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Andrei D. Zaikin

Forshchungszentrum Karlsruhe, Institut für Nanotechnologie, 76021, Karlsruhe, Germany

I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow 119991, Russia
E-mail: zaikin@tfp.physik.uni-karlsruhe.de

Received February 23, 2004

In this paper we address several new developments in the theory of dc Josephson effect in
superconducting weak links. We analyze an interplay between quantum interference effects and
Andreev reflection in SNS nanojunctions with insulating barriers and demonstrate that these ef-
fects may qualitatively modify the Josephson current in such structures. We also investigate an im-
pact of the parity effect on persistent currents in superconducting nanorings interrupted by a quan-
tum point contact (QPC). In the limit of zero temperature and for the odd number of electrons in
the ring we predict complete suppression of the supercurrent across QPC with one conducting
mode. In nanorings with SNS junctions a �-state can occur for the odd number of electrons.
Changing this number from even to odd yields spontaneous supercurrent in the ground state of
such rings without any externally applied magnetic flux.

PACS: 74.50.+r, 74.80.Fp

In 1926 Albert Einstein posed a remarkable ques-
tion [1]: «Of particular interest is the question
whether a link between two superconductors also
turns superconducting». The answer to this question
was provided by Brian Josephson in 1962 [2]. It was
predicted by Josephson that dissipativeless flow of
Cooper pairs between two different superconductors
separated by an insulating barrier is possible provided
this supercurrent I s does not exceed some critical
value Ic. Furthermore, the dependence of this current
on the phases of macroscopically coherent wave func-
tions of Cooper pairs was established in a very simple
form [2]

I Is c� �sin , (1)

where � is the difference between the phases of the
BCS order parameters of two superconductors.
Equation (1) represents the dc Josephson effect. The
answer to the Einstein’s question [1] turned out to be
positive.

What if the total current I flowing through the
barrier is larger than Ic? In this case a part of the net
current across the barrier is transferred by normal
electrons (quasiparticles) and the rest of it is carried
by Cooper pairs. While the second contribution, I s ,
remains dissipativeless and is again described by

Eq. (1), the first — quasiparticle — contribution to
the current is dissipative and, hence, causes a nonzero
voltage drop V across the insulating barrier. In the
presence of this voltage the coherent phase difference �
acquires a time dependence described by another fa-
mous Josephson relation

��
�
�

t
eV2
�

. (2)

Combining Eqs. (1) and (2) one immediately arrives
at the conclusion that for any nonzero V the super-
current I s changes in time. In the case of time-inde-
pendent voltages one has � � 2eVt/� and, hence, the
Josephson current (1) will oscillate in time with the
fundamental frequency proportional to the voltage V.
Equation (2) and related to it oscillations of the
supercurrent represent the essence of the ac Josephson
effect.

Soon after these Josephson's predictions the micro-
scopic theory of both dc [3] and ac [4,5] was con-
structed and these effects have been observed experi-
mentally [6,7]. Huge number of publications as well
as several monographs are devoted to various aspects
of these effects. It turned out that physics encoded in
these phenomena is very rich and important for under-
standing of basic properties of superconductivity it-
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self. More than forty years after its discovery the
Josephson effect still attracts attention of many re-
searchers and keeps providing us with new interesting
physics.

In this paper we will discuss several new phenom-
ena which theoretical understanding was achieved
only very recently. In the next section we very briefly
review already well known and established results
which concern dc Josephson effect in various types of
superconducting weak links. Sections 2 and 3 are de-
voted to possible new effects [8,9] which emerge and
gain importance as one decreases the size of a weak
link eventually turning it to a nanostructure with only
few conducting channels. Fabrication of such quan-
tum point contacts (QPC) — unthinkable at the time
of discovery of the Josephson effects — is now becom-
ing a routine procedure. Hence, the new effects dis-
cussed here can be directly observed and investigated
in a modern experiment.

