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An exact expression for the diffusion time which depends on the interac-
tion rates for particles of not only different, but also of the same species,
has been derived from the system of kinetic equations. The result is valid
for particles with arbitrary statistics and energy-momentum relations. The
derived general relations are valid for investigating diffusion in liquid and
solid 3He-4He mixtures. The contribution of interaction between quasipar-
ticles of the same type to the diffusion coefficient and effective thermal
conductivity of superfluid solutions is analyzed. The calculated values are
compared with experimental data. The calculated diffusion coefficient of
3He-4He solid solutions differs from the previous theoretical results. A com-
parison of the obtained diffusion coefficient with experimental data makes
it possible to determine the numerical value of the energy band width for
impurity quasiparticles.
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1. Introduction

Investigation of diffusion processes in condensed media, in which a quasiparticle
description is valid, is one of the most important problems of modern classical
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and quantum kinetics. The present paper deals with the diffusion of impurity
excitations in weakly-concentrated solutions of 3He in superfluid and solid 4He.
The general result obtained for a two-component gaseous system with arbitrary
statistics and the dispersion law makes it possible to describe the quasiparticle
systems in some limiting cases of interest.

For every classical and quantum two-component gaseous system known to us,
the diffusion coefficients can be written in the form

D = u2DτD, (1)

where uD is a typical velocity, whose analytical expression is determined by the
dispersion law and statistics of the particles, and τD is a typical diffusion time.
The solution of a set of two linearized kinetic equations for a mixture of α-type
and β-type gases with any dispersion law and chemical potential takes the form
(see [1])

τD = −〈ϕD | (Ŝ + Î)−1 | ϕD〉, (2)

where Ŝ and Î are the matrices in the 2D space of component momenta. The
matrix

Ŝ =

(

Jαα 0
0 Jββ

)

(3)

includes the operators of collisions between particles of the same type, and the
matrix

Î =

(

Jαβ Jαβ
Jβα Jβα

)

(4)

consists of the operators of collisions between particles of different types. The col-
lision operators Jkl(k, l = α, β) are linearized integrals of the collision of k−type
particles with l−type particles and in a usual way can be expressed by the tran-
sition probability density function.

2. Diffusion time

The time τD can be expressed as a scalar product determined in the following
way:

〈ψ | χ〉 =
∑

k=α,β

1〈ψk | χk〉1 = −
∑

k=α,β

∫

ψ∗

kχkf
′

0kdΓk. (5)

Here and below, the subscript 1 on a bra- or a ket-vector denotes a 1D vector,
and f ′

0k is a derivative of the local equilibrium distribution function with respect
to energy. The vector |ϕD〉 that determines τD is normalized with respect to the
scalar product (5) as

| ϕD〉 = (ρραρβ)
−

1
2

∣

∣

∣

∣

ρβpαz
−ραpβz

〉

, (6)
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where pkz is the z-th component of the momentum (k = α, β), and

ρk = 1〈pkz|pkz〉1 (7)

is the normal density of the k-th component, and ρ = ρα + ρβ is the total density
of the mixture.

To obtain an exact expression for the matrix elements (2), one should introduce
a complete set of orthonormal two-component vectors |ϕn〉 (n = 1, 2, ..). The first
vector of this set corresponds to the total momentum of the two-component system
of quasiparticles,

| ϕ1〉 = ρ−1

∣

∣

∣

∣

pαz
pβz

〉

, (8)

and the second one should be taken as

| ϕ2〉 =| ϕD〉. (9)

The remaining vectors can be constructed by using the standard procedure (see,
e.g., [2]) and the definition of the scalar product (5). By constructing a complete
set of vectors in this way, the expression for τD

τD = −
{

[Ŝ + Î]
−1
}

22
(10)

can be rewritten as

τD = −
{

I22 −

∞
∑

n,n′=3

I2n[(Ĩ + S̃)
−1
]nn′In′2

}−1

. (11)

Here the square matrices Ĩ and S̃ include the matrix elements

(Ĩ)nn′ = Inn′, (S̃)nn′ = Snn′, (12)

where
Inn′ = 〈ϕn|Î|ϕ

′

n〉, Snn′ = 〈ϕn|Ŝ|ϕ
′

n〉. (13)

The matrices Ĩ and S̃ are infinite and nondiagonal. Therefore, the exact solution
(11) does not allow us to obtain an explicit analytical expression for τD. However,
the solution (11) makes it possible to consider various limiting cases, to find min-
imal and maximal values of τD, to obtain correct interpolation formulae and to
carry out computer calculations for various physical systems.

