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The problem of many-particle correlations in different approaches to the
quantum kinetic theory is treated on the basis of Zubarev’s method of
the nonequilibrium statistical operator. It is shown that long-lived correla-
tions can be incorporated through boundary conditions for reduced many-
particle density matrices and the nonequilibrium real-time Green functions.
Within the method of Green functions the boundary conditions are conve-
niently formulated in terms of the “mixed” Green functions defined on a di-
rected contour with the real-time evolution governed by the Hamiltonian of
the system and the “imaginary-time” evolution governed by the entropy op-
erator. The perturbation expansion of the mixed Green function is obtained
in terms of the interaction part of the Hamiltonian and the correlation part
of the entropy operator.
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1. Introduction

At the present time there are two most-used approaches to nonequilibrium sta-
tistical mechanics of quantum systems, namely, the method based on the Liouville-
von Neumann equation for the statistical operator and the method of Green func-
tions. In a sense, these two approaches correspond to the Schrödinger and Heisen-
berg pictures in quantum mechanics. It can be easily seen from obvious relations
for the mean values of dynamical variables

〈Â〉t = Tr
{
Â̺(t)

}
= Tr

{
ÂH(t)̺(t0)

}
, (1.1)
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where t0 is some initial instant of time,

̺(t) = U(t, t0) ̺(t0)U(t0, t) (1.2)

is the statistical operator in the Schrödinger picture, and

ÂH(t) = U(t0, t) Â U(t, t0) (1.3)

is the dynamical variable Â in the Heisenberg picture. In the case when the Hamil-
tonian of the system H does not depend explicitly on time, the evolution operator
is given by

U(t, t0) = e−i(t−t0)H/~. (1.4)

Note that in the both pictures we are up against the problem of the initial
statistical distribution ̺(t0). Since there are no physical reasons to place a strong
emphasis on the special time t0, it is usual to assume that t0 → −∞, i.e. the
evolution of the system starts in a distant past. Thus, the problem should be
more properly referred to as the problem of boundary conditions for the statistical
operator ̺(t).

It is widely believed that the problem of boundary conditions in nonequilibrium
statistical mechanics is not of great importance, because a many-particle system
“forgets” the details of its initial state and thus, as t0 → −∞, the choice of the
limiting distribution ̺(t0) is only a matter of convenience. However, the situation
is not so simple and the purely formal limit t0 → −∞ has no justification, except
“to take the whole history of the system into account”. In practice the evolution
of the system is usually described in terms of some quantities Qm(t) which vary
slowly in time. Thus, in fact, we always deal with two quite different time scales.
The first (shorter) scale is determined by some relaxation time τr which is the
time for the establishment of a nonequilibrium (macroscopic) state described by
the set {Qm(t)}, and the second (larger) scale is determined by the characteristic
time interval ∆t on which the quantities Qm(t) change. In other words, we have a
hierarchy of time scales reflecting a hierarchy of relaxation times. This is nothing
but the idea for the reduced description of many-particle systems, proposed and
used by Bogoliubov for constructing kinetic equations on the basis of the Liouville
equation [1]. In view of the above considerations, it is clear that the form of the
initial distribution ̺(t0) is irrelevant only for the description of rapidly damping
correlations, i.e. the correlations existing on the shortest time scale τr. As to long-
lived correlations associated with observables Qm(t), the meaning of the formal
limit t0 → −∞ must be investigated more carefully. Specifically this has to do
with the role of many-particle correlations arising from the evolution of locally
conserved quantities.

In this paper, we want to discuss some general approaches to the problem of
boundary conditions in the Schrödinger and the Heisenberg pictures of nonequi-
librium statistical mechanics. For definiteness, we restrict our consideration to the
quantum kinetic theory, where the difference between these two pictures has some
interesting aspects. In particular, we shall see that, in the context of the kinetic
theory, the problem of boundary conditions for the statistical operator is closely
connected with the problem of many-particle correlations.
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2. Boundary conditions in the Schr ödinger picture of the quan-
tum kinetic theory

Recall that the main objective in nonequilibrium statistical mechanics is to
derive transport equations for observables fm(t) = 〈Pm〉

t which are the mean
values of some relevant dynamical variables Pm. Setting Â = Pm in equations (1.1)
and then differentiating these identities with respect to time, we obtain in the
Schrödinger picture

∂

∂t
〈Pm〉

t = Tr

{
Pm

∂̺(t)

∂t

}
. (2.1)

The time derivative of the statistical operator can be eliminated by means of the
Liouville-von Neumann equation

∂̺(t)

∂t
+

1

i~
[̺(t), H] = 0. (2.2)

Then, using the cyclic invariance of the trace, we arrive at the set of generalized
transport equations

∂

∂t
〈Pm〉

t = Tr
{
Ṗm ̺(t)

}
, (2.3)

where

Ṗm =
1

i~
[Pm, H] (2.4)

are the time derivatives of the relevant variables. They are also called the gener-

alized fluxes.
The choice of observables and, consequently, of the relevant variables depends

on the time scale used for the description of nonequilibrium states of the system
(see, e.g., [2,3]). In the quantum kinetic theory, the most important observable is
the single-particle density matrix

f1(l, l
′; t) = 〈a†l′al〉

t, (2.5)

where a†l and al are (Bose or Fermi) creation and annihilation operators for a
complete set of single-particle quantum states |l〉. It is clear that the role of relevant
dynamical variables is played by the operators Pll′ = a†l′al. Thus, in the case under
consideration, equation (2.3) takes the form of a generalized kinetic equation

∂f1(l, l
′; t)

