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Abstract. Steady-state electric characteristics of quantum heterostructures  

AlxGa1–xAs/GaAs/AlxGa1–xAs with  -doped barriers have been analyzed in this work. It 

has been shown that at high doping the additional low-conductive channels are formed in 

the barrier layers. Current-voltage characteristics of the structure were obtained in the 

wide interval of applied electric fields up to several kV/cm being based on the solution of 

Boltzmann transport equation. It has been found that in the electric fields higher 

than 1 kV/cm the effect of exchange of the carriers between the high-conductive channel 

of the GaAs quantum well and the channels in the AlGaAs barriers becomes essential. 

This effect gives rise to the appearance of the strongly nonlinear current-voltage 

characteristics with a portion of negative differential conductivity. The developed model 

of heterostructure is adequate to those recently fabricated and studied by Prof. Sarbey’s 

group. The obtained results explain some observation of this paper. It has been found that 

the effect of electron real-space transfer takes place at both low temperatures and room 

temperatures, which opens perspectives to design novel type nanostructured current 

controlled devices. 
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1. Introduction  

In recent decades, modulation-doped quantum well 

heterostructures received great attention due to their 

unique electronic properties allowing numerous 

applications in science, medicine and industry. One of 

the important areas for these applications is the high-

frequency and high-power electronics [1-4], which 

relates to fabrication of solid-state modulators and 

generators of electromagnetic radiation in the sub-THz 

and THz spectral ranges [5, 6]. Quantum wells made of 

different semiconductor materials such as GaN/AlGaN 

[7-9], GaAs/AlGaAs [10], InGaAs/InAlAs [11] show 

good perspectives to realize these goals. For generation 

of high-frequency radiation, several mechanisms of the 

current instabilities are used, all of them are based on the 

action of strong applied electric fields [12-16]. 

Among them, it should be noted the effect of the 

electron real-space transfer (RST) that was observed in 

the quantum heterostructures. Usually, this effect is 

detected in measurements of current-voltage (I-V) 

characteristics as an interval with negative differential 

conductivity [17, 18]. The phenomena of RST is referred 

to as transfer of hot electrons in the direction 

perpendicular to heterolayers due to the heating effect in 

the electric fields applied in the direction along hetero-

layers. There are number of papers published in the past 

where RST was measured and explained [19-22]. 
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Recently, the effect of RST was observed in the 

novel, high-quality n-AlGaAs/GaAs/AlGaAs hetero-

structures with δ-like doped layers in the AlGaAs 

barriers [23]. The values of impurity concentrations and 

position of δ-layer seem to be quite enough to form the 

low-mobility side well (SW) and ensure the effective 

exchange of carriers between SW and structural high-

mobility GaAs quantum well (QW). At electron heating, 

SW will be effectively filled up by electrons from high-

mobility QW, as a result, the total conductivity of 

structure is decreased that can lead to the non-linear 

current-voltage characteristics with well-pronounced 

saturation or even dropping behavior. Apparently, this 

redistribution of electrons can also change the high-

frequency conductivity and transparency of 

heterostructure for electromagnetic radiation, as well. 

This idea can be used in development of very fast, 

electrically-tuned modulator of high-frequency 

radiation [24]. 

The aim of this paper is to offer the analytical 

theory of the RST phenomenon in the heterostructures 

with δ-doped barriers. To properly describe the high-

field electron transport under condition of the real-space 

transfer, it is necessary to account the electron scattering 

mechanisms at high kinetic energies and modification of 

electrostatic potential at charge redistribution induced by 

the applied strong lateral field. In particularly, the 

calculation model of electrostatic characteristics of 

heterostructure is formulated in Section 2. The model of 

the high-field electron transport in the high-mobility 

QW, and the model of electron redistribution between 

QW and SW are discussed in Section 3. The results of 

self-consistent calculations of potential profiles of the 

structure, distributions of electrons at different applied 

electric fields, field dependences of the drift velocity and 

electron temperature, and the current-voltage 

characteristics are presented in Section 4. Finally, the 

main results are summarized in Section 5. 