1. Instead of introduction

Relatively soon after the Josephson's discovery it
was understood that nondissipative transport of Coo-
per pairs between two superconductors is possible not
only through a (usually very thin) insulating barrier,
but also in various other situations. One of such situa-
tions is realized in the so-called SNS structures, i.e., if
a piece of a normal metal is placed in-between two su-
perconductors. In contrast to tunnel junctions, in SNS
systems at sufficiently low temperatures appreciable
supercurrent can flow even though a normal layer can
be as thick as few microns. This is because the wave
function of Cooper pairs or, more precisely, the anom-
alous Green function, penetrates into the normal
metal from a superconductor at the length � v /TF for
ballistic and � D/T for diffusive metals (here and
below D v l/F� 3 and l are the diffusion coefficient
and the elastic mean free path, respectively). Clearly,
at temperatures much lower than the critical tempera-
ture Tc of a superconductor this length becomes large
(as compared, e.g., to the superconducting coherence
length), and macroscopic quantum coherence is estab-
lished between two superconducting banks separated
by a normal metal.

Further studies revealed an interesting mechanism
of Cooper pair transfer in such systems. It turned out
that the supercurrent flow is directly related to an-
other fundamentally important phenomenon: Andreev
reflection [10]. Suffering Andreev reflections at both
SN interfaces, quasiparticles with energies below the

superconducting gap are effectively «trapped» inside
the N layer and form a discrete set of levels [10]. It
was demonstrated [11] that in the presence of the
phase difference � across the SNS junction these levels
acquire a shift proportional to this phase difference.
Thus, on one hand, the position of the quasiparticle
energy levels in such systems can be tuned by passing
the supercurrent and, on the other hand, the magni-
tude of this supercurrent can be established by taking
the derivative of the quasiparticle energy with respect
to � with subsequent summation over the whole en-
ergy spectrum. The microscopic theory [11,12] leads
to the following expression for the current density
through clean SNS systems:

j
e p v

d

F F� � � � � �
2 2

26�
� �, . (3)

This expression is valid at T � 0 and for N-metal
layers with thickness d v /F		 �
0 �, where � is
superconducting order parameter. The most impor-
tant features of this result are (i) the strongly
nonsinusoidal current-phase relation, cf. Eqs. (1) and
(3), and (ii) the linear dependence of the current on
the gap in the quasiparticle spectrum º v /dqp F� in
the direction normal to NS interfaces.

It is interesting that qualitatively both features (i)
and (ii) survive not only for ballistic but also for dif-
fusive SNS junctions even though in the latter case
discrete Andreev levels are washed out due to elastic
scattering of quasiparticles on impurities in the N
metal. It was demonstrated microscopically [13–15]
that at low temperatures T D/d�� 2 the cur-
rent-phase relation in diffusive SNS junctions also de-
viates from the sinusoidal one* and the critical
Josephson current is again proportional to the gap in
the quasiparticle spectrum, in this case the Thouless
energy º D/dqp �

2. The exact value of the critical
Josephson current in long diffusive SNS junctions can
be established only numerically. One finds [15]

I
º

eRc
qp

N
� 10 82. (4)

where RN is the junction normal state resistance.
The above results — both for ballistic and diffusive

limits — are valid for sufficiently long junctions. One
can also decrease the thickness of the normal metal d
and gradually crossover to the limit of short supercon-
ducting constrictions. A microscopic description of the
dc Josephson effect of such type of weak links was de-
veloped by Kulik and Omel’yanchouk [16]. Also in
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such systems at low temperatures the current-phase
dependence deviates from sin� and the critical current
I Tc( )� 0 is again proportional to the combination
º /eRqp N , where now ºqp � �. A crossover between
the two limits of long SNS junctions and short super-
conducting weak links can also be described micro-
scopically. In the clean case this task can be trivially
accomplished by solving the Eilenberger equations
[17–19], while in the dirty limit one should make use
of the Usadel equations [20] which can be solved only
numerically. The latter task has recently been carried
out in Ref. 15.