∂t
=

1

i~
Tr
{
[a†l′al, H] ̺(t)

}
. (2.6)

To calculate the averages on the right-hand side of this equation, we have to specify
the Hamiltonian of the system and find the nonequilibrium statistical operator ̺(t).
In what follows, we assume that the Hamiltonian has the form:

H =
∑

ll′

h01(l
′, l) a†l′al +

1

2

∑

l
1
l
2
l′
1
l′
2

Φ2(l
′
1l

′
2, l1l2) a

†

l′
2

a†l′
1

a†l
1

al
2

, (2.7)
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where h01(l, l
′) is a Hermitian single-particle energy matrix. The last term in equa-

tion (2.7) describes pairwise interactions between particles. The interaction am-
plitude possesses the usual symmetry properties

Φ∗
2(l

′
1l

′
2, l1l2) = Φ2(l1l2, l

′
1l

′
2),

Φ2(l
′
1l

′
2, l1l2) = ∓Φ2(l

′
1l

′
2, l2l1) = ∓Φ2(l

′
2l

′
1, l1l2) (2.8)

with the upper sign for fermions and the lower sign for bosons.
Making use of the explicit form of the Hamiltonian and calculating the com-

mutator on the right-hand side of equation (2.6), we find that the equation for the
single-particle density matrix is not closed, since the interaction term gives rise to
a two-particle density matrix. Then, setting Pm = a†l′

2

a†l′
1

al
1

al
2

in equation (2.3), we

obtain the evolution equation for the two-particle density matrix with the three-
particle density matrix on the right-hand side, etc. In other words, we have to
consider the hierarchy of equations for reduced n-particle density matrices

fn(l
′
1 . . . l

′
n, l1 · · · ln; t) = 〈a†l′n . . . a

†

l′
1

al
1

· · · aln〉
t, n > 1, (2.9)

which is analogous to the well-known BBGKY hierarchy in the classical kinetic
theory. Since all the equations in the quantum BBGKY hierarchy are differential
equations with respect to time, one has to formulate some initial or boundary
conditions for the reduced density matrices. The most elegant way is to formu-
late these conditions using a boundary condition for the nonequilibrium statistical
operator ̺(t). In Zubarev’s method [2,3], the boundary condition for ̺(t) is intro-
duced by an infinitesimal source term breaking the time reversal symmetry of the
Liouville-von Neumann equation. Formally, this means that we consider, instead
of equation (2.2), the equation

∂̺(t)

∂t
+

1

i~
[̺(t), H] = −ε {̺(t)− ̺rel(t)} , (2.10)

where ε → +0 after the thermodynamic limit in the averages calculated with ̺(t).
The auxiliary relevant statistical operator ̺rel(t) corresponds to the generalized
Gibbs state described by some set of observables 〈Âi〉

t. The explicit expression for
̺rel(t) is found from the maximum of the information entropy for the given mean
values 〈Âi〉

t [2,3]:

̺rel(t) = exp
(
−
∑

i

Bi(t) Âi

)/
Tr exp

(
−
∑

i

Bi(t) Âi

)
, (2.11)

where the Lagrange multipliers Bi(t) are expressed in terms of 〈Âj〉
t from the

self-consistency conditions

〈Âi〉
t = Tr

{
̺rel(t)Âi

}
. (2.12)

We recall that in the second-quantized form any dynamical variable can be written
as a cluster decomposition:

Â =
∑

k>1

∑

l
1
...l

k
l′
1
...l′

k

A(l′1 . . . l
′
k, l1 . . . lk) a

†

l′
k

· · · a†l′
1

al
1

· · · al
k

. (2.13)
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Thus, the most general form of the relevant statistical operator is [4,5]:

̺rel(t) =
1

Z(t)
exp

(
−
∑

n>1

sn(l
′
1 . . . l

′
n, l1 . . . ln; t) a

†

l′
k

· · · a†l′
1

al
1

· · ·aln

)
(2.14)

(with additional summation over repeated arguments)1. The quantity Z(t) is a
normalization constant and the Lagrange multipliers sn are determined from the
self-consistency conditions

fn(l1 . . . ln, l
′
1 . . . l

′
n; t) = Tr

{
̺rel(t) a

†
l′n
· · · a†l′

1

al
1

· · · aln

}
(2.15)

for the given n-particle density matrices. If the summation in equation (2.14) is
over 1 6 n 6 nmax, then the density matrices fn with n 6 nmax are considered
as independent state parameters and the higher-order density matrices can be
expressed in terms of them. Thus, the relevant statistical operator can describe
a nonequilibrium system with many-particle correlations up to any order. Re-
lations (2.15) play the role of nonequilibrium equations of state. Note that, in
general, the explicit solution of these equations for thermodynamic parameters sk
in terms of the reduced density matrices fn is a difficult problem, since infinite
resummations of diagrams in the perturbation theory may be required [8]. In the
special case nmax = 1, the single-particle density matrix is the only independent
state parameter. The corresponding relevant distribution

̺rel(t) = exp

(
−
∑

ll′

s1(l
′, l; t) a†l′al

)/
Tr exp

(
−
∑

ll′

s1(l
′, l; t) a†l′al

)
(2.16)

describes an ideal quantum gas. In this case, the parameters s1(l
′, l; t) can be easily

expressed in terms of the single-particle density matrix [3].
Now the hierarchy of equations for n-particle density matrices with proper

boundary conditions can be derived from equation (2.10). Multiplying this equa-
tion by the operator a†l′n · · · a

†

l′
1

al
1

· · · aln and then calculating the trace, we obtain [6]

∂

∂t
fn(l1 . . . ln, l

′
1 . . . l

′
n; t) +

i

~

〈
[ a†l′n · · · a

†

l′
1

al
1

· · ·aln , H ]
〉t

= −ε
{
fn(l1 . . . ln, l

′
1 . . . l

′
n; t)− f̄n(l1 . . . ln, l

′
1 . . . l

′
n; t)

}
, (2.17)

where
f̄n(l1 . . . ln, l

′
1 . . . l

′
n; t) = Tr

{
̺rel(t) a

†
l′n
· · · a†l′

1

al
1

· · ·aln

}
(2.18)

are the relevant density matrices, i.e. reduced density matrices in the relevant
ensemble described by the statistical operator (2.14).

