
Condensed Matter Physics, 1998, Vol. 1, No. 4(16), p. 905–917

Green function approach to the theory
of superconductivity in the t − J model
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The theory of superconducting pairing due to the exchange and kinemati-
cal interactions in the t − J model in a paramagnetic state is developed.
The Dyson equation for the matrix Green functions in terms of the Hubbard
operators is obtained in the noncrossing approximation. The linearized self-
consistent system of Eliashberg equations is proposed to study the tem-
perature and doping dependence of the quasi-particle hole spectrum in
the normal state and to calculate the temperature of the superconducting
phase transition and the symmetry of the gap function.
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1. Introduction

In 1960 D.N. Zubarev [1] proposed a theory of superconductivity for an elect-
ron-phonon system based on the equation of motion method for two-time Green
functions [2]. The paper was published simultaneously with the famous papers by
G.M. Eliashberg [3] where the temperature diagram technique was used to obtain
the Gorkov type equations for an electron-phonon system. However, Zubarev’s
formulation did not draw proper attention of the following investigators, while the
Eliashberg theory was cited frequently in many papers and his formulation became
known as the Eliashberg (or Migdal-Eliashberg) theory of superconductivity for an
electron-phonon system. The real advantage of the Eliashberg formulation is that
it permits one to consider a strong coupling limit by using the skeleton diagram
technique. In the Zubarev formulation based on a successive differentiation of
the Green functions over the same time one cannot employ the skeleton diagram
technique. However, in the two-time differentiation method for the Green functions
this problem can be easily overcome and the Eliashberg type equations, as it has
been shown in [4], can be formulated in a very simple and transparent way for a
general model of an electron boson-field interaction.
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In the present paper the theory of superconductivity is formulated for the
t− J model by applying an equation of motion method for the Green functions in
terms of the Hubbard operators. It should be pointed out that superconducting
pairing due to the kinematical interaction in the Hubbard model in the limit of
strong electron correlations (U → ∞) was first obtained by Zaitsev and Ivanov [5].
However, they considered only the mean field approximation which results in the
s-wave pairing irrelevant for strongly correlated systems (for a discussion see [6]).
Later on the theory in the mean field approximation was considered for the t− J
model within the Green function approach in [6,7] where d-wave spin fluctuation
superconducting pairing was obtained due to exchange interaction J .

In the present formulation we have calculated a matrix self-energy operator in
the noncrossing approximation for kinematical and exchange interactions which
neglects vertex corrections, as in the Migdal-Eliashberg theory. The self-energy
operator allowing for the finite life-time effects for electrons plays an essential
role both in the renormalization of the quasiparticle spectrum and in supercon-
ducting pairing. It was clearly demonstrated in [8] where the t − J model in the
polaron representation was considered. A self-consistent numerical solution of the
Eliashberg equations has proved a strong renormalization of the quasiparticle hole
spectrum due to spin-fluctuations and d-wave pairing at a finite concentration of
doped holes. However, the two-sublattice representation used in [8] can be rigor-
ously proved only for a small doping. At a moderate doping one has to consider
the paramagnetic (spin-rotationally invariant) state in the t − J model. In that
case the Hubbard operator technique is useful. However, due to unconventional
commutation relations the Hubbard operators cannot be treated within the stan-
dard diagram technique (see, e.g., [9]). To overcome this problem one can employ
different types of the slave-boson (-fermion) technique to use the standard fermion-
boson diagram technique. However, due to crude treatment of constraints which
should be observed in the slave-field techniques the results of that calculation
appear to be quite unreliable.

The two-time Green function approach in terms of the Hubbard operators was
also used to consider superconducting pairing in the t−J model with an electron-
phonon interaction in [10] and to discuss the electron and hole spectra in the
normal state in [11]. A general discussion concerning the t−J model and its appli-
cations in the description of physical properties of the systems with strong electron
correlations, as copper-oxide superconductors, can be found, e.g., in [12–14].