Let us also note that in all the above considerations
intermetallic interfaces were assumed to be perfectly
transparent. It is also straightforward to generalize
the analysis in order to account for electron scattering
at the insulating barrier which can be present inside a
weak link. For short superconducting junctions con-
taining an insulating barrier with an arbitrary energy
independent transmission the corresponding gene-
ralization has been worked out by Haberkorn et al.
[21]. This analysis yields a general formula for the Jo-
sephson current which matches with the Ambe-
gaokar—Baratoff result [3] in the weak tunneling
limit and crosses over to the Kulik—Omel’yanchouk's
expression [16] for clean constrictions at transmis-
sions approaching unity. It is interesting that the re-
sult [16] for diffusive constrictions can also be reco-
vered from the formula of Ref. 21 after its slight
generalization. In order to do so one should assume
that the transmission is not the same for all conduct-
ing channels but rather obeys the Dorokhov's distribu-
tion formula. Combining this formula with the expres-
sion [21] and summing over all conducting channels
one arrives at the result [16] for diffusive weak links.

One can also investigate transport properties of
more complicated layered structures which contain
both normal metal layers and insulating barriers. For
instance, SNS systems with one insulating barrier,
such as SINS and SNINS were analyzed by a number of
authors [22–28]. For an extended review summarizing
various features of dc Josephson effect in different
types of superconducting weak links and further refer-
ences we refer the reader to Refs. 29–31.

Most of the results reviewed above were obtained
already long time ago and are by now well established
and well understood. One can think that considering
dc Josephson effect in even more complicated struc-
tures like, for instance, SNS structures with two or
three insulating barriers, may at most yield somewhat
more cumbersome expressions but would not allow to
encover any new physics beyond what has already
been understood in simpler situations. Below we will
show that it is not so. Just on the contrary, in the next

section we will demonstrate that qualitatively new ef-
fects may occur in SNS junctions with more than one
insulating barriers, in particular provided the cross
section of such junctions is reduced to be comparable
to the square of the Fermi wavelength.

2. Josephson effect and quantum interference
of quasiparticles

In this section we will analyze the dc Josephson ef-
fect in SNS systems which contain several insulating
barriers. In this case electrons scattered at different
barriers can interfere inside the junction. We will
demonstrate that such interference may lead to quali-
tatively new effects and cause severe modifications of
the supercurrent across the junction. We will see that
these modifications can go in both directions, i.e., the
Josephson current can be dramatically decreased by
destructive interference of quasiparticles or, on the
contrary, increased as a result of their constructive in-
terference. The first situation is realized for suffi-
ciently short junctions, while for longer ones the sec-
ond effect might become more pronounced.

The phenomenon of quantum interference of
quasiparticles is of primary importance for SNS struc-
tures with few conducting channels. The interest to
such structures grew considerably after several experi-
mental groups have succeeded in connecting a carbon
nanotube to two superconductors and performing
transport measurements in such systems [32–34].
More conventional SNS structures with many con-
ducting channels and several insulating barriers are
also of considerable interest, for instance in relation to
possible applications, see, e.g., Ref. 35 and further
references therein. We will demonstrate that for such
systems quantum interference effects are also impor-
tant provided there exist more than two scatterers in-
side the junction.

On a theoretical side a significant difficulty is that
the powerful formalism of quasiclassical energy-inte-
grated Eilenberger Green functions [17–19,30] sup-
plemented by the Zaitsev boundary conditions [36]
cannot be directly applied to systems containing more
than one insulating barrier. An important ingredient
of the derivation [36] is the assumption that such bar-
riers are located sufficiently far from each other, so
that interference effects emerging from electron scat-
tering can be totally neglected. It is also essential that
Zaitsev boundary conditions do not depend on the
scattering phases. Since here we are just interested
in investigating the quantum interference of quasi-
particles, we are not in a position to use the quasi-
classical Eilenberger formalism for our purposes. One
possibility to circumvent this problem is to apply the
formalism [37,38] within which the presence of an ar-
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bitrary number of barriers in the system can be ac-
counted for by linear boundary conditions. Another —
even more straightforward — possibility to analyze
the dc Josephson effect in structures with several insu-
lating barriers is to directly solve the exact Gor’kov
equations [39]. Here we will follow the second ap-
proach.