The source term on the right-hand side of equation (2.10) selects the retarded
solution of the Liouville-von Neumann equation which coincides with the relevant

1For simplicity, we restrict our consideration to situations where the “anomalous” averages, like
〈a

l′
a
l
〉t, are zero. If this is not the case, the additional terms must be included into equation (2.14).
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distribution in a distant past [2,3]. Thus, the source terms in equations (2.17)
define the corresponding boundary conditions for the reduced density matrices:

fn(l1 . . . ln, l
′
1 . . . l

′
n; t)− f̄n(l1 . . . ln, l

′
1 . . . l

′
n; t) → 0, t→ −∞. (2.19)

These conditions imply, in fact, that the difference between the true nonequilibrium
density matrices and their values in the relevant ensemble becomes negligible for
times considerably greater than some correlation time.

It can be easily shown (see, e.g., [3]) that Bogoliubov’s boundary condition of
a complete weakening of initial correlations is recovered if we take ̺rel(t) in the
form (2.16). Keeping higher-order terms in the relevant statistical operator (2.14),
more general boundary conditions can be formulated. The scheme with f1 and f2,
taken as independent observables, was used, for example, to study two-particle
correlations and the bound state formation in nonequilibrium Fermi systems [4,5].

Of special importance are long-lived many-particle correlations associated with
the conservation laws. In the case of one-component systems, the locally conserved
quantities are the densities of mass, momentum and energy. It should be empha-
sized that, in general, the average energy cannot be expressed in terms of the
single-particle density matrix only, since the mean value of the interaction energy
is given by the two-particle density matrix. Thus, for strongly correlated systems,
the energy density must be included into the set of relevant variables. Assuming,
for simplicity, that the system is spatially homogeneous and taking 〈H〉t, instead
of the total two-particle density matrix f2, as a relevant observable together with
the single-particle density matrix f1, we have the relevant statistical operator [6]

̺rel(t) =
1

Z(t)
exp

{
−β(t)

[
H −

∑

p,σ

µσ(p, t) a
†
pσapσ

]}
. (2.20)

Here we have chosen the momentum representation of single-particle states, |l〉 =
|p, σ〉, where p is the momentum variable and σ is the spin index. The Lagrange
multipliers β(t) and µσ(p, t) are determined from the self-consistency conditions

〈H〉t = Tr {̺rel(t)H} , 〈a†
pσapσ〉

t = Tr
{
̺rel(t)a

†
pσapσ

}
. (2.21)

As the system goes to equilibrium, the parameters β(t) and µσ(p, t) tend to the
equilibrium inverse temperature T−1 and the chemical potential µ, respectively.
It is interesting to note that, taking the relevant statistical operator (2.20) to
define boundary conditions for the quantum BBGKY hierarchy, one obtains for
the single-particle matrix a kinetic equation which is a quantum generalization of
the well-known classical Enskog equation [6].

We have outlined a way toward resolving the problem of many-particle corre-
lations in the Schrödinger picture of the quantum kinetic theory. To summarize
briefly, long-lived many-particle correlations can be incorporated through bound-
ary conditions for the reduced density matrices in the quantum hierarchy. These
conditions are, in their turn, formulated in terms of the auxiliary relevant statistical
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operator which gives the thermodynamic description of the nonequilibrium state.
The chief merit of this approach is that the kinetic equation for the single-particle
density matrix can be combined with the evolution equations for thermodynamic
quantities like the nonequilibrium temperature. Another important advantage of
this scheme is that, extending the set of relevant variables, we can use Markovian

kinetic equations, since all the long-lived correlations are included through the
boundary conditions.

It should be noted, however, that the Schrödinger picture of the quantum
kinetic theory has some shortcomings. The main defect of this picture lies in the
fact that the reduced density matrices are single-time quantities. As a consequence,
the quantum BBGKY hierarchy is unsuitable for describing the spectral properties
of many-time (dynamical) correlations. Another weak point of the Schrödinger
picture is that up to now we have no satisfactory technique for partial summations
over infinite sets of terms in the quantum BBGKY hierarchy, which is necessary
in the cases where a simple truncation procedure does not work. As we shall
see below, some way out can be found if we combine the Schrödinger and the
Heisenberg pictures of the quantum kinetic theory.