The paper is organized as follows. In the next section the t−J model in terms
of the Hubbard operators is introduced. In section 3 the Dyson equation for the
matrix Green function is obtained by the projection technique in the equation of
motion method. In section 4 a self-consistent system of Eliashberg equations in the
noncrossing (self-consistent) approximation is formulated and the linearized gap
equation for the calculation of Tc is presented. Conclusions are given in section 5.
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2. The t − J model

The simplest model allowing for the electron correlations in copper oxides is
the one-band Hubbard model [15]:

H = −t
∑

ijσ

a+iσajσ + U
∑

i

ni↑ni↓, (2.1)

where t is an effective transfer integral and U is the Coulomb one-site energy. In
the strong coupling limit, U ≫ t, we can reduce the Hubbard model (2.1) (or a
more realistic for copper oxides p− d model [16]) to the t− J model [17]:

Ht−J = −
∑

i 6=j,σ

tij c̃
+
iσ c̃jσ + J

∑

〈ij〉

(SiSj −
1

4
ninj), (2.2)

where the first term describes electron hopping with the energy tij for the nearest
neighbours, tij = t, for the second neighbours, tij = t

′

, etc., on a two dimensional
square lattice. The electron operators c̃+iσ = c+iσ(1− ni−σ) act in the space without
double occupancy and ni = ni↑ + ni↓ is the number operator for electrons. The
second term describes the spin-1/2 Heisenberg antiferromagnet (AFM) with the
exchange energy J for the nearest neighbours which is equal to J = 4t2/U for
the Hubbard model (2.1) or can be considered as an independent parameter in
the case of the p − d model. In the model (2.2) two main features of a doped
hole motion in copper-oxides are properly taken into account: a constraint on no
double occupancy for the holes on lattice sites due to strong electron correlations
and an interaction of holes with AFM spin fluctuations which result in strong
renormalization of the quasiparticle spectrum (for a review, see [14]).

To take into account on a rigorous basis the exclusion of doubly occupied states
in electronic hopping, we employ the Hubbard operator (HO) technique. The HOs
are defined as

Xαβ
i = |i, α〉〈i, β| (2.3)

for the three possible states at the lattice site i

|i, α〉 = |i, 0〉, |i, σ〉, (2.4)

for an empty site and for a singly occupied site by an electron with spin σ/2
(σ = ±1). In the t − J model only singly occupied sites are retained and the
completeness relation for the HOs reads:

X00
i +

∑

σ

Xσσ
i = 1. (2.5)

The spin and density operators in equation (2.2) are expressed by HOs as

Sσ
i = Xσσ̄

i , Sz
i =

1

2

∑

σ

σXσσ
i , ni =

∑

σ

Xσσ
i , (2.6)
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where σ̄ = −σ. The HOs obey the following multiplication rules

Xαβ
i Xγδ

i = δβγX
αδ
i (2.7)

and commutation relations
[

Xαβ
i , Xγδ

j

]

±
= δij

(

δβγX
αδ
i ± δδαX

γβ
i

)

. (2.8)

In equation (2.8) the upper sign stands for the case when both HOs are Fermi-like
ones (as, e.g., X0σ

i ). The spin and density operators (2.6) are Bose-like and for
them the lower sign in equation (2.8) should be taken.

The Hamiltonian of the t− J model (2.2) in terms of HOs reads

Ht−J = −
∑

i 6=j,σ

tijX
σ0
i X0σ

j − µ
∑

iσ

Xσσ
i +

1

2

∑

i 6=j,σ

Jij

(

Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)

, (2.9)

where the exchange interaction is written in a more general form with the exchange
energy Jij for the lattice sites (i, j).

The unconventional commutation relations (2.8) hamper the treatment of the
model within the standard diagrammatic technique. To overcome this problem
we will use the equation of motion method for the two-time Green functions [2]
in terms of the HOs (2.3) which rigorously preserve the constraint of no-double
occupancy.