So, in the case of fast equilibrium established between particles of the same
type, i.e. when the inequality

Snn′≫Inn′ (14)

is valid, one can obtain from equation (11)

τD = τDmin = −
1

I22
= (τ

(0)
αβ

−1
+ τ

(0)
βα

−1
)
−1

, (15)
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where
τ
(0)
kl

−1
= −〈Jkl〉k; k, l = α, β; k 6=l. (16)

Here and below, the normalized average of the arbitrary operator L̂ with respect
to the quasiparticle momentum is denoted as

〈L̂〉k = ρ−1
k 1〈pkz|L̂|pkz〉1. (17)

According to the momentum conservation law and definition (16),

τ
(0)
αβ

−1
=
ρβ
ρα
τ
(0)
βα

−1
. (18)

Using the fact that the operators Ĩ and S̃ are Hermitian and defined as negative,
it can be shown that

τD>τDmin . (19)

In the opposite limiting case of the slow establishing of equilibrium between iden-
tical particles (Sββ′ ≪ Iββ′), τD reaches its maximum value

τDmax = 〈ϕ2|Î
−1|ϕ2〉. (20)

When the density of the α−component is relatively low (ρα ≪ ρβ) and the
relaxation time in the α−component is great (Jαα→0), from (11) we obtain

τD = τ
(∞)
αβ , (21)

where
τ
(∞)
αβ = −〈J−1

αβ 〉α. (22)

It should be noted that (16) is the average of the rate, but (22) is the average of
the time, and one can prove that for arbitrary momentum dependence of Jαβ, the
time (22) is greater than the time defined by (16).

For a definite physical system, the rate τ
(0)
αβ

−1
can be easily calculated, but to

calculate τ
(∞)
αβ

−1
(22) one must find the inverse operator to the integral operator

Jαβ, which can be done only by using some approximations. The exact expression
(11) and the limiting formulae (15), (20) and (22) make it possible to propose the
correct relaxation-time approximation for a two-component system:

Ŝ =









−t−1
αα + t−1

αα|pαz〉1
τ
(0)
αα

ρα 1〈pαz|t
−1
αα 0

0 −t−1
ββ + t−1

ββ |pβz〉1
τ
(0)
ββ

ρβ
1〈pβz|t

−1
ββ









,

Î =







−t−1
αβ t−1

αβ |pαz〉1ρ
−1
α τ

(0)
αβ 1〈pβz|t

−1
βα

t−1
βα|pβz〉1ρ

−1
β τ

(0)
βα 1〈pαz|t

−1
αβ −t−1

βα






. (23)
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This approximation satisfies the conservation of the z-th component of the total
momentum of the system:

Î |ϕ1〉 = 0 . (24)

Here

t−1
kl (pk) =

νkl(pk)

〈νkl(pk)〉k
τ
(0)
kl

−1
(k 6=l), (25)

and νkl is a transport scattering rate that is determined in a usual way from
collision integrals.

The model (23) can be used for the calculation of τD to give

τD = τDmin +
ρβ
ρ
(ταβ − τ

(0)
αβ ) +

ρα
ρ
(τβα − τ

(0)
βα ), (26)

where
τkl = 〈Rk〉+ 〈Rkt

−1
kk 〉

2
k〈Rkt

−1
kk t

−1
kl 〉

−1
k , (27)

Rk = (t−1
kk + t−1

kl )
−1
. (28)

The time τkl in (26) depends on the relaxation rates t−1
kk of the k-particles. Note,

the expression (26) obtained in the limiting cases gives not only the formulae (16),
(20) and (22) of this paper, but also the results of other theoretical investigations
[3] and, in particular, the well-known Callaway formula [4].

3. Thermal conductivity of quasiparticle systems of dilute so-
lutions of 3 He in superfluid 4 He

Because of the nature of thermal excitations, diffusion in such mixtures defines
thermal conductivity of the matter that includes these thermal excitations [5].
Consider a superfluid mixture of helium isotopes. The kinetic properties of the
mixtures are determined by a set of quasiparticles: phonons and rotons (thermal
excitations of He II) and impuritons (3He quasiparticles). It is useful to separate
three temperature regions which differ one from another by the types of physical
processes which govern the thermal conductivity of the mixture.

At low temperatures (T < 0.6 K), when the roton contribution can be ne-
glected, the thermal conductivity of the mixtures is determined by diffusion in the
phonon-impuriton system:

κeff = Diph

(

Sph
ρph + ρi
ρph

)2 1

n3
+ κ3 . (29)

Here

Diph =
4

9
1〈εi|1〉

2
1

1〈1|1〉1

ρph
ρph + ρi

1

ρi
τ
(iph)
D (30)

is a coefficient of diffusion of impuritons in a phonon gas, Sph is the entropy of
the phonon gas, n3 is the number density of impuritons, κ3 is a partial coefficient
of thermal conductivity, and εi = p2i /2mi is the kinetic energy of impuritons. The
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time τ
(iph)
D is defined by (26) where the subscripts α, β refer to ph, i, respectively.