The results presented in this section were obtained
in collaboration with Galaktionov [8]. A similar ap-
proach has also been used independently by Brinkman
and Golubov [40].

2.1. General formalism

In what follows we will assume that our system is
uniform along the directions parallel to the interfaces
(coordinates y and z). Performing the Fourier trans-
formation of the normal G and anomalous F � Green
function with respect to these coordinates

G
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we express the Gor’kov equations in the following
standard form
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Here  �n n T� �( )2 1 is the Matsubara frequency,
and �( )x is the superconducting order parameter.The
Hamiltonian �H in Eq. (5) reads
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Here
~

( )| | | | | |k k A� � e
c x , �F is Fermi energy, the

term V x( ) accounts for the external potentials (in-
cluding the boundary potential), A | | is the vector
potential. The Hamiltonian �Hc is obtained from �H
(6) by inverting the sign of the electron charge e.

As usually, it is convenient to separate fast oscilla-
tions of the Green functions � �exp ( )ik xx from the
envelope of these functions changing at much longer
scales as compared to the atomic ones. Then one can
construct a particular solution of the Gor’kov equa-
tions (5) in the following form
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These functions satisfy Gor’kov equations at x x� �.
Here �� are two linearly independent solutions of the
equation

i H x

x i H
n
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The solution ��1 does not diverge at x � � �, while
��2 is well-behaved at x � � �. Similarly, two lin-
early independent solutions ��12, do not diverge, re-
spectively, at x � � � and x � � �.

In Eq. (9) we defined

� ( ) ( ) ~( ).| | | | | |
H iv

e
c

x
e

mc
x V xa

x x� � � � � �� A v A
2

2
2

2
(10)

Here k mv k kx x F� � �2 2
| |
, ~( )V x represents a slowly

varying part of the potential which does not include
fast variations possibly occuring at metallic inter-
faces. The latter will be accounted for by the boun-
dary conditions to be considered below.

The functions f x12, ( ) and g x12, ( ) are determined
with the aid of the continuity condition for the Green
functions at x x� � and the condition resulting from
the integration of �( )x x� � in Eq. (5).

A general solution of the Gor’kov equations has the
form
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For systems which consist of several metallic layers
the particular solution is obtained with the aid of the
procedure outlined above provided both coordinates x
and x� belong to the same layer. Should x and x� be-
long to different layers, the particular solution is zero
because in that case the �-function in Eq. (5) fails.
The functions l x123 4, , , ( )� in each layer should be de-
rived from the proper boundary conditions. These are
just the matching conditions for the wave functions
on the left and on the right side of a potential barrier
A ik x B ik xx x1 1 1 1exp ( ) exp ( )� � and A ik xx2 2exp ( ) �
� �B ik xx2 2exp ( ), respectively. These conditions
have the standard form (see, e.g., [41]):
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(13)

define, respectively, the reflection and transmission
coefficients of the barrier. Applying these boundary
conditions at each insulating barrier one uniquely de-
termines all the unknown functions in Eq. (11) and
thereby completes the construction of the Green func-
tions for our problem. For further details we refer the
reader to Ref. 8.

We are now in a position to specify the general ex-
pression for the Josephson current across ballistic SNS
junctions which contain an arbitrary number of insu-
lating barriers. In what follows we will assume that a
thin specularly reflecting insulating barriers (I) are
situated at both SN interfaces. Additional such barri-
ers can also be present inside the N metal. Transmis-
sions of these barriers may take any value from zero to
one. We also assume that electrons propagate ballisti-
cally between any two adjacent barriers and that no
electron-electron or electron-phonon interactions are
present in the normal metal. For simplicity we will re-
strict our attention to the case of identical supercon-
ducting electrodes with singlet isotropic pairing and
neglect suppression of the superconducting order pa-
rameter � in the electrodes close to the SN interface.
The phase of the order parameter is set to be ��/2
(��/2) in the left (right) electrode. As before, the
thickness of the normal layer will be denoted by d.

