increases with increasing J/Ji. Thus, the connection
points of these lines are the critical end points. The reentrant behavior is again observed for ¢ = 4
and 6.

Figure 1b is used in our upcoming three phase diagrams. The phase diagram of type D9 is
one of the most interesting and is illustrated in figure 3e. Phase IV is FM phase and we do not
expect any Tn’s when the layers are linked with H, but due to the competition between J3 and
H for Ji/|J2] = 2.0 we actually observe Tn’s (see figure 2f). Thus, Tn-lines start from higher
constant temperatures for higher ¢ at higher negative values of J3/|J2|. As J3/|J2| increases the
Tn-lines become the Ti-lines (see figure 2c). Thus, the connection points of these lines are the
tricritical points. The temperatures of these Ti-lines decrease up to the critical end points where
they combine with the corresponding Tx-lines for each ¢ in the shape of half upward ellipsoid for
each ¢q. The combinations of the Tn- and Ti-lines are actually unstable since their free energies are
higher in comparison with the half ellipsoidal ones. Note also that the T-lines in the shape of half
upward ellipsoids bind the phase III for each ¢. The reentrant behavior is also obvious in both of
the legs of Tn-lines for ¢ = 4 and 6. The next phase diagram is to illustrate E5 and E6 types of
phase transitions as seen in figure 3f. They are obtained for J3/q|J2] = 0.5 and —1.0 (see inset),
respectively, and are very similar to each other. The Tn-lines start from higher temperatures for
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higher ¢ at J1/|J2] = 0.0, and as it increases their Tx’s decrease and become constant at lower
temperatures for higher .J;/|J2|. The Tn-lines always exist and separate the ordered phases from
P phase.

Figures 3g and 3h are obtained according to the GS phase diagram figure 1c. The first one
is C9 type, obtained for J3/gJ; = —4.0 and where all possible critical phenomena of this work
were displayed as in figure 3e. Very short Tx-lines are seen for very low values of H/Jy. It is
well-understood that the second-order transitions are expected at zero external magnetic field for
the phase IV (FM phase), which is indeed the case. These Tx-lines end and therefrom the Ti-lines
emerge for all g. Thus, tricritical points are observed. These Ti-lines end at critical end points on
the half upward ellipsoidal Tx-lines as in figure 3e. The unstable part of the critical lines, i. e. the
combinations of the Ti- and Tn-lines, separate the P phase from phase IV. The ellipsoid shaped
Tn-lines are lined up from lower to higher H/J; values with increasing ¢. Again the reentrant
behavior is seen in both legs of these Tn-lines for ¢ = 4 and 6. The last one of this group is C10
type as seen in figure 3h. As usual the Tx-lines start from higher temperatures for zero H/.J; and
as H/.J; increases their Tx’s decrease and they go to zero temperatures at lower H/.J; for lower q.
It is now quite obvious that the reentrant behavior exists for ¢ = 4 and 6 again.

The last phase diagram of this work is obtained by using the GS phase diagram figure 1d and it
is F9 type as shown in figure 3i. In this phase diagram in comparison with the type C9, the roles of
J1 and Jo are exchanged. Again a few T\’s exist at zero and at about zero H/|J2| and so they make
very small Tx-lines for each ¢. From the ends of these Tn-lines for each ¢, the T-lines emerge. Thus,
the tricritical points exist. The temperatures of these Ti-lines decrease with increasing H/|J2| and
they combine with their corresponding closed T\-lines at the critical end points. The closed Tn-
lines are much wider than our observed ellipsoidal ones. Again the reentrant behaviors are much
clearer for ¢ = 4 and 6. We should mention that we have obtained all possible phase diagrams of
the model according to our classification scheme as explained in the first paragraph of this section,
but we gave only some of the distinct types of the phase diagrams.

6. Summary and conclusions

In summary, we have considered spin-3/2 Ising model on two symmetrically placed Bethe
lattices with the upper one having only FM and the lower one having only AFM interactions, each
with a branching ratio of ¢ Ising spins, and each are coupled via either FM or AFM interactions.
The model is examined by using the recursion relations in a pairwise approach for the given
coordination numbers ¢ = 3, 4 and 6 with equal external magnetic fields linked to the layers. The
phase diagrams are classified and obtained on different planes for the given system parameters by
studying in detail the ground state (GS) phase diagrams and the thermal variations of the order
parameters and the response functions, i. e. the susceptibility and the specific heat. We have found
that the model presents both second- and first-order phase transitions, and where their lines are
combined is the tricritical point. The critical end points, two Tn-lines emerging from the end of
the Ti-lines, are also found to exist. The reentrant behavior is seen when the model presents two
Néel temperatures for ¢ = 4 and 6 only.