3. Dyson equation for the matrix Green function

To discuss superconducting pairing within the model (2.9) we consider the
matrix Green function (GF)

Ĝij,σ(t− t′) = 〈〈Ψiσ(t)|Ψ
+
jσ(t

′)〉〉 (3.1)

in terms of the Nambu operators:

Ψiσ =

(

X0σ
i

X σ̄0
i

)

, Ψ+
iσ =

(

Xσ0
i X0σ̄

i

)

. (3.2)

Here Zubarev’s notations for the anticommutator Green function (3.1) are used [2].
By differentiating the GF (3.1) over the time t we get the following equation

for the Fourier component:

ωĜijσ(ω) = δijQ̂σ + 〈〈Ẑiσ | Ψjσ〉〉ω, (3.3)

where Ẑiσ = [Ψiσ, H] and

Q̂σ =

(

Qσ 0
0 Qσ̄

)

, (3.4)

with the matrix elements Qσ = 〈X00
i +Xσσ

i 〉. Here and in what follows we consider
a spin-singlet state for which the correlation functions do not depend on the spin σ.
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In that case, by using equation (2.5) we get Qσ = Q = 1− n/2 where the average
number of electrons is given by the equation

n = 〈ni〉 =
∑

σ

〈Xσσ
i 〉 . (3.5)

Now, we project the many–particle GF in (3.3) on the one–hole one by intro-
ducing an irreducible (irr) part of the Ẑiσ operator

〈〈Ẑiσ | Ψ+
jσ〉〉 =

∑

l

Êilσ〈〈Ψlσ | Ψ+
jσ〉〉+ 〈〈Ẑ

(irr)
iσ | Ψ+

jσ〉〉 . (3.6)

The projection is defined by the condition

〈{Ẑ
(irr)
iσ ,Ψ+

jσ}〉 = 0, (3.7)

that results in the equation for the frequency matrix

Êijσ = 〈{[Ψiσ, H],Ψ+
jσ}〉 Q̂

−1
σ . (3.8)

Here {A,B} and [A,B] are the anticommutator and the commutator for the A,B
operators, respectively. To calculate the matrix (3.8) we use the equation of motion
for the HOs as, e.g.,

(

i
d

dt
+ µ

)

X0σ
i =

∑

l

tilBiσσ′X0σ′

l +
∑

l

Jil(Blσσ′ − δσσ′)X0σ′

i , (3.9)

where we introduced the operator

Biσσ′ = (X00
i +Xσσ

i )δσ′σ +X σ̄σ
i δσ′σ̄ . (3.10)

The Bose-like operator (3.10) describes electron scattering on spin and charge
fluctuations caused by the nonfermionic commutation relations for the HOs (the
first term in (3.9) – the so-called kinematical interaction) and by the exchange spin-
spin interaction (the second term in (3.9)). It can be demonstrated explicitly by
using the completeness relation (2.5) that results in the following representation:

X00
i +Xσσ

i +X σ̄σ
i = 1−

1

2

∑

σ

Xσσ
i +

1

2
(Xσσ

i −X σ̄σ̄
i ) +X σ̄σ

i

= 1−
1

2
ni + σSz

i + Sσ̄
i .

By performing commutations in (3.8), we get for the normal and the anomalous
parts of the frequency matrix:

E11
ijσ = δij

∑

l

{til〈X
σ0
i X0σ

l 〉/Qσ + Jil(Qσ − 1 + χcs
il /Qσ)}

−tij(Qσ + χcs
ij/Qσ)− Jij〈X

σ0
j X0σ

i 〉/Qσ, (3.11)

E12
ijσ = δij

∑

l

til〈X
0σ̄
i X0σ

l +X0σ̄
l X0σ

i 〉/Qσ

−Jij〈X
0σ̄
i X0σ

j +X0σ̄
j X0σ

i 〉/Qσ . (3.12)