2. Electrostatics of quantum well heterostructure 

with δ-doped barriers 

Discussion of the electrostatic model for the 

heterostructure under consideration is separated by two 

interrelated parts. The first one relates to the description 

of well GaAs layer, and the second one does to 

description of barrier AlxGa1–xAs layers.  

2.1. Electrostatics of the well layer 

Let us consider the symmetric heterostructure 

AlxGa1–xAs/GaAs/AlxGa1–xAs with layers grown along z-

axis. The structural GaAs quantum well has the width d. 

The reference point for the z-variable corresponds to the 

middle of QW. The electrostatic profile, )(z , and wave 

functions of electron, )(z , inside QW can be obtained 

by means of the self-consistent solution of Schroedinger 

and Poisson equations as follows:  
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where V(z) is the heterostructural built-in potential 

energy, bVzV =)(  at /2|<| dz  and V(z) = 0 at 

/2>|| dz  (Vb is the conduction band offset GaAs and 

AsGaAl x1x   materials and one depends on chemical 

composition, x), )(z  is the electrostatic potential 

induced by the finite values of the electron 

concentration, D
en2 , inside QW. Generally speaking, the 

several discrete energy levels of size quantization 

corresponding to different minima of the conduction 

band can exist in QW as a subject to x and d. In the 

model reported here, we restrict ourselves by the 

consideration of these parameters for the heterostructure 

(see Section 3) at which only the lowest level of size 

quantization, E1, corresponding to the -valley of GaAs 

is found in QW and populated by electrons with the 

effective mass, m
*
. This medium has the dielectric 

constant 0 . The difference between dielectric constants 

of the well and barrier materials will be neglected. It is 

convenient to rewrite the system (1) in the following 

compact dimensionless form:  

 







 

 

,0)(

,0
22

1

z

Ea
D

e

V
 (2) 

where accents denote the spatial derivative with respect 

to the dimensionless variable  = z/d. The introduced 

dimensionless parameters are as follows: 
22

B

*2= dTkmaV , Tkdne D

e

D

e B0

222 4=  , 

  TkzVze B)()(=   and TkEE B11 = , where T is 

the equilibrium lattice temperature. 

The solution of the system of nonlinear differential 

equations (2) can be found numerically, using the 

following boundary condition: 

)(0=(0));(=(1/2)

);(0=(0));(0=(1/2)

dcv

ba

b 


 (3) 

with TkVv bb B= . The condition (a) assumes that 

electrons are strongly localized inside QW 

(approximation of deep QWs), conditions (b) and (d) 

are the results of the symmetry properties of the wave 

function in the ground state and spatial symmetry of 

the heterostructure relatively to the point z = 0, 

respectively. The condition (c) is due to the choice of 

the reference system. Finally, the unknown parameter 

E1 is looked for from the normalization condition of the 

wave function:  

1=)(
21

1
 d  (e). (3) 
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It is easy to see that dimensionless electric field at 

the interface GaAs/AlxGa1–xAs is defined as 

2=(1/2) 2D

e  (this parameter is important for 

consideration of electrostatics in the barrier). 

Thus, at a given electron concentration D
en2 , we 

can completely solve the electrostatic and quantum-

mechanic problems inside this QW, in particular to 

determine the position of quantization levels, spatial 

dependences of both wave function and potential profile. 

2.2. Electrostatics of the barrier layer 

Let two donor-doped δ-layers are placed at the distance 

id  from the middle of QW. The impurity concentration 

in each δ-layer is assumed to be Ni. The donor 

concentration is supposed to be so large that wave 

functions of localized electrons in the donor states are 

overlapped and conductive channels are formed in the 

barriers. In AlxGa1–xAs, the impurities of Si are shallow 

donors, as it was reported in the ref. [25]. For example, for 

the donor states with the energy 15 meV the electron 

localization radius aH is close to 5 nm. Therefore, the 

criteria of Mott transition 0.351/2 Hi aN  (see ref. [26]) 

can be fulfilled at Ni > 211cm105  . Moreover, at 

sufficient electron heating by the applied electric fields 

(see Section 4), the major part of electrons can transfer 

from the donor states to the conduction band. 