Employing the standard formula for the current
density

J
ie
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T
d k
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n
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and making use of the expressions for the Green func-
tions, one arrives at the following result
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, (15)

where the function W depends on the number of insu-
lating barriers. This function will be specified below
for the case of two and three barriers.

Note that the integral over kx in Eq. (15) can be re-
placed by a sum over independent conducting chan-
nels

A

2
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x
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�  �(...) (...) , (16)

where A is the junction cross section. In this case D12,
and R12, may also depend on the channel index m.

2.2. SINI S� junctions with few conducting channels

Let us first consider SNS junctions with two insu-
lating barriers, one at each NS interface. In this case
the function W in (15) takes the form

W
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Here " #� �2k dx is the phase of the product
� � � �2 2 1 1

* * *. Equations (15), (17) provide a general ex-
pression for the dc Josephson current in SINI’S struc-
tures valid for arbitrary transmissions D1 and D2.

Let us first analyze the above result for the case of
one conducting channel N � 1. We observe that the
first term in Eq. (17) contains cos ( )2k dx � # which
oscillates at distances of the order of the Fermi wave-
length. Provided at least one of the barriers is highly
transparent and/or (for sufficiently long junctions
d � 
0) the temperature is high T v /dF		 this oscil-
lating term is unimportant and can be neglected.
However, at lower transmissions of both barriers and
for relatively short junctions d v /TF� this term
turns out to be of the same order as the other contribu-
tions to W (17). In this case the supercurrent is sensi-
tive to the exact positions of the discrete energy levels
inside the junction which can in turn vary consider-
ably if d changes at the atomic scales � 1/kF . Hence,
one can expect sufficiently strong sample-to-sample
fluctuations of the Josephson current even for junc-
tions with nearly identical parameters.

Let us first consider the limit of relatively short
SINI’S junctions in which case we obtain

I
e

T
�

� $
%&

'
()

� �
2 2

T

D

Dsin
tanh , (18)

where we defined

D T( ) sin ( )� � � �1 22 / (19)

and an effective normal transmission of the junction

T �
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D D

R R R R
1 2

1 2 1 21 2 cos
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Equation (18) has exactly the same functional form
as the result derived by Haberkorn et al. [21] for SIS
junctions with an arbitrary transmission of the insu-
lating barrier. This result is recovered from our
Eqs. (18), (20) if we assume, e.g., D D1 2�� in which
case the total transmission (20) reduces to T � D1.

As we have already discussed the total transmission
T and, hence, the Josephson current fluctuate depend-
ing on the exact position of the bound states inside the
junction. The resonant transmission is achieved for
2k dx � � �# �, in which case we get

T res �
�

D D

R R

1 2

1 2
21( )

. (21)

This equation demonstrates that for symmetric junc-
tions D D1 2� at resonance the Josephson current
does not depend on the barrier transmission at all. In
this case T res � 1 and our result (18) coincides with
the formula derived by Kulik and Omel’yanchouk
[16] for ballistic constrictions. In the limit of low
transmissions D12 1, �� we recover the standard
Breit—Wigner formula T res � �4 1 2 1 2

2D D / D D( )
and reproduce the result obtained by Glazman and
Matveev [42] for the problem of resonant tunneling
through a single Anderson impurity between two su-
perconductors.

Note that our results (18)–(20) also support the
conclusion reached by Beenakker [43] that the
Josephson current across sufficiently short junctions
has a universal form and depends only on the total
scattering matrix of the weak link which can be evalu-
ated in the normal state. Although this conclusion is
certainly correct in the limit d� 0, its applicability
range depends significantly on the physical nature of
the scattering region. From Eqs. (15), (17) we ob-
serve that the result (18), (19) applies at d �� 
0 not
very close to the resonance. On the other hand, at re-
sonance the above result is valid only under a more
stringent condition d D�� 
0 max, where we define
Dmax � max ( , )D D1 2 .