909



N.M.Plakida

Here we introduce the charge- and spin-fluctuation correlation functions

χcs
ij =

1

4
〈δniδnj〉+ 〈SiSj〉, (3.13)

with δni = ni − 〈ni〉.
Now we introduce the zero–order GF in the generalized mean–field approxi-

mation by neglecting the finite lifetime effects described by the operator Ẑ
(irr)
iσ in

equation (3.6)
Ĝ0

ijσ(ω) = {ωτ̂0δij − Êijσ}
−1Q̂σ, (3.14)

where τ̂0 is the unity matrix. By writing the equation of motion for the irreducible
part of the GF in (3.6) with respect to the second time t′ for the right–hand side
operator Ψ+

jσ(t
′) and performing the same projection procedure as in (3.6), we get

〈〈Ẑ
(irr)
iσ | Ψ+

jσ〉〉ω =
∑

l

〈〈Ẑ
(irr)
iσ | (Z

(irr)
lσ )+〉〉ω Q̂−1

σ Ĝ0
ljσ(ω) . (3.15)

By using (3.3), (3.6) and (3.15), we can obtain the Dyson equation for the GF
(3.1) in the form:

Ĝijσ(ω) = Ĝ0
ijσ(ω) +

∑

kl

Ĝ0
ikσ(ω) Σ̂klσ(ω) Ĝljσ(ω), (3.16)

where the self–energy operator Σ̂klσ(ω) is defined by the equation

T̂ijσ(ω) = Σ̂ijσ(ω) +
∑

kl

Σ̂ikσ(ω) Ĝ
0
klσ(ω) T̂ljσ(ω) . (3.17)

Here the scattering matrix is given by the equation

T̂ijσ(ω) = Q̂σ

−1
〈〈Ẑ

(irr)
iσ | Ẑ

(irr)+

jσ 〉〉ω Q̂σ

−1
. (3.18)

From equation (3.17) it follows that the self-energy operator is given by the ir-
reducible part of the scattering matrix (3.18) which has no single zero-order GF
(3.14) lines:

Σ̂ijσ(ω) = Q̂σ

−1
〈〈Ẑ

(irr)
iσ | Ẑ

(irr)+

jσ 〉〉(irr)ω Q̂σ

−1
. (3.19)

Equations (3.14), (3.16) and (3.19) give an exact representation for the one–
hole GF (3.1). To calculate it, however, one has to apply some approximations for
the many–particle GF in the self-energy matrix (3.19) which describes inelastic
scattering of electrons on spin and charge fluctuations.

4. Self-consistent Eliashberg equations

To solve the Dyson equation (3.16) we introduce the k-representation for the
GF

Gαβ
σ (k, ω) =

∑

j

Gαβ
ojσ(ω) e

−ikj . (4.1)
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For the zero-order GF (3.14) we get:

Ĝ(0)
σ (k, ω)−1 = {ωτ̂0 − (Eσ

k − µ̃)τ̂3 −∆σ
k τ̂1}Q̂

−1
σ , (4.2)

where τ̂0, τ̂1, τ̂3 are the Pauli matrix. The energy of the quasiparticles Eσ
k , the

renormalized chemical potential µ̃ = µ− δµ and the gap function ∆σ
k in the MFA,

equations (3.11), (3.12), are given by

Eσ
k = −ǫ(k)Qσ − ǫs(k)/Qσ −

4J

N

∑

q

γ(k − q)Nqσ, (4.3)

where

ǫ(k) = t(k) = 4tγ(k) + 4t′γ′(k), ǫs(k) = 4tγ(k)χ1s + 4t′γ′(k)χ2s,

γ(k) = (1/2)(cos axqx + cos ayqy), γ′(k) = cos axqx cos ayqy,

with

δµ =
1

N

∑

q

ǫ(q)Nqσ − 4J(n/2− χ1s/Qσ) , (4.4)

∆σ
k =

2

NQσ

∑

q

J(k − q)〈X0σ̄
−qX

0σ
q 〉. (4.5)