Thus, one can assume that a positive charge of 

ionized impurity layer creates the electrostatic potential 

well for three-dimensional free electrons in the barrier 

layer. The electrostatic potential in the barrier region 

( 2> dz ) has to satisfy the Poisson equation written as 

follows:  
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with three-dimensional concentration of electrons in the 

barrier )(3 zn D
e . According to the symmetry of the 

heterostructure under the consideration, it is sufficient to 

solve the electrostatic problem for z > 0. The estimations 

carried out bellow show that the effect of the electron 

quantization inside SWs is insignificant, and therefore, 

electrons can be treated as the three-dimensional ones. 

Indeed, SWs formed in the barrier are wide and shallow, 

meanwhile, electrons localized there have very low 

mobilities and very short relaxation times, which leads 

to the essential broadening of the levels. Assuming that 

electrons are nondegenerate and obey the Maxwell-

Boltzmann statistics, we can write that  
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where *
bm  and eT  is the effective mass of electrons and 

electron temperature in Γ-valley of AlxGa1–xAs, respec-

tively. Fermi level EF is measured from the bottom of the 

unperturbed conduction band of barrier material and is 

constant across the entire heterostructure. Note, the 

distribution function (5) assumes that the drift velocity in 

the region of SW is small. 

It is convenient to rewrite Eqs. (4) and (5) in the 

form of the dimensionless equations as follows:  
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In the latter, signs “–” and “+” correspond to the 

spatial regions iD1/2  ( ddD ii = ) and iD , 

respectively, ,= TTee  TkE BFF =  and 

dimensionless screening parameter 
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0
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B
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e . The solutions of 
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where TkdNe ii B0
24=   and i  is the electrostatic 

potential corresponding to the bottom of the side well. 

Here, the condition (a) follows from the reference 

system of potential energy, and condition (b) is the result 

of continuity of the electric field at the interface 

AsGaGaAs/Al x1x  . The conditions (c) and (d) express 

the continuity and discontinuity of the potential and 

electric field, respectively, in the point of the impurity δ-

layer. Using (7), solutions of (6) can be found in the 

form of the implicit functions. In the region 

iD1/2 , 
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 eeG   2exp),(= F
' , 

 

 .2),(

2explog2=

F iee

eie

DG 



   (9) 

Here  ee
D

eeG  F
5/23
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function of the electron temperature and Fermi level and 
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Note that solutions (9) far from the δ-layer are 

 =)(  and 0=)('   . Finally, from the second 

equation of (8), we can obtain the following relationship 

between e  and F :  
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Thus, at the given electron concentration D

en2  in 

QW, one can able to solve the electrostatic problem 

completely, if we determine one of the parameters e  or 

F . For this purpose, it is necessary to consider electron 

transport in the quantum well and specify mechanisms of 

carrier exchange between QW and this barrier. Within 

the frames of simple consideration of the RST effect, we 

suppose that due to the strong electron-electron 

interaction there is a temperature balance between 2D 

electrons in QW and 3D electrons in SW. Under this 

assumption, the common electron temperature and Fermi 

level between these two groups of electrons are 

established even for non-equilibrium electron gas 

in QW. 

 

3. Transport model for 2DEG in QW 

As known, the basic electric characteristics of hot electrons 

are determined by non-equilibrium distribution function 

)( pf


, where p


 is the electron momentum. In the 

frameworks of the classical kinetic theory, the distribution 

function is given by solution of Boltzmann transport 

equation, which in the case of steady-state and spatially 

uniform applied electric field F


 can be written as  

}{}{=
)(

fIfI
p

pf
Fe latee 




 


, (11) 

where }{ fI ee  is the collision integral of the electron-

electron (e-e) scattering, and the collision integral 

}{ fIlat  describes the electron scattering by phonons and 

crystal lattice imperfections. As mentioned above, we 

consider the case of a high electron concentration, so 

that e-e collisions dominate over all the scattering 

process, and the electron subsystem is characterized by 

collective momentum and energy budget. Thus, to solve 

the kinetic equation (11), we can use the electron 

temperature approach with the distribution function 

taken in the form of shifted Fermi-Dirac distribution [27]  

  edF TkpvEEp
tpf
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 (12) 

with *2 /2=)( mpp


  and three unknown parameters: 