Now let us briefly analyze the opposite limit of suf-
ficiently long junctions d 		 
0. Here we will restrict
ourselves to the most interesting case T � 0. From
Eqs. (15), (17) we obtain
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where R R R� � �1 2. For a fully transparent channel
D D1 2 1� � the above expression reduces to the well
known Ishii—Kulik result [11,12]
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whereas if one transmission is small D1 1�� and
D2 1* we reproduce the result [22]
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Provided the transmissions of both NS interfaces are
low D12 1, �� we obtain in the off-resonant region
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where �[ ]" is a 2�-periodic function defined as
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In the vicinity of the resonance | | | |" �� � Dmax the
above result does not hold anymore. Exactly at reso-
nance " �� � we get
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For a symmetric junction D D12, � this formula yields

I
ev D /
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sin
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2

2
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while in a strongly asymmetric case D D1 2�� we
again arrive at the expression (24). This implies that
at resonance the barrier with higher transmission D2
becomes effectively transparent even if D2 1�� . We
conclude that for D12 1, �� the maximum Josephson
current is proportional to the product of transmis-
sions D D1 2 off resonance, whereas exactly at reso-
nance it is proportional to the lowest of two transmis-
sions D1 or D2.

We observe that both for short and long SINI’S
junctions interference effects may enhance the
Josephson effect or partially suppress it depending on
the exact positions of the bound states inside the junc-
tion. We also note that in order to evaluate the
supercurrent across SINI’S junctions it is in general
not sufficient to derive the transmission probability
for the corresponding NINI’N structure. Although the
normal transmission of the above structure is given by
Eq. (20) for all values of d, the correct expression for
the Josephson current can be recovered by combining
Eq. (20) with the results [21,43] in the limit of short
junctions d D�� 
0 only. In this case one can neglect
suppression of the anomalous Green functions inside
the normal layer and, hence, the information about
the normal transmission turns out to be sufficient. On
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the contrary, for longer junctions the decay of Cooper
pair amplitudes inside the N layer cannot be anymore
disregarded. In this case the supercurrent will deviate
from the form (18) even though the normal transmis-
sion of the junction (20) will remain unchanged. This
deviation becomes particularly pronounced for long
junctions, i.e., for d 		 
0 out of resonance and for
d D		 
0 at resonance.

Generalization of the above results to the case of an
arbitrary number of independent conducting channels
N 	 1 is trivial: The supercurrent is simply given by
the sum of the contributions from all the channels.
These contributions are in general not equal because
the phase factors " #� �2k dx change randomly for
different channels. Hence, mesoscopic fluctuations of
the supercurrent should become smaller with increas-
ing number of channels and eventually disappear in
the limit of large N.

In the latter limit the Josephson current is obtained
by averaging over all values of the phase ". This limit
was already studied in details [8,40] and will not be
considered here. We will only point out that — as it
was demonstrated in Ref. 8 — in the limit N � � in-
terference effects are effectively averaged out and ex-
actly the same result can be reproduced by means of
the Eilenberger formalism supplemented by Zaitsev
boundary conditions. It is also worthwhile to empha-
size that the latter statement applies only to the junc-
tions with two insulating barriers. Below we will
show that for systems with more than two barriers
quasiparicle interference effects turn out to be even
more significant, and the correct result for the current
cannot be recovered with the aid of Zaitsev boundary
conditions even in the limit N � �.

2.3. Josephson current in SINI NI S� � � junctions

Let us now turn to SNS structures with three insu-
lating barriers. As before, two of them are located at
SN interfaces, and the third barrier is inside the N
layer at a distance d1 and d2, respectively, from the
left and right SN interfaces. The transmission and re-
flection coefficients of this intermediate barrier are de-
noted as D0 and R D0 01� � , whereas the left and the
right barriers are characterized by D R1 11� � and
D R2 21� � , respectively.