3. Boundary conditions in the Heisenberg picture of the quan -
tum kinetic theory

Let us turn back to equations (1.1) which show that the time dependence
of nonequilibrium averages can be analyzed by shifting the evolution operators
from the statistical distribution to dynamical variables. We now want to formulate
boundary conditions for the averaged products of Heisenberg operators (1.3) as
t0 → −∞. For the purpose of the following consideration, it is convenient to
introduce n-time products, i.e. the correlation functions

〈Â1H(t1) · · · ÂnH(tn)〉
t
0 = Tr

{
̺(t0)Â1H(t1) · · · ÂnH(tn)

}
. (3.1)

Note that the initial time t0 appears not only in the statistical distribution, but also
in all the evolution operators [see equation (1.3)]. This leads to some difficulties
in taking the limit t0 → −∞ directly. Our first step is, therefore, to rewrite the
correlation function in a more convenient form. Using the group property of the
evolution operators, U(t1, t2)U(t2, t3) = U(t1, t3), and the cyclic invariance of the
trace, we obtain

〈Â1H(t1) · · · ÂnH(tn)〉
t
0 = Tr

{
U(τ, t0)̺(t0)U(t0, τ)

× U(τ, t1)Â1U(t1, t2) · · ·U(tn−1, tn)ÂnU(tn, τ)
}
, (3.2)

where τ is an arbitrary instant of time. Now the choice of the initial time is related
only to the evolution of the statistical operator.
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It is natural to consider ̺(t0) in equation (3.2) as a retarded solution of the
Liouville-von Neumann equation with the boundary condition for t0 → −∞ de-
termined by some relevant distribution of the form (2.14). In other words, we will
regard ̺(t0) as a solution of equation (2.10). Note that the statistical operator,
when defined in this way, satisfies the ergodic condition [7]

U(t, t0) {̺(t0)− ̺rel(t0)}U(t0, t) → 0, t− t0 → ∞. (3.3)

Then, from equations (3.2) and (3.3) we obtain the boundary condition for the
averaged products of Heisenberg operators [8]:

〈Â1H(t1) · · · ÂnH(tn)〉
t
0 → 〈Â1H(t1) · · · ÂnH(tn)〉

t
0

rel, t0 → −∞. (3.4)

Relation (3.3) can be represented in another form using Abel’s theorem, i.e. re-
placing the t-limit by the so-called ε-limit [3,7]. This gives

lim
t
0
→−∞

U(τ, t0)̺(t0)U(t0, τ)

= lim
ε→+0

ε

∫ τ

−∞

dt0 e
−ε(τ−t

0
) U(τ, t0)̺rel(t0)U(t0, τ). (3.5)

Thus, instead of equation (3.4), we may use the boundary condition

lim
t
0
→−∞

〈Â1H(t1) · · · ÂnH(tn)〉
t
0

= lim
ε→+0

ε

∫ τ

−∞

dt0 e
−ε(τ−t

0
) 〈Â1H(t1) · · · ÂnH(tn)〉

t
0

rel. (3.6)

We want to point out one consequence of this condition. As already discussed,
in the kinetic theory the quantities of interest are the reduced density matrices
which are single-time averages of the creation and annihilation operators. Putting
τ = t1 = t2 = . . . = tn = t in equation (3.6), we find the single-time averages in
terms of Heisenberg operators averaged over the relevant ensemble [8]:

〈Â1 · · · Ân〉
t = lim

ε→+0
ε

∫ t

−∞

dt0 e
−ε(t−t

0
) 〈Â1H(t1) · · · ÂnH(tn)〉

t
0

rel

∣∣∣
t1=...=tn=t

. (3.7)

This equation has two important aspects. First, it relates the nonequilibrium av-
erages to time correlation functions in the relevant ensemble where long-lived cor-
relations are incorporated. Second, we shall see below that, for Fermi and Bose
systems, the time correlation functions appearing on the right-hand side of equa-
tion (3.7) can be calculated from the nonequilibrium Green functions.

4. Boundary conditions in the real-time Green function
formalism

The real-time Green function technique for constructing kinetic equations was
proposed by Kadanoff and Baym [9] and then developed by many authors. The
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extensive literature on this subject is reviewed, e.g., in [10,11]. We want to discuss
some aspects of the Green function formalism related to the inclusion of long-lived
correlations into the quantum kinetic theory.

In this section we assume that the system of identical fermions or bosons is
described by the second quantized field operators ψ(r) and ψ†(r), where the ar-
gument r involves all single-particle quantum numbers, say, the position vector r
and the spin index σ. We also use a short notation (k) = (rk, tk) and (k′) = (r′k, t

′
k)

for the arguments of Heisenberg operators.
In the standard real-time Green function formalism, the basic quantity is the

path-ordered single-particle Green function

G(1, 1′; t0) = (i~)−1 〈TC[ψH(1)ψ
†
H(1

′)]〉t0 , (4.1)

where TC is the path-ordering operator on the directed Keldysh-Schwinger contour
C shown in figure 1 (as usual, the ordering procedure includes the sign convention
for the permutation of Fermi operators). Many-particle Green functions are intro-

✲
✲

✛q

q

t0
q

t1

C

q

t2

tmax

t

Figure 1. The directed Keldysh-Schwinger contour C with the upper (chrono-
logical) and lower (anti-chronological) branches, C+ and C−. The contour runs
above the largest argument of the Green function. For instance, one may take the
limit tm → ∞.

duced in a similar way. For instance, the n-particle Green function on the contour
C is defined as

G(1 . . . n, 1′ . . . n′; t0) = (i~)−n
〈
TC[ψH(1) · · ·ψH(n)ψ

†
H(n

′) · · ·ψ†
H(1

′)]
〉t0

. (4.2)

In many cases it is convenient to consider the single-particle Green function as a
matrix (the fixed argument t0 is omitted for brevity):

G(1, 1′) =

(
G++(1, 1′) G+−(1, 1′)
G−+(1, 1′) G−−(1, 1′)

)
=

(
gc(1, 1′) g<(1, 1′)
g>(1, 1′) ga(1, 1′)

)
. (4.3)