Fermi level EF, drift velocity Vd and electron temperature 

Te. The parameters EF, Te and Vd are to be found from 

 

the concentration, momentum and energy conservation 

equations that can be obtained by multiplying Eq. (11) 

by 1, px and p
2
, respectively, followed by integrating 

them over all p


 (in our case, p


 is the two-dimensional 

vector). The similar approach of the solution of 

Boltzmann transport equation was applied at the analysis 

of the hot-electron kinetics in the bulk-like GaN [28]. In 

our case, these equations are  

 
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where the specific form of NQ  is determined only by 

the form of distribution function (12). The determination 

of the functions PQ  and EQ  already requires the 

specification of scattering mechanisms. Since, we 

mainly focus on the investigations of electron transport 

within the range of high fields in polar material, then the 

main dominant scattering mechanism that should be 

considered is the electron scattering by polar-optical 

phonons (for 2D electrons, it will be confinement 

phonons). Therefore, all dimensionless parameters in the 

system (13) are written through the inherent parameters 

for the optical phonon scattering (see Appendix). We 

describe other possible electron scattering (acoustic 

phonons, roughness, dislocations) that can be important 

in the low-field range, introducing the single elastic and 

isotropic scattering mechanism with an effective 

momentum relaxation time τp
 
. The latter value 

corresponds to the typical transport time of the low-field 

mobility in these heterostructures [23]. The explicit 

forms of the functions EPNQ ,,  are given in Appendix. 

Thus, four non-linear equations (10) and (13) 

allow us to completely solve the steady-state problem 

of RST. In particular, at the given electron 

concentration D
en2 , we can find the drift velocity, 

electron temperature, position of the Fermi level and 

corresponding value of applied electric field. Having 

these characteristics, we can reproduce the electrostatic 

potential profile (Eqs. (8) and (9)) and concentration 

profile (Eq. (5)) in the barrier layer. 

Finally, we need to shortly discuss electron 

transport in impurity SWs. As mentioned above, 

electrons inside SWs have low mobilities due to the 

strong scattering by impurities, dislocations and optical 

phonons at high temperatures. The typical values of 

electron mobilities in SW SW  are the order of few 

hundreds cm
2
/V∙s [19, 23]. It allows us to use Ohm’s 

law for the current flowing through SWs. The total 

current is a sum of currents flowing in QW and SWs:  

   
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=

3

2
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z

D
e

d
D
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where the factor 2 takes into account left and right 

symmetric SWs, and dznn D
e

dz

D
e

33 = 


 is the total two-

dimensional electron concentration in SW. Accordingly, 

the charge conservation law looks as 
D

ei
z

D
e nNn 23 2=2  . 

4. Results and discussion of steady-state problem  

Now, let us apply the model of RST and the procedure 

of calculations described in Sections 2 and 3 to 

heterostructures AlxGa1–xAs/GaAs/AlxGa1–xAs with 

parameters characteristic to those of the experimental 

samples studied in the ref. [23]. In calculations, we will 

use the following approximation for barrier height Vb = 

1.155x + 0.37x
2
 (in eV) and the effective mass 

0
* )0.083(0.063= mxmb   (m0 is the free electron mass) 

[29]. At the beginning, it is useful to estimate the range 

of values of d and x, where the single energy level model 

for electrons in QW can be applied.  

Two curves in Fig. 1 that are calculated for 

unperturbed conduction band structure under the 

condition (3(a)) bound four regions of parameters x and d, 

where four different cases are realized. The region I 

corresponds to the frameworks of the presented model – 

there is the only one discrete level Γ1 in QW. Other 

regions correspond to the parameters of the 

heterostructure, when several energy levels corresponding 

to the minima of Γ1 and satellite L-valleys can exist in 

QW. For example, two discrete levels of Γ1 and L1 (region 

II), two discrete levels of Γ1 and Γ2 (region III) and three 

discrete levels of Γ1, Γ2 and L1 (region IV) are in QW. 

Below, calculations are presented for the following 

parameters: x = 0.2 and d = 12 nm at which the role of the 

upper levels of size quantization can be neglected. 