The average number of electrons (3.5) in the k-representation is written in the
form:

n =
1

N

∑

k,σ

〈Xσ0
k X0σ

k 〉 =
1

N

∑

k,σ

QσNkσ , (4.6)

which defines the function Nqσ in equations (4.3), (4.4). In the calculation of the
normal part of the frequency matrix (4.3) we neglected the charge fluctuation (the
first term in equation (3.13)) and introduced the spin correlation functions for the
nearest (χ1s) and the next-nearest (χ2s) neighbour lattice sites

χ1s = 〈SiSi+a1〉 , χ2s = 〈SiSi+a2〉, (4.7)

where a1 = (±ax,±ay) is the nearest and a2 = ±(ax ± ay) — the next-nearest
neighbour lattice sites. In the gap equation (4.5) we omitted the k-independent
part caused by the kinematical interaction (the first term in equation (3.12)) since
it gives no contribution to d-wave pairing [6].

To calculate the self–energy operator Σ̂(k, ω) we employ a noncrossing approx-
imation (or the self-consistent Born approximation) for the irreducible part of the
many–particle Green functions in (3.19). In this approximation vertex corrections
are neglected as in the Migdal-Eliashberg approximation and it is given by the
two-time decoupling for the correlation functions in (3.19) as, e.g., given below:

〈Xσ′0
j′ B+

jσσ′X
0σ′

i′ (t)Biσσ′(t)〉 ≃ 〈Xσ′0
j′ X0σ′

i′ (t)〉〈B+
jσσ′Biσσ′(t)〉 . (4.8)
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The proposed decoupling does not violate equal time correlations since in equation
(4.8) j 6= j′ and i 6= i′ . Using a spectral representation for the GF we obtain the
following result for the self-energy in the noncrossing approximation:

Σσ
11(k, ω) = −Σσ̄

22(−k,−ω)

=
1

N

∑

q

∫

+∞
∫

−∞

dzdΩN(ω, z,Ω)λ11(q, k − q | Ω)Aσ
11(q, z), (4.9)

Σσ
12(k, ω) = (Σσ

21(k, ω))
∗

= −
1

N

∑

q

∫

+∞
∫

−∞

dzdΩN(ω, z,Ω)λ12(q, k − q | Ω)Aσ
12(q, z), (4.10)

where

N(ω, z,Ω) =
1

2

tanh(z/2T ) + coth(Ω/2T )

ω − z − Ω
. (4.11)

Here we introduce the spectral density:

Aσ
11(q, z) = −

1

Qσπ
Im 〈〈X0σ

q | Xσ0
q 〉〉z+iδ = Aσ̄

22(q,−z), (4.12)

Aσ
12(q, z) = −

1

Qσπ
Im 〈〈X0σ

q | X0σ̄
−q〉〉z+iδ = Aσ

21(q, z), (4.13)

and the electron – electron interaction functions caused by spin-charge fluctuations

λ11(q, k − q | Ω) = g2(q, k − q)D+(k − q,Ω), (4.14)

λ12(q, k − q | Ω) = g2(q, k − q)D−(k − q,Ω), (4.15)

where g(q, k − q) = t(q) − J(k − q) and the spectral density for the spin-charge
fluctuations is defined by the commutator Green functions

D±(q,Ω) = −
1

π
Im

{

1

4
〈〈nq | n

+
q 〉〉Ω+iδ ± 〈〈Sq | S−q〉〉Ω+iδ

}

. (4.16)

The solution of the Dyson equation ( 3.16) can be written in the Eliashberg nota-
tions as

Ĝσ(k, ω) = QσG̃
σ(k, ω) = Qσ

ωZσ
k (ω)τ̂0 + (Eσ

k + ξσk (ω)− µ̃)τ̂3 + Φσ
k(ω)τ̂1

(ωZσ
k (ω))

2 − (Eσ
k + ξσk (ω)− µ̃)2− | Φσ

k(ω) |
2
, (4.17)

where

ω(1− Zσ
k (ω)) =

1

2
[Σσ

11(k, ω) + Σσ
22(k, ω)] ,

ξσk (ω)) =
1

2
[Σσ

11(k, ω)− Σσ
22(k, ω)] , (4.18)