The causal, gc, anti-causal, ga, Green functions and the correlation functions g>,<

are given by

gc,a(1, 1′; t0) = (i~)−1 〈T c,a[ψH(1)ψ
†
H(1

′)]〉t0 , (4.4)

g>(1, 1′; t0) = (i~)−1 〈ψH(1)ψ
†
H(1

′)〉t0 , (4.5)

g<(1, 1′; t0) = ∓ (i~)−1 〈ψ†
H(1

′)ψH(1)〉
t
0 . (4.6)

As before, the upper (lower) sign refers to fermions (bosons). The symbols T c,a

denote the usual chronological and anti-chronological time ordering with the sign
convention for fermions.
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Clearly, the real-time Green functions depend on the initial statistical operator
̺(t0). Unless the state of the system is specially prepared at time t0, the non-
physical dependence of the Green functions on the initial state must be eliminated.
It is natural to take the limit t0 → −∞, since a macroscopic system “forgets” the
non-relevant details of its initial state after some microscopic correlation time τc
which is characteristic of a given system.

In the standard theory of the real-time Green functions, it is assumed that in
the limit t0 → −∞ the system is in a non-correlated state, i.e. is described by the
statistical distribution

̺rel(t0) =
1

Z(t0)
exp

{
−

∫
dr1 dr

′
1 s1(r

′
1, r1; t0)ψ

†(r′1)ψ(r1)

}
, (4.7)

which is nothing but the relevant distribution (2.16) written in terms of the field
operators. Since the limiting distribution admits Wick’s decomposition, the limit-
ing n-particle density matrices are uncoupled to single-particle density matrices.
This leads to some boundary conditions for many-particle Green functions (4.2). In
particular, the two-particle Green function satisfies the boundary condition (see,
e.g., [11])

lim
t0→−∞

G(12, 1+2+; t0)
∣∣∣ t1 = t2 = t0

t′
1
= t′

2
= t0

= lim
t0→−∞

[
G(1, 1+; t0)G(2, 2

+; t0)∓G(1, 2+; t0)G(2, 1
+; t0)

]
, (4.8)

where the notation (k)+ = (rk, t
+
k ) indicates that time t+k is taken infinitesimally

later on the the Keldysh-Schwinger contour, than tk.
The boundary condition (4.8) is equivalent to the Bogoliubov condition of a

complete weakening of initial correlations in a distant past and is, in fact, implied in
the standard real-time Green function technique, although it is not always pointed
out explicitly. Nevertheless, this condition is the primary source of difficulties in
an attempt to go beyond the simple quasiparticle picture. As an illustration, let us
consider the two-time average 〈Â1H(t1)Â2H(t2)〉

t
0 calculated over some statistical

distribution ̺(t0). We can separate variables describing “slow” and “fast” processes
by means of the relations t = (t1+ t2)/2 and τ = t1− t2, where the time argument
t corresponds to the slow evolution, while the argument τ may be thought of as
describing fast processes caused by collisions between particles. It is clear that
the average under consideration does not depend on the initial distribution ̺(t0),
only if the difference t − t0 is much greater than the characteristic correlation
time τc for all the relevant correlations in the system. If we deal with long-lived
correlations, the time τc is large compared with the collision time τcoll. A system
with bound states provides a typical example of such a situation. Even if bound
states are absent, long-lived correlations may be caused by the dynamics of slow
hydrodynamic modes or by slow relaxation processes in the system. Thus, in the
case when the evolution of the system starts from a non-correlated initial state, one
might expect significant memory effects in the equations for the Green functions.
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In practice, however, the memory effects are treated as small corrections2. That
is why the standard real-time Green function technique works well only when the
system can be described as a weakly interacting gas of quasiparticles.

One way to avoid the problem of memory effects in the theory of Green func-
tions is the use of initial distributions ̺(t0), including many-particle correlations.
For a detailed discussion and the literature on this subject see, e.g., [14]. The weak
point of this idea is that the initial correlations are assigned to some (usually non-
physical) state at a fixed time t0, whereas the correlated state varies with time
and its evolution is governed by macroscopic transport equations.

In order to take the evolution of the correlated state into account, we shall turn
to our general relation (3.6) and formulate new boundary conditions for the real-
time Green functions. Since the time τ in equation (3.6) may be chosen without
regard to the order of the Heisenberg operators, the new boundary condition for
the Green function (4.2) is

lim
t
0
→−∞

G(1 . . . n, 1′ . . . n′; t0)

= lim
ε→+0

ε

∫ τ

−∞

dt0 e
−ε(τ−t

0
)Grel(1 . . . n, 1

′ . . . n′; t0), (4.9)

where the notationGrel denotes the Green function in the relevant ensemble at time
t0. This is a remarkable relation, because Grel depends on t0 through macroscopic
quantities describing the evolution of many-particle correlations. In the special case
when the relevant distribution ̺rel(t0) corresponds to a non-correlated state [see
equation (4.7], it is easy to verify that the boundary condition (4.8) follows from
equation (4.9). Thus, one may consider equation (4.9) as a generalized condition of
the weakening of initial correlations written in terms of real-time Green functions.