 
Fig. 1. The QW width vs alloy composition. Curve 1 found from 

the equation 2*22 /2=)( dmxVb   (condition when the second 

level, Γ2, of Γ valley coincides with hight of barrier). Curve 2 

found from the equation 2*22 /2=)( dmxV LLb    (condition 

when the first level L1 of L valley coincides with the barrier hight), 

where 0
* 0.85= mmL  and ΔΓL = 0.29 eV are the effective mass of 

density of states for L valley and energy separation between Γ and 

L valleys for GaAs (see ref. [29]), respectively. 

Figs 2 and 3 provide the results of calculation of 

the field dependences of transport characteristics and 

spatial distributions of the electrostatic potential energy 

and electron concentration.  

As seen, the current-voltage characteristic of the 

heterostructure Jtot (F) roughly consists of several 

intervals with distinct behavior. The linear behavior 

(Ohm’s law) is observed in the range of weak applied 

fields of <0.1 kV/cm. In this case, the values of D
en2  and 

eT  are close to its equilibrium values. Note, at the 

equilibrium conditions, i
D

e Nn 1.85=2 , i.e. 

approximately 92% of all electrons are transferred from 

both SWs to QW. Within the range of applied fields 0.1 

to 1 kV/cm, both Jtot (F) and vd (F) have a sublinear 

behavior, which can be explained by activation of the 

electron-optical-phonon scattering mechanism. 

However, in this range the effect of RST is still 

inconspicuous, the electron concentration in QW is 

decreased only by ≈8%. Starting from the field of 

1 kV/cm, the effect of RST begins to develop, which 

results in quasi-saturated behavior of the current-voltage 

characteristic Jtot (F). At the same time, the current-

voltage characteristics that neglects the RST effect 

shows a superlinear growth. Within the range 1 to 

2 kV/cm, electrons in QW gain significant heating, 

electron temperature is increased from 150 up to 350 K, 

as a result the electron concentration in QW decreases 

from 1.7 down to 1.3Ni (25-% decrease). At fields above 

the threshold field, F ≈ 2 kV/cm, the well-developed 

effect of RST leads to the dropping current-voltage 

characteristic. 

The similar value of threshold field was reported by 

Hess and co-workers in ref.[20, 21] where the electron 

transport in the AlGaAs/GaAs/AlGaAs structure was 

studied by both numerical and analytical methods. In 

contrast of the presented paper, those investigations 

relate to the wide heterostructures (dGaAs ≈ 40 nm), for 

which the electron transport inside GaAs layer was 

treated as the three-dimensional one. 

Theoretical predictions of the emergence of 

current-voltage characteristics with a negative 

differential resistance (NDR) are the main results of the 

study of RST effect in heterostructures. In principle, 

physics of appearance of NDR under RST and Gunn 

effects are similar. In the Gunn effect, electrons transfer 

from one valley of high mobility to another of low 

mobility in momentum space. The most important 

distinction is the fact that RST-effect device can be 

controlled to a greater degree than with a device based 

on the Gunn effect. The Gunn effect has the intervalley 

deformation potential as a driven parameter, which is a 

material property and cannot be changed. In the case of 

the RST-effect device, the driven parameters are the 

mobility of the AsGaAl x1x   layer and height of barriers, 

which can be controlled by adjusting the doping of the 

layers and chemical composition x. 
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Fig. 2. Main panel: solid and dashed lines are the current-voltage characteristics Jtot (F) and JQW (F), respectively. Dash-dotted 

line is the current JQW calculated neglecting the RST effect for the concentration D
en2 = 1.85Ni . Panel (a) shows the field 

dependences of the electron temperature Te (F) and the drift velocity Vd (F). Panel (b) shows the field dependences )(2 Fn D
e  and 

Fermi level EF (F). Parameters of the heterostructure are following: impurity concentration Ni = 211cm105  , position di = 

24 nm, mobility in SW μSW = 500 cm2/V∙s and ambient temperature T = 77 K. Optical phonon energy, 0 = 36 meV and 

characteristic velocity, V0 = 4.4∙107 cm/s. Ohmic dependence shown in panel (a) corresponds to the mobility ≈3∙104 cm2/V∙s 

(momentum relaxation time τp = 1.5 ps). 