Φσ
k(ω) = ∆σ

k +Σσ
12(k, ω) .
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For the numerical solution of the system of equations (4.9)–(4.18) it is useful
to introduce an imaginary frequency representation for the Green function (4.17)
with ω = iωn = iπT (2n + 1) and the spin-charge Green functions (4.16) with
Ω = iωn = iπT2n where n = 0,±1,±2, ... . By using the representation for the
function (4.11)

N(iωn, z,Ω) = −T
∑

m

1

iωm − z

1

i(ωn − ωm)− Ω
(4.19)

after integration in equations (4.9), (4.10) we get:

Σσ
11(k, iωn) = −

T

N

∑

q

∑

m

G̃σ
11(q, iωm)λ11(q, k − q | iωn − iωm), (4.20)

Σσ
12(k, iωn) =

T

N

∑

q

∑

m

G̃σ
12(q, iωm)λ12(q, k − q | iωn − iωm). (4.21)

The interaction functions are given by

λ11(q, k − q | iων) = g2(q, k − q)D+(q, iων) , (4.22)

λ12(q, k − q | iων) = g2(q, k − q)D−(q, iων). (4.23)

Here we have Gσ
11(k, iωm) = −Gσ̄

22(k,−iωm), G
σ
12(k, iωm) = Gσ

21(k,−iωm).
A linearized system of the Eliashberg equations (4.18) for T 6 Tc has the

following form:

G̃σ
11(k, iωn) =

1

iωn − Ek + µ̃− Σσ
11(k, iωn)

, (4.24)

Φσ(k, iωn) = ∆σ
k + φσ(k, iωn) =

T

N

∑

q

∑

m

{2J(k − q) (4.25)

−λ12(q, k − q | iωn − iωm)}G̃
σ
11(q, iωm)G̃

σ̄
11(q,−iωm)Φ

σ(q, iωm).

At first the system of equations for the normal GF (4.24), (4.20) should be
solved for a given concentration of electrons

n

1− n/2
= 1 +

2T

N

∑

k

∞
∑

n=−∞

G̃11(k, iωn) . (4.26)

Then, the eigenvalues and eigenfunctions of the linear equation for the gap func-
tion (4.26) should be calculated to obtain the superconducting transition temper-
ature Tc and the (q, ω) dependence gap function.

For numerical calculations one has to introduce a model for the charge–spin–
fluctuation functions in (4.16). By taking into account only the spin-fluctuation
contribution, we can write them in the form:

D−
s (q, iων) = −D+

s (q, iων) = χs(q)

+∞
∫

0

2zdz

z2 + ω2
ν

χ
′′

s (z), (4.27)
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where we have introduced for the spin-fluctuation susceptibility a model represen-
tation (see, e.g., [11,18])

χ
′′

s (q, ω) = −
1

π
Im 〈〈Sq | S−q〉〉ω+iδ

= χs(q) χ
′′

s (ω) =
χ0

1 + ξ2(q−QAF)
2
tanh

ω

2T

1

1 + (ω/ωs)2
(4.28)

with the characteristic AFM correlation length ξ and the spin-fluctuation energy
ωs ≃ J . To fix the constant χ0 in (4.28) we can use for the spin-fluctuation sus-
ceptibility the following normalizing condition:

1

N

∑

i

〈SiSi〉 =
1

N

∑

q

χs(q)

+∞
∫

−∞

dz

exp (z/T )− 1
χ

′′

s (z) =
3

4
n. (4.29)

For the low temperature, T ≪ ωs, we can integrate over frequency in equation
(4.29):

+∞
∫

−∞

dz

exp (z/T )− 1
χ

′′

s (z) ≃

+∞
∫

0

dzχ
′′

s (z) ≃

+∞
∫

0

dz

1 + (z/ωs)2
=

π

2
ωs.