We will draw attention to one important consequence of equation (4.9). As it
is evident from equation (4.6), the correlation function g<(1, 1′; t0) is of special
interest in the kinetic theory; its value for t1 = t′1 gives a single-particle density
matrix in the r-representation. In order to eliminate the dependence of g< on the
initial state, we have to take the limit t0 → −∞. Since this correlation function
is a component of the matrix Green function (4.1), we may use the boundary
condition (4.9). Thus, we get

f1(r1, r
′
1; t1) = ∓i~ lim

t
0
→−∞

g<(1, 1′; t0)
∣∣∣
t′
1
=t

1

= ∓i~ lim
ε→+0

ε

∫ t1

−∞

dt0 e
−ε(t1−t0) g<rel(1, 1

′; t0)
∣∣∣
t′
1
=t

1

. (4.10)

This relation may be applied in different ways. First, differentiating it with respect
to t1, we recover the quantum hierarchy for the single-time quantities, i.e. for the
reduced density matrices. Note that the corresponding boundary conditions will
be reproduced automatically. Second, equation (4.10) relates the single-particle

2Note that even in this case the analysis is rather sophisticated (see, e.g., [12,13]).
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density matrix to the two-time quantity g<rel(1, 1
′; t0). This allows one to incorpo-

rate the spectral properties of microscopic dynamics and, through the relevant
distribution, the many-particle correlations.

5. The “mixed” Green functions

The foregoing discussion illustrates that a natural way of constructing kinetic
equations for strongly correlated quantum systems is to employ the Green func-
tions Grel defined in the relevant ensemble3. As in the standard formalism, the
starting point can be the Dyson equation for the single-particle Green function
G(1, 1′; t0) and a diagram representation of the corresponding mass operator.

In principle, the path-ordered Green functions in the relevant ensemble may
be considered on the Keldysh-Schwinger contour (see figure 1), but this is not a
suitable way. One reason is that, in general, the relevant distribution ̺rel(t0) con-
tains the correlation terms and, therefore, the Wick theorem cannot be applied
directly. Apart from technical difficulties, there is also a more serious reason why
the initial statistical distribution (at the ends of the contour) should be taken in a
non-correlated form. We recall that the mass operator (or the self-energy) in the
Dyson equation can formally be expressed in terms of the two-particle Green func-
tion and the inverse single-particle Green function G−1(1, 1′) [11]. It should be em-
phasized, however, that the existence of the Dyson equation depends on whether
the equation for the inverse Green function G−1(1, 1′) has a unique solution. A
straightforward diagram analysis of the perturbation series for the single-particle
Green function (see, e.g., [10]) shows that the Dyson equation exists if the ini-
tial distribution on the Keldysh-Schwinger contour admits Wick’s decomposition.
Thus, in this case one may conclude that G−1(1, 1′) exists and is unique. For other
cases, the question of the existence of the inverse single-particle Green function
is open. Based on the above considerations, it might be natural to work with the
Green functions defined on the contour with a non-correlated state at the ends.
We will briefly sketch how such Green functions can be introduced in the context
of the kinetic theory (for a more detailed discussion see [8]).

We assume that the Hamiltonian of the system can be represented as the sum
H = H0 + H ′, where H0 is a free-particle Hamiltonian, and H ′ describes two-
particle interactions. Then, in terms of the field operators, the Hamiltonian is
given by [cf. equation (2.7)]

H = H0 +H ′ =
~
2

2m

∫
dr1∇1ψ

†(r1) ·∇1ψ(r1)

+
1

2

∫
dr1 dr2 dr

′
1 dr

′
2Φ(r

′
1r

′
2, r1r2)ψ

†(r′2)ψ
†(r′1)ψ(r1)ψ(r2). (5.1)

We also have to specify the form of the relevant distribution ̺rel(t0). It is convenient

3From this point on, all the Green functions will correspond to the relevant ensemble. For
brevity, the index “rel” will be omitted.
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to write this distribution as

̺rel(t0) = exp
{
−Ŝ(t0)

}/
Tr exp

{
−Ŝ(t0)

}
, (5.2)

where Ŝ(t0) is usually called the entropy operator [3,8]. As it is seen from equation
(2.14), the entropy operator is the sum Ŝ(t0) = Ŝ0(t0)+Ŝ

′(t0), where Ŝ
0 is a single-

particle contribution, and Ŝ ′ describes many-particle correlations. For simplicity,
we will retain only the term corresponding to two-particle correlations. Thus, in
the r-representation we have

Ŝ0(t0) =

∫
dr1 dr

′
1 s1(r

′
1, r1; t0)ψ

†(r′1)ψ(r1),

(5.3)

Ŝ ′(t0) =
1

2

∫
dr1 dr2 dr

′
1 dr

′
2 s2(r

′
1r

′
2, r1r2; t0)ψ

†(r′2)ψ
†(r′1)ψ(r1)ψ(r2),

where the Lagrange multipliers s1 and s2 are to be determined from the self-
consistency conditions

f1(r1, r
′
1; t0) = Tr

{
̺rel(t0)ψ

†(r′1)ψ(r1)
}
,

(5.4)
f2(r1r2, r

′
1r

′
2; t0) = Tr

{
̺rel(t0)ψ

†(r′2)ψ
†(r′1)ψ(r1)ψ(r2)

}
.

We now define the Heisenberg picture on the directed contour C in the (t, x)-
plane (figure 2). Introducing the variable (ξ) = (t, x) that specifies a point on the

✲

❄x

✲
✛

❄

❄

ξfin = (t0, x0)

ξin = (t0, x0 − 1)

ξ0 = (t0, 0)
q

q

q

q

C

C ′

C ′′

t

Figure 2. The directed contour C with the real-time evolution on the Keldysh-
Schwinger part (C) and the “imaginary-time” evolution on the parts C ′ and C ′′.
The parameter x0 satisfies the inequality 0 6 x0 6 1.

contour C, we write

ÂH(ξ) =

{
ei(t−t0)H/~Â e−i(t−t0)H/~ on C (if x = 0),

exŜÂ e−xŜ on C ′ and C ′′ (if t = t0),
(5.5)

where the fixed parameter t0 in the entropy operator is not written explicitly.
It is clear that on the Keldysh-Schwinger part (C) of the contour C we have the
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usual real-time Heisenberg picture and on the parts C ′ and C ′′ the above definition
corresponds to the “imaginary-time” evolution governed by the entropy operator.
To shorten the notation, from now on the underlined variables (k) = (rk, ξk) will
be used to indicate that a function of such variables is defined on the directed
contour C. For the Keldysh-Schwinger part of the contour, the previous notation
(k) = (rk, tk) will be used.