 

 

 

 

Fig. 3. Potential energy profiles )(ze  (panel a) and electron concentration profile )(3 zn D
e  (panel b). Black and grey lines 

correspond to the F = 1 kV/cm and 2 kV/cm, respectively (these fields are marked by points in the characteristics Jtot (F) in 

Fig. 2. Dashed and dash-dotted lines depict the positions of the Fermi level and first level of size quantization, respectively. 
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Fig. 4. Dependences of Jtot (F) (panel a) and )(2 Fn D
e  (panel b). Black and grey lines correspond to di = 24 nm and 12 nm, 

respectively, T = 77 K. Dash-dotted lines are the currents JQW without RST. 

 
 

Fig. 5. The same as in Fig. 4 for T = 300 K. 

 

The profiles of potential energy and electron 

concentration in the barriers are illustrated in Figs. 3a 

and 3b, respectively, for two characteristic fields 

F = 1 kV/cm and 2 kV/cm. One of them is the field of 

the onset of RST, and the second one is the threshold 

field, respectively. As seen, the position of the 

quantization level inside QW weakly depends on the 

amplitudes of the applied field. The values of E1 are 

practically the same for both fields and approximately 

equal to –0.17 eV ( 04.75   ). However, the position of 

Fermi levels is appreciably changed with F. For 

example, at F = 1 kV/cm, the electron gas is 

degenerated, the Fermi level is equal to –0.14 eV 

( 03.89   ) and lies above the quantization level. At 

F = 2 kV/cm, EF ≈ E1, and the electron gas has 

intermediate degeneracy. 

In the barrier, the positive impurity charge and 

negative electron charge form the macroscopic electrostatic 

wells with an asymmetric profile. The bottoms of SWs 

correspond to the position of δ-layer. With an increase of 

the applied field and, consequently, with increasing the 

electron population inside the barrier regions, the bottoms 

of SWs are lifted up, and SWs become shallower. In the 

limiting case, when all electrons from QW transfer to the 

barriers, the macroscopic electrostatic potential given by 

Poisson equation (4) is equal to zero, and the resulting 
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profile of the heterostructure will be rectangular. In the 

opposite limiting case, when all electrons transfer from the 

barriers to QW, the resulting electrostatic profile in the 

barrier region will be like to the double charge layer. Within 

the region iD<<1/2  , the potential energy has a linear 

spatial dependence    2= 2D
e  and in the region 

iD> , the potential energy is constant, 

i
D

ei D 2==)( 2 , and electron confinement 

disappears. 

As shown in Fig. 3b, the profiles of electron 

concentration also have an asymmetric form in 

compliance with the potential profile of SWs. The 

maximum of electron concentration is reached at the 

z = di, and electrons are more strongly localized in the 

direction of QW than in the direction of a depth of the 

barrier. So, at z = 20 nm (at –5 nm away from di) the 

electron concentration is decreased almost by one order. 

The same reduction occurs at z > 120 nm (+100 nm 

away from di). 

For the obtained electrostatic profiles in the barrier, 

it is still necessary to check the possibility of electron 

quantization. The estimations can be easy carried out by 

modeling triangular well with the potential profile: 

zeFzV z=)(  at idz >  and =V  for idz <  (shown in 

Fig. 3a with the dots). For the parameters of Al0.2Ga0.8As, 

the values of energy levels En,b are given by the simple 

formula 2/35
, 101.68= znbn FpE   (see, for example, the 

ref. [30]), where pn is zeros of the Airy functions. Here, 

energies are given in units of eV and Fz – in V/cm. For the 

potential well depicted by the black dots, Fz = 10
4
 V/cm 

(lateral field F = 1 kV/cm) as a result the first three levels 

with respect to the bottom of the well are equal to 0.5, 

0.88, 1.2 in the units of 0 . For the potential well 

depicted by the grey dots, Fz = 2∙10
4
 V/cm (lateral field 

F = 2 kV/cm), as a result, the first three levels are equal to 

0.8, 1.4, 1.2 in the same units. As seen, for both cases the 

inter-level distances are of the order of 05.0   

(≈0.02 eV), which is comparable with the values of the 

electron temperatures. Taking into account that the inter-

level distance for the original potential wells will be even 

less, the quantization effect for electrons in electrostatic 

SWs can be neglected. Thus, the presented model of 

electron transport in the heterostructure with δ-doped 

barriers is applicable. 