Therefore, for the constant χ0 we get from (4.29)

χ0 =
3n

2πωsC1

, C1 =
1

N

∑

q

1

1 + ξ2q2
≃

π

ξ2
ln(1 + ξ2/π). (4.30)

Here ξ and q are dimensionless quantities (ξ/a and qa where a is the lattice con-
stant). In the approximation (4.27), we get for the interaction functions (4.22),
(4.23):

−λ11(q, k − q | iων) = λ12(q, k − q | iων) = g2(q, k − q)χs(k − q)Fs(iων), (4.31)

where

Fs(iων) =

+∞
∫

0

2zdz

z2 + ω2
ν

1

1 + (z/ωs)2
tanh

z

2T
. (4.32)

By using the model (4.28), we get for the static spin correlation functions (4.7):

χ1s = 〈SiSi+a1〉 =
1

N

∑

q

γ(q)〈SqS−q〉,

χ2s = 〈SiSi+a2〉 =
1

N

∑

q

γ′(q)〈SqS−q〉, (4.33)

where

〈SqS−q〉 = χs(q)

+∞
∫

−∞

dzχ
′′

s (z)

exp (z/T )− 1
≃ χs(q)

π

2
ωs ≃

3n

4C1

1

1 + ξ2(q−Q)2AF

.

Therefore, we have obtained a closed system of equations which should be solved
numerically as it was recently done for the spin-polaron model in [8].
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5. Conclusions

In the present paper the theory of the quasiparticle spectrum and supercon-
ducting pairing in the t − t′ − J model (2.2) in a paramagnetic state is formu-
lated. By employing the equation of motion method for the two-time GF [2] and
differentiating it over two times, t and t′, we easily obtained a self-consistent sys-
tem of equations for the matrix GF (4.17) and self-energy (4.9), (4.10) in the
noncrossing approximation, equation (4.8). The latter is equivalent to the Migdal-
Eliashberg approximation which neglects vertex corrections. Though in the t−t′−J
model (2.2) we have no small parameter as in the electron-phonon model consid-
ered by Eliashberg [3], the vertex renormalization in the former may be not so
important as it was proved for the spin-polaron representation of the t − t′ − J
model (2.2) (see, e.g., [19]). All the calculations are performed in the real time
representation, though the imaginary frequency representation which is more con-
venient for a numerical study is given for the linearized system of Eliashberg
equations (4.24), (4.26).

However, the theory is not fully self-consistent in that respect that a phe-
nomenological model for effective electron-electron coupling due to spin fluctua-
tions is to be proposed, equation (4.27), to enable a numerical study of temperature
and doping dependence of the quasiparticle spectrum and superconducting pairing
in the model (2.2). The results of numerical calculations and the comparison with
other approaches will be presented in a separate paper.
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Підхід функцій Ґріна в теорії надпровідності для
t − J моделі

М.М.Плакіда

Об’єднаний інститут ядерних досліджень, 141980 Дубна, Росія

Отримано 28 січня 1998 р.

Pозвинуто теоpiю надпpовiдного спаpювання, що вiдбувається зав-
дяки обмiнним та кiнематичним взаємодiям у t− J моделi в паpа-
магнiтному станi. Отpимано piвняння Дайсона для матpицi функцiй
Ґpiна чеpез опеpатоpи Хабаpда у непеpехpесному наближеннi. За-
пpопоновано лiнеаpизовану самоузгоджену систему piвнянь Елiаш-
беpга для вивчення темпеpатуpної та концентpацiйної залежностi
квазiчастинкового спектpу дipок у ноpмальному станi, а також для
знаходження темпеpатуpи надпpовiдного фазового пеpеходу i си-
метpiї щiлини.

Ключові слова: надпpовiднiсть, квазiчастинка, piвняння Дайсона,
функцiї Ґpiна, опеpатоpи Хабаpда

PACS: 74.20.-z, 74.20.Mn, 74.72.-h
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