With the definition (5.5) of the Heisenberg picture on the contour C, we can
introduce the corresponding path-ordered Green functions [8]. The single-particle
Green function is defined as

G(1, 1′; t0) = (i~)−1 〈TC[ψH(1)ψ
†
H(1

′)]〉t0rel, (5.6)

where TC is the path-ordering operator on the contour C. The path-ordered n-
particle Green functions G(1, . . . , n, 1′, . . . , n′) are introduced in perfect analogy to
equation (4.2).

On the Keldysh-Schwinger part of the contour C, the function (5.6) coincides
with the real-time single-particle Green function [cf. equation (4.1)]. It should be
recalled, however, that now the averaging is performed over the relevant distribu-
tion (5.2) but not over some unknown initial distribution ̺(t0) as in equation (4.1).
On the other hand, if the points ξ1 and ξ

′
1 lie on the parts C ′ and C ′′ of the contour

C, then, up to a factor, the function (5.6) coincides with the so-called thermody-

namic Green function which is a generalization of the well-known equilibrium
Matsubara-Green function to the relevant ensembles [8]. To emphasize the above
properties, the Green functions on the contour C will be referred to as the mixed

Green functions.
To develop the perturbation theory with respect to many-particle terms H ′ and

Ŝ ′ in the Hamiltonian and the entropy operator, we define the interaction picture
for the operators on the contour C:

ÂI(ξ) =

{
ei(t−t0)H0/~Â e−i(t−t0)H0/~ on C (if x = 0),

exŜ
0

Â e−xŜ0

on C ′ and C ′′ (if t = t0).
(5.7)

Let us consider the product of operators A1H(ξ1)A2H(ξ2) · · ·AkH(ξk) with the ar-
guments arranged in a certain order on the contour C. Recalling the definition (5.7)
of the interaction picture, it is easy to verify the relation

Â1H(ξ1) · · · ÂkH(ξk) = UI(ξ0, ξ1) Â1I(ξ1)UI(ξ1, ξ2) · · · ÂkI(ξk)UI(ξk, ξ0),

(5.8)

where ξ0 = (t0, 0) is a point at the junction of the parts C, C ′, and C ′′ of the
contour (see figure 2). The interaction picture evolution operator UI(ξ, ξ

′) on C
obeys the equations

∂UI(ξ, ξ
′)

∂ξ
= −H′

I(ξ)UI(ξ, ξ
′),

∂UI(ξ, ξ
′)

∂ξ′
= UI(ξ, ξ

′)H′
I(ξ

′), (5.9)
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with the condition UI(ξ, ξ) = 1. The effective “interaction Hamiltonian”, H(ξ), is
given by

H′
I(ξ) =

{
(i/~)H ′

I(ξ) = (i/~) ei(t−t0)H0/~H ′ e−i(t−t0)H0/~ on C,

Ŝ ′
I(ξ) = exŜ

0

Ŝ ′ e−xŜ0

on C ′ (C ′′).

(5.10)

A formal solution of equations (5.9) can be written in the form of the path-ordered
exponent

UI(ξ, ξ
′) = TC exp

{
−

∫ ξ

ξ′
H′

I(ξ
′′) dξ′′

}
, (5.11)

where the integral of the function F (ξ) = F (t, x) along the contour C is defined as

∫

C

dξ F (ξ) =

∫

C

dt F (t, 0)|onC

+

∫ 0

−1/2

dxF (t0, x)|onC′ +

∫ 1/2

0

dxF (t0, x)|onC′′. (5.12)

Equations (5.8) and (5.11) allow us to express the path-ordered products of the
Heisenberg operators in terms of the path-ordered products in which the evolution
is governed by the single-particle generators H0 and Ŝ0. Note, however, that in the
mixed Green function formalism we deal with the path-ordered products of the
Heisenberg operators averaged over ̺rel(t0). Thus, to write such averages in the
interaction picture, the relevant distribution must be expanded in the correlation
part Ŝ ′ of the entropy operator. Explicit calculations show [8] that

e−Ŝ = UI(ξ0, ξin) e
−Ŝ0

UI(ξfin, ξ0), (5.13)

where ξin and ξfin are the initial and the final points on the contour C, respectively
(see figure 2). Now relations (5.8), (5.11), and (5.13) can be combined to write the
averaged products of the Heisenberg operators in the form:

〈TC[Â1H(ξ1) · · · ÂkH(ξk)]〉
t0
rel

=

〈
TC

[
exp

{
−
∫
C

dξH′
I(ξ)

}
Â1I(ξ1) · · · ÂkI(ξk)

]〉t
0

0〈
TC exp

{
−
∫
C

dξH′
I(ξ)

}〉t
0

0

. (5.14)

The averages on the right-hand side are calculated over the relevant statistical
operator

̺0rel(t0) = exp
{
−Ŝ0(t0)

}/
Tr exp

{
−Ŝ0(t0)

}
, (5.15)
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which admits Wick’s decomposition. The denominator in equation (5.14) is the
normalization constant, as it can be seen from equation (5.12).