Let us briefly analyze the effect of RST at other 

parameters. Figs. 4 and 5 present the comparison of 

current-voltage characteristics and field dependences of 

electron population inside QW for two different 

positions of the δ-doped layer di = 12 nm and 24 nm, as 

well as two different temperatures T = 77 K and 300 K.  

As seen, the population of QW is increased with 

decreasing the distance between QW and δ-layer. Under 

the equilibrium conditions, in the case of heterostructure 

with di = 12 nm (grey curve in Fig. 4b), almost 100% of 

electrons transfer from the barriers to QW. Note that in 

the range of sub-threshold fields, 0 to 2 kV/cm, QW in the 

heterostructure with smaller di has a greater population 

(grey curve lies above black curve). However, at fields 

above the threshold, QW in the heterostructure with lower 

di is depopulated more rapidly. It reflects in behavior of 

the current-voltage characteristics: currents obtained for 

the heterostructure with di = 12 nm exceed those 

obtained for the heterostructure with di = 24 nm. The 

threshold fields for both heterostructures are practically 

the same (2 kV/cm). At the fields above threshold, the 

current is more sharply decreased for di = 12 nm than for 

di = 24 nm.  

At room temperature (see Fig. 5), general behavior 

of the dependences Jtot (F) and  Fn D
e
2  are modified as 

compared with the case of nitrogen temperature. In 

particular, the high-temperature current-voltage 

characteristic has a wider interval of the ohmic behavior 

0 to 1.5 kV/cm, and the threshold field is increased up to 

the value 2.3 kV/cm.  

Under equilibrium conditions, the same structure at 

T = 300 K and 77 K has different populations of QW, 

and they are equal to i
D

e Nn 1.4=2  and 1.84∙Ni, 

respectively (black curves in Figs. 5b and 4b). 

Moreover, within the range of applied fields 0 to 

2 kV/cm, electron redistribution between QW and SWs 

is less at the ambient temperature T = 300 K than at 

77 K. For example, at T = 77 K, D
en2  varies from 1.85 to 

1.33∙Ni, which is 25% from the initial value, and at T = 

300 K, D
en2  varies from 1.4 to 1.09∙Ni, which is only 

18% from the initial value. 

It can be explained by the two following reasons. 

First one is associated with different temperature 

dependences of the density of states for three-

dimensional and two-dimensional electrons. For 3D 

electrons, the density of states is proportional to 3/2
eT  

 
 

Fig. 6. Dependences of Vd (F) (panel a) and Te (F) (panel b) 

for the 2D electron gas inside QW. Black and grey curves 

correspond to the temperatures 77 and 300  K, 

respectively. The calculated values of low-field mobility 

are 3∙104 and 8∙103 cm2/V∙s at T = 77 and 300  K, 

respectively. Other parameters of the heterostructure are 

the same as in Fig. 2. 



 

Semiconductor Physics, Quantum Electronics & Optoelectronics, 2015. V. 18, N 1. P. 1-11. 

doi: 10.15407/ spqeo18.01.001 

 

 

© 2015, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 

 

9 

and increases with temperature more rapidly than for 2D 

electrons, which is proportional to Te. The second reason 

is decreasing the electron mobility in QW due to 

activation of electron scattering by polar optical 

phonons. It proves the field dependences of Te (F) and 

Vd (F) that are obtained for the cases of room and 

nitrogen temperatures (see Fig. 6). 

5. Summary 

In the conclusion, it has been developed the theory of the 

real-space transfer effect in heterostructures 

AlxGa1–xAs/GaAs/AlxGa1–xAs with narrow quantum 

wells (close to 10 nm) and δ-doped barriers. Under the 

assumption of the fast carrier exchange between well 

and barrier layers, the field dependences of electron 

population in the quantum well, the Fermi level and 

current-voltage characteristics were obtained. It has been 

ascertained that, for the heterostructure with x = 2 and 

doping of 211cm105  , the RST effect is well pronounced 

at the applied electric fields larger than 1 kV/cm. Within 

the interval of fields 1 to 2 kV/cm, essential 

depopulation of QW with a variation of the Fermi level 

occurs, which leads to saturation of current-voltage 

characteristics. These results qualitatively explain the 

measured non-linear current-voltage characteristics of 

the heterostructures experimentally studied in the paper 

[23]. It should be noted that the RST effect can be also 

detected in the electro-optical experiments. For example, 

variation of the Fermi level by applied electric field can 

be directly observed in the optical absorption edge 

measurements through detecting the Burstein-Moss 

shift [31]. 