Now we present a brief discussion of what we have found: (i) The same GS configurations are
found with those of the FM/FM interactions for spin-3/2 model [8], but with different GS phase
diagrams. (i) The first-order phase transitions are always seen for transitions from phase IV, i. e.
compensated phase, to P phase, the paramagnetic phase, as shown in figures 3d, e, g and i. (i)
The tricritical points and critical end points are found here in contrast to the case with FM/FM
interactions [8]. (iv) The reentrant behavior is only exhibited for transitions from phase III to
phase I or IV for both ¢ = 4 and 6 and is only seen for ¢ = 6 for the phase transitions from phase
V to phase I. The reentrant behavior was not observed for the FM/FM interactions with spin-3,/2
model. Our final result is (v) The critical temperatures are seen at higher temperatures for higher
coordination numbers.

We can also give some comparisons, at least, for the cases with spin-1/2 [22] and spin-1 [23]
FM/AFM models; (¢) With spin-1/2: No first-order phase transitions were exhibited, but the spin-
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3/2 model displays both the first- and second-order phase transitions. Therefore, the tricritical
points and critical end points are also displayed. The reentrant behavior was only seen when ¢ = 6
in the spin-1/2 case, but it was also seen for ¢ = 4 in the spin-3/2 case. (#) With spin-1: The
first-order phase transitions are always exhibited for the transitions from phase IV to phase P for
spin-3/2 model but they were not always exhibited for the spin-1 model. This is the only difference
in comparison with the spin-1 case, so it is much less than our expectations. As a last word, the
critical temperatures are seen at higher temperatures for higher spin values as expected.

Since this is the first theoretical study of this kind for spin-3/2 FM/AFM interactions on a
two-layer lattice, we hope that other researchers will also get interested in considering the model
using other techniques.
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Mogensb I3uHra 3i cninom 3/2 Ha gBowapoBin rpartui bere 3i
B3aemogiamm pepomarHeTmk-aHTudepomarHeTuk

E.Anbbaripak, A.irit

®disnyHunin pakynbteT, YHiBepcuTeT Epciec, 38039 Karicepi, TypeuunHa

OTtpumano 2 notoro 2009 p., B octaToyHOMY BUrnsaai — 25 tpasHa 2009 p.

JBowapoBa rpatka bete 3 Byanamu, 3anHaTMmMmn atomamm 3i criHom 3/2, € TOYHO PO3B’A3aHOK0, BUKOPU-
CTOBYIOYM PEKYPEHTHI CMIBBIAHOLLEHHS Y MapHOMY Migxoni 3 04HAKOBUMM MarHiTHUMU NOAsSIMA, LLLO AiloTb
Ha wapw. MNpunyckaeTbCs, O CMiHN BEPXHBOIO i HUXHBOIO LWAPIB MAOTb BiAMNOBIAHO, pepomarHiTHi (PM)
Ta aHTUdepomarHiTHi (APM) B3aemogji, a B3aemogist Mixk cycigHiMu cniHamu wapis € PM a6o AOM Tuny.
BuByaloTbcst $a30Bi giarpamu MoAeni Ha Pi3HMX MAOLWMHAX A4S AaHOro Habopy CUCTEMHMX NapamMeTpiB
LUNIIXOM OTPMMaHHS OCHOBHOIO CTaHy ¢a30Boi giarpamu i TemnepaTtypHux 3MiH napamMeTpiB Nopsiaky 1a
DYHKU,N BiAryKy, 30Kpema, CnpUnHATANBOCTI | TMTOMOI TeNI0eEMHOCTI. Noka3aHo, Lo MoaesNb AEMOHCTPYE
da30Bi Nnepexoan gk Apyroro, Tak neplioro poay. BuaHo pesepcrBHY NOBEAHKY, KOM MOAESNb AEMOH-
CTpye ABi Temnepatypu Heensi ona BUWMX 3Ha4eHb q. TakoX OTPMMaAHO TPUKPUTUYHY TOYKY i KDUTUYHY
KiHLLEBY TOYKY.

KniouoBi cnoea: rpatka bete, criH, oCHOBHWIi ctaH, @M/APM, wapu, pasa

PACS: 05.50.+q, 68.35.Rh, 64.60.Cn
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