For nondegenerate mixtures one has

2

3
1〈εi|1〉1
1〈1|1〉1

= T. (31)

Figure 1 shows the calculated (from equation (29)) and measured in ([6]) values
of the effective coefficient of thermal conductivity for a mixture with the concen-
tration x = 1.39 · 10−4. The contribution of κ3 is negligible. At this concentration
τ
(iph)
D turns out to be equal to τ

(iph)
Dmin, which corresponds to fast relaxation in the

phonon system of this mixture.
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Figure 1. Temperature dependence of the effective thermal conductivity of a
mixture with the concentration x = 1.39 · 10−4, showing the contributions to
the effective thermal conductivity from the diffusion in the impuriton-phonon
(curve 1), roton-phonon (curve 2) and impuriton-roton (curve 3) systems. Curve
4 corresponds to the effective thermal conductivity calculated by taking into
account contributions from all the quasiparticles. The experimental data obtained
in [6] are represented by �.

Figure 2 gives the observed ([6] and [7]) and calculated values of the effective
coefficient of the thermal conductivity of a mixture with different concentrations.
The figure shows that in the temperature region considered, with the increase in
concentration the coefficient κeff with τ

(iph)
D = τ

(iph)
Dmin (dashed lines) differs from

the values obtained from formula (26), which takes into account the finite values
of the phonon-phonon relaxation times. The values calculated by formula (26)
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are presented by solid curves and are in better agreement with the experimental
data. The results for the considered temperature region correspond to the calcu-
lations of [3, 8, 9]. In the region of intermediate temperature (0.7 K < T < 1 K),
when the concentration of impuritons is small, the effective thermal conductivity
is determined mainly by diffusion in the gas of thermal excitations.
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Figure 2. Temperature dependence of the effective thermal conductivity of the
mixtures with different concentrations: x = 1.39 · 10−4 (curve 1), x = 1.32 · 10−3

(curve 2) and x = 1.36 ·10−2 (curve 3). The results of the calculations taking into
account the contributions from all the types of quasiparticles are depicted by solid
and dashed curves. The latter correspond to calculations with the assumption of
instantaneous relaxation in the mixture components. The experimental results
obtained in [6] and [7] are represented by � and ♦.

Diffusion processes in a phonon-roton gas were first considered in [10]. Later,
in [1], these processes were shown to be the reason for a thermal transfer caused
by a difference of dispersion laws of phonons and rotons. The calculation from
relation (26) is analogous to that made in [1] and gives

κeff≈κ
(rph)
D = T−1 ρphρr

ρph + ρr

{SphT

ρph
−
SrT

ρr

}2

τ
(rph)
D . (32)

Here Sr and ρr are the entropy and normal density of rotons, and τ
(rph)
D is given

by equation (26) in which the subscripts α, β should be substituted with r, ph,
respectively. Expression (32) gives the result of [1] when the times tphph and trr are
equal to zero. Curve 3 in figure 1 presents the calculations from equation (32) and

69



I.N.Adamenko et al.

shows the existence of a wide enough temperature range, such that κD should be
taken into account.

At high enough temperatures (T > 1 K) the kinetic properties of superfluid
mixtures are governed by rotons and impuritons. According to [11], in this tem-
perature region, the coefficient of effective thermal conductivity can be written
as

κeff = Dir

(

Sr
ρr + ρi
ρr

)2

n−1
3 + κ3 + κr , (33)

where κr is thermal conductivity of rotons.
Using the relations (1) and (26), the diffusion coefficient of impuritons in a

roton gas is given as

Dir =
ρr

ρr + ρi

T

mi

τ
(ir)
D . (34)

Here τ
(ir)
D is given by relation (26), where the subscripts α, β should be substituted

by r, i, respectively. The relation (34) gives the result of [1] if the times tii and trr
are equal to zero. The rate of the roton-impuriton interaction can be written in
the form [12]

t−1
ir (pi) = A2nr

(
∫

∞

0

exp
{

−
µv2r
2T

}

dvr

)

−1

×

∫

∞

0

exp
{

−
µv2r
2T

}

dvr
1

2

∫ 1

−1

sin2θ
(µ

2
(vr − vi)

2 +
p2i
2mi

sin2θ
)