The structure of equation (5.14) is typical of a diagram technique in the the-
ory of Green functions. Each term in this expansion can be evaluated using the
Wick theorem. In general, the corresponding Feynman rules for the diagram rep-
resentation of the mixed Green functions depend on the particular form of the
perturbation terms H ′ and Ŝ ′ in the Hamiltonian and the entropy operator. In our
case [see equations (5.1) and (5.3)], these rules are, in fact, the same for all the
parts of the contour C.

Since the statistical operator (5.15) describes a non-correlated state and, conse-
quently, the diagram summation can be applied to the mixed Green functions, we
conclude that the single-particle Green function on the contour C, equation (5.6),
obeys the Dyson equation

G(1, 2) = G 0(1, 2) +

∫

C

d1′ d2′G 0(1, 1
′) Σ(1′, 2′)G(2′, 2), (5.16)

where G 0(1, 2) is the zeroth-order mixed Green function4, and Σ(1′, 2′) is the many-
component mass operator on the contour C. Some properties of the Dyson equa-
tion (5.16) are discussed in [8].

The existence of the Dyson equation is, of course, a very important property
of the mixed Green function defined in the relevant ensemble, but this is not the
end of the story. The next step is to extract equations for the correlation functions
g>,<(1, 2) (the so-called Kadanoff-Baym equations) and transform them into a
kinetic equation for the single-particle density matrix or the Wigner function. An
analogous procedure is developed in the standard real-time formalism [10,11] but
is a challenge in the case of strongly-correlated systems.

6. Concluding remarks

It is usual to consider the Green function formalism and the method of the
nonequilibrium statistical operator as alternative approaches to the quantum ki-
netic theory. Our aim was to show that the combination of these methods appears
to be useful in constructing kinetic equations for the systems with long-lived many-
particle correlations.

At the present stage, we cannot say, of course, that we have a perfect method
for deriving kinetic equations, because little is known about the properties of
the mixed Green functions and the corresponding Dyson equation in the case of
strongly correlated systems. Nevertheless, the mixed Green function formalism
seems to be a method of considerable promise, since many well-defined approxi-
mations in the standard method of real-time Green functions, such as the Hartree-
Fock approximation and the T -matrix approximation for self-energy [11], can be
extended to the mixed Green functions.

4It describes non-interacting particles in the non-correlated relevant ensemble.
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When working with the relevant ensembles, the essential point is the solution
of self-consistency equations which play the role of nonequilibrium equations of
state. As an example, we refer to equations (5.4). In principle, the self-consistency
equations can be solved approximately, using the so-called thermodynamic Green

functions which are the generalization of the Matsubara-Green functions to the
nonequilibrium states described by the relevant distributions [8]. It is interesting to
note that the thermodynamic Green functions appear in the mixed Green function
formalism when all the arguments of the Green function are on the parts C ′ and
C ′′ of the contour C (see figure 2). Since the “imaginary evolution” on the parts C ′

and C ′′ is governed by the entropy operator Ŝ, which also enters into the relevant
distribution, it is clear that the thermodynamic Green functions obey a closed
Dyson equation in the sense that the components of the total mixed Green func-
tion with the arguments on the Keldysh-Schwinger part of the contour C do not
enter into this equation. Thus, the nonequilibrium thermodynamic correlations in
the relevant ensemble can be treated separately from the dynamical correlations.
On the other hand, the thermodynamic correlations contribute to the Dyson equa-
tion for the real-time components of the mixed Green function through the cross
functions with the arguments on different parts of C.

Here we have presented a general formulation of boundary conditions for the
quantum BBGKY hierarchy and the real-time Green functions with allowance
made for long-lived many-particle correlations. In [6] the new boundary conditions
for the quantum hierarchy were used in the derivation of a generalized Enskog-type
kinetic equation for dense, strongly correlated systems. It would be interesting to
derive an analogous equation in the mixed Green function formalism where the
quasiparticle description can be incorporated in a more consistent way. Another
interesting problem is the derivation of kinetic equations for systems with bound
states and long-range correlations, such as non-ideal quantum plasmas. Finally,
we note that the mixed Green function formalism can also be applied to strongly-
correlated superfluids and superconductors. In such cases the set of Green functions
must include the so-called “anomalous” Green functions describing the condensate
mode.
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Багаточастинкові кореляції та граничні умови у

квантовій кінетичній теорії

В.Г.Морозов 1 , Ґ.Репке 2

1 Московський інститут радіоелектроніки та автоматики,
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2 Університет м. Ростока, фізичний факультет,
D-18051 Росток, Німеччина

Отримано 17 листопада 1997 р.

Проблема багаточастинкових кореляцій у різних підходах кванто-
вої кінетичної теорії розглядається на основі методу нерівноважно-
го статистичного оператора Д.М.Зубарєва. Показано, що довгожи-
вучі кореляції можуть бути враховані через граничні умови для зве-
дених багаточастинкових матриць густини та нерівноважні функції
Ґріна дійсного часу. В рамках методу функцій Ґріна граничні умови
зручно формулюються в термінах “змішаних” функцій Ґріна, які ви-
значаються прямим контуром з дійсним часом еволюції, що керуєть-
ся гамільтоніаном системи, та “уявним” часом еволюції, що керуєть-
ся оператором ентропії. Розклад за збуреннями змішаних функцій
Ґріна отримано в термінах частини гамільтоніана, що відповідає за
взаємодію, та кореляційної частини оператора ентропії.

Ключові слова: нерівноважний статистичний оператор,
багаточастинкові кореляції, нерівноважні функції Ґріна, оператор
ентропії
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