The supercurrent is calculated along the same lines
as it was done for the case of two barriers. The final re-
sult is again expressed by Eq. (15), where the func-
tion W is now defined by a substantially more cum-
bersome expression than one for the two barriers case.
This expression was evaluated in Ref. 8 and will not
be presented here. We will go over to the final results.

2.3.1. One channel limit. Let us first discuss the
case of one conducting channel. In the limit of short

junctions d D�� 
0 max we again reproduce the result
(18) where the total effective transmission of the nor-
mal structure with three barriers takes the form

T
C

�
� � �
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1
1 0 2

1 0 2 12 012
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t t t t( , )
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, , ,
(29)

where
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2

2
21 1t t t
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Here we define t D / R012 012 0121, , , , , ,( )� � and
" #12 12 122, , ,� �k dx . For later purposes let us also
perform averaging of this transmission over the
phases "12, . We obtain
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� � � �
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2
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2
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t t t

t t t t t t t t t t t t
. (31)

In particular, in the case of similar barriers with
small transparencies D D012 1, , * �� the average nor-
mal transmission of our structure is T � D /3 2. Sup-
pression of the average transmission below the value
� D is a result of destructive interference and indi-
cates the tendency of the system towards localization.

Let us now proceed to the limit of a long junction
d12 0, 		 
 and T � 0. In the off-resonant region for
d d1 2� we find

I
ev D D D

d
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� 2 �2
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1 0 2
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cos cos
.

�
" "
" "

(32)

This expression diverges at resonance (i.e., at " �1 �

or " �2 � ) where it becomes inapplicable. In the reso-
nant region " �2 � we obtain

I
ev D D D

d /

x�
�

� � ��

1 0 2

1
1 24 2 1 2

sin

( cos )[ sin ( )]
.

" T
(33)

2.3.2. Many channel junctions. As it was already
discussed, in the many channel limit it is appropriate to
average the current over the scattering phases. Practi-
cally in any realistic physical realization the widths d1
and d2 fluctuate independently on the atomic scale. In
this case averaging over "1 and "2 should also be per-
formed independently. If d1 and d2 do not change on
the atomic scale but are incommensurate, independent
averaging over the two phases is to be performed as
well. Independent averaging cannot be fulfilled only
in the (physically irrelevant) case of strictly commen-
surate d1 and d2 which will not be considered below.

Technically independent averaging over the
scattering phases "1 � x and " 32 � x amounts
to evaluating the integral of the expression

762 Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8

Andrei D. Zaikin



1/ t x x[ cos cos ( )]� 3 from x � 0 to some large value
x L� . At 3 � 1 the result of this integration is
L/ t t( )1 � . However, if 3 is irrational, the integral
approaches the value 2 1 2LK /t / t( ) � , where
K h F / h( ) ( , )� � 2 is the complete elliptic integral.

Let us assume that the transparencies of all three
interfaces are small as compared to one. After averag-
ing over the two scattering phases we arrive at the fi-
nal expression for the current

J
ek

D T K
/F

n nn
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2

2

2

2
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(34)

where we define the effective transmission

D d D D Deff � � 4 4

0

1

0 1 2 . (35)

Hence, for similar barriers we obtain the dependence
J D� 3 2/ rather than J D� (as it would be the case
for independent barriers). The latter dependence
would follow from the calculation based on Zaitsev
boundary conditions for the Eilenberger propagators.
We observe, therefore, that quantum interference ef-
fects decrease the Josephson current in systems with
three insulating barriers. This is essentially quantum
effect which cannot be recovered from Zaitsev bound-
ary conditions even in the multichannel limit. This ef-
fect has exactly the same origin as a quantum sup-
pression of the average normal transmission T due to
localization effects. Further limiting expressions for
short junctions can be directly recovered from
Eq. (31).