1
2

d(cos θ) (35)

where A is a scattering amplitude.
The limiting relations for the relaxation rates refer to the absence of equilibrium

in the impuritons (tii≫tir) and fast relaxation in the roton gas (trr≪tri). Under
these conditions the general expression (26) gives

τ
(ir)
D = τDmax

(ir) = 〈tir〉i . (36)

The results calculated from equation (34) for the effective thermal conductivity
for a mixture with x = 1 · 10−4 are presented in figure 1 (curve 1). Here the
contributions of the third and fourth terms in the right-hand side of equation (33)
can be neglected. The account of the finite values of tii and trr makes the calculated
values greater to the order of 10%, improving the agreement between theory and
experiment. In figure 2, the dashed curves present calculations with τD = τDmin,
and the solid curves correspond to τD calculated from equation (26).

4. Diffusion in solid 3 He- 4 He mixtures

The methods used in the previous section allow us to calculate the contribution
of the phonon-impuriton interaction to spin diffusion of impurities in solid 3He-4He
mixtures as

D
(s)
iph =

2

3
1〈εi|1〉1
1〈1|1〉1

1

mi

τ
(0)
phi . (37)
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Figure 3. Dependence of the spin diffusion coefficient of solid 3He-4He mixtures
on the reciprocal temperature for the concentration x = 6 · 10−5. � stands for
the experimental data of [20–22], and the curve corresponds to the calculations
by equations (39–42).

Calculating the scalar products in (37), one should take integrals in the limit of
the impurity energy band ∆ ≪ T , thus giving

D
(s)
iph =

2∆

5mi
τ
(0)
iph . (38)

This result differs from the diffusion coefficient in the phonon-impuriton system
of a liquid 3He-4He mixture, especially by its temperature dependence. To examine
this, we rewrite equation (38) by using the definition (18):

D
(s)
iph =

4

25

∆2

T

ni

ρph
τ
(0)
phi . (39)

The time τ
(0)
phi has a typical Rayleigh scattering temperature dependence T−4, and

ρph is proportional to T
4, so that Ds

iph ∼ T−9. Such a dependence was first obtained
in [13] from phenomenological arguments. According to equation (38), this depen-

dence is completely determined by τ
(0)
iph, and from equation (39) it follows that

eight powers of temperature deal with phonons (normal density and scattering
rate), and one power deals with the normal density of impuritons. The expressions
(38) and (39) differ from the results of [13, 14-18]. Relation (39) includes param-
eters which can be directly determined from independent experiments on thermal
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conductivity in solid 3He-4He mixtures [19]. The numerical values of ∆ can be
obtained from the experimental data [20–22] for a mixture with x = 6×10−5. The
expression for spin diffusion can be written in the form

Ds = (D
(s)
iph

−1
+D−1

ii )
−1

, (40)

where Dii is independent of the temperature contribution of the impuriton- impu-
riton interaction to spin diffusion, which according to [23] is

Dii = 2.67 · 10−7 cm2/s. (41)

Figure 3 presents the experimental [18] and calculated (by formula (41)) values of
the diffusion coefficients. An agreement between the calculated and observed data
is achieved with

∆ = 3.5 · 10−4 K (42)

The obtained value (42) refines the results of [17, 18] which give the order of
magnitude only.
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Дифузія у двокомпонентних системах квазічастинок

рідких та твердих сумішей ізотопів гелію
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Сеул 136–701, Корея

Отримано 5 грудня 1997 р.

Виходячи з системи кiнетичних рiвнянь для компонент сумiшi отри-

мано точний вираз для дифузiйного часу, що залежить вiд взаємодiї

частинок не тiльки рiзних, а й одного типу. Отриманий результ спра-

ведливий для частинок з довiльною дисперсiєю і статистикою. Одер-

жаний точний вираз використовується для дослiдження дифузiї у рiд-

ких та твердих квантових розчинах 3He-4He. Проаналiзовано вне-

сок взаємодiї мiж квазiчастинками однакових типiв у коефiцiєнт ди-

фузiї та теплопровiдностi надплинних розчинiв. Обчисленi результа-

ти порiвнюються з iснуючими експериментальними даними. Отри-

маний коефiцiєнт дифузiї для твердих квантових розчинiв 3He-4He

iстотно вiдрiзняється від попереднiх результатiв теорiї. Порiвняння

цього результату з експериментальними даними дозволило дiстати

числове значення для енергетичної зони квазiчастинок домiшки.

Ключові слова: дифузія, теплопровідність, гелій, квантова рідина,

квантове тверде тіло, надплинність, суміш 3He-4He, фонони,

ротони, домішки.

PACS: 51.20.+d, 67.80.Mg
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