Under the fields higher than 2 kV/cm, the well-

developed effect of RST can lead to the emergence of 

negative differential resistance. Moreover, NDR effect 

can exist at both nitrogen and room temperatures. The 

obtained results allow to suggest that heterostructure 

AlxGa1–xAs/GaAs/AlxGa1–xAs with δ-doped barriers can 

be used for desirable current control in different devices. 
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Appendix: Summary of balance integrals 

In the case of the degenerate 2DEG, the scattering 

integrals are the bilinear functional in respect to the 

distribution function:  

 
   
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 (15) 

Here, p


 is the longitudinal electron momentum. 

For the intravalley electron scattering process by the 

confinement optical phonon, the scattering probability is 

given by [30]  
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 (16) 

where superscripts “+” and “–” correspond to the optical 

phonon emission an absorption processes, respectively, 

ω0 is the optical phonon frequency,   1
00 1)(exp=


N  

expresses the equilibrium phonon distribution function 

with TkB00 =    (effects of the phonon heating are 

neglected); κ∞ and κ0 are the high-frequency and low-

frequency permittivities, and  4)(8= 2  kkGk  is the 

form-factor with an odd k, which numerates the modes 

of confinement optical phonons. Note, probability (16) is 

written for rectangular infinitely-deep quantum well and 

takes into account only the lowest subband of size 

quantization. 

Following the procedure described in Section (3) 

and using explicit expression (16), the momentum and 

energy balance integrals take the forms:  

   





































































)(cos

),(1,)(cos)(cos11

)(cos),(

1

)1,()(cos1)(

4
=

0

00

0
2

1=0

3

0

kk

kk

k

k

op

P

ba

xfxfxx
dddx

x

rxfN

x

rxfN
ddx

G
P

Q , (17) 





























































)(cos

),()1,(

2

1

),()1,(1)(

2
=

0

22

00

0
2

1=0

4

0

kk

kk
k

k

op

E

ba

xfxf
dddx

ba

xfNxfN
ddx

G
P

Q . (18) 



 

Semiconductor Physics, Quantum Electronics & Optoelectronics, 2015. V. 18, N 1. P. 1-11. 

doi: 10.15407/ spqeo18.01.001 

 

 

© 2015, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 

 

10 

In the latter,    1

0
2

0 1/1/2=


  de   

defines the characteristic electron-optical phonon 

scattering time, 0
*

0 2= mP  is the characteristic 

electron momentum corresponding to the optical phonon 

energy 0 . The introduced variables ka , kb  and 
kr  

are the functions of dimensionless energies, 

0=  x ,  20= dPkxk   and they are determined as 

follows: kk xxa 12= , xxbk 1)(2=   and 

  2211= kkkk baxr  . The distribution function 

  ed xx

xf





)(cos2exp1

1
=),(

F

 (19) 

is rewritten in the dimensionless variables ),( x , where 

  is the angle between the electron momentum and the 

drift velocity. Other dimensionless parameters are: 

0
*= PVm dd , 0B=  ee Tk ,   01FF =  EE . 

In the case of non-degenerate electron gas, the 

balance integrals (17), (18) are essentially simplified:  
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where I0,1 denote the Bessel functions of the third kind. 

In the simple case of the elastic and isotropic 

electron scattering, the balance integrals are reduced to 

the simple expressions: 

pd
D

e
el
P vmnQ  

*22 2)(2   and 0=el
EQ . The 

latter reflects the fact that electrons cannot dissipate their 

energy during the pure elastic scattering. 

The momentum and energy balance integrals in 

dimensionless form introduced in the system (13) are:  
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, 

where the dimensionless electric field is defined as 

00= PeFF   and relaxation time 0=  pp . 

Finally, the balance integral  F,,  edNQ  is nothing 

but definition of the two-dimensional electron 

concentration, and for the distribution function (19) it 

has the form:  
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