We also note that the current-phase relation (34)
deviates from a pure sinusoidal dependence even
though all three transmissions are small D012 1, , �� . At
T � 0 the critical Josephson current is reached at
� � 17. which is slightly higher than �/2. Although
this deviation is quantitatively not very significant, it
is nevertheless important as yet one more indication of
quantum interference of electrons inside the junction.

Finally, let us turn to the limit of long junctions
d12 0, 		 
 . We again restrict ourselves to the case of
low transparent interfaces. At high temperatures
T v / dF		 2 12� , we get J D D D d/ T� 0 1 2 exp ( )– ( )
 ,
where d d d� �1 2 and 
 �( ) ( )T v / TF� 2 . In this case
the anomalous Green function strongly decays deep in
the normal layer. Hence, interference effects are not
important and the interfaces can be considered as in-
dependent from each other. In the opposite limit
T Dv /dF�� , however, interference effects become
important, and the current becomes proportional to

D /5 2 rather than to D3. Explicitly, at T � 0 with the
logarithmic accuracy we get

J
ek v

d d
d D D D DF F�
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2

2
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1
2

1 2 0 0
1

16

sin
ln .

�
4 4 (36)

We see that, in contrast to short junctions, in the
limit of thick normal layers interference effects in-
crease the Josephson current as compared to the case
of independent barriers. The result (36), as well as
one of Eqs. (34), (35) cannot be obtained from the
Eilenberger approach supplemented by Zaitsev
boundary conditions.

2.4. Some conclusions

By directly solving the Gor’kov equations we evalu-
ated the dc Josephson current in SNS junctions con-
taining two and three insulating barriers with ar-
bitrary transmissions SINI’S and SINI’NI’’S junctions,
respectively. Our results can be directly applied both
to the junctions with few conducting channels (such
as, e.g., superconductor-carbon nanotube-supercon-
ductor junctions [32–34]) and to more conventional
SNS structures in the many channel limit. We have
demonstrated that an interplay between the proximity
effect and quantum interference of quasiparticles may
play a crucial role in such systems causing strong mo-
difications of the Josephson current.

For the system with two barriers and few conduct-
ing channels we found strong fluctuations of the
Josephson critical current depending on the exact po-
sition of the resonant level inside the junction. For
short junctions d D�� 
0 at resonance the Josephson
current does not depend on the barrier transmission D
and is given by the standard Kulik—Omel’yanchouk
formula [16] derived for ballistic weak links. In the
limit of long SNS junctions d 		 
0 resonant effects
may also lead to strong enhancement of the
supercurrent, in this case at T � 0 and at resonance
the Josephson current is proportional to D and not to
D2 as it would be in the absence of interference ef-
fects.

While the above results for few conducting chan-
nels cannot be obtained by means of the approach em-
ploying Zaitsev boundary conditions, in the many
channel limit and for junctions with two barriers the
latter approach does allow to recover correct results.
This is because the contributions sensitive to the scat-
tering phase are effectively averaged out during sum-
mation over conducting channels.

Quantum interference effects turn out to be even
more important in the proximity systems which con-
tain three insulating barriers. In this case the
quasiclassical approach based on Zaitsev boundary
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conditions fails even in the limit of many conducting
channels. In that limit the Josephson current is de-
creased for short junctions (J D� 3 2/ ) as compared
to the case of independent barriers (J D� ). This ef-
fect is caused by destructive interference of electrons
reflected from different barriers and indicates the ten-
dency of the system towards localization. In contrast,
for long SNS junctions with three barriers an interplay
between quantum interference and proximity effect
leads to enhancement of the Josephson current at
T � 0: We obtained the dependence J D� 5 2/ in-
stead of J D� 3 for independent barriers.

3. Parity affected Josephson current

Let us now turn to a different issue which — to the
best of our knowledge — has not yet attracted much
attention in the literature. Namely, we will discuss
an interplay between the parity effect and the dc
Josephson current in superconducting weak links. The
results presented in this section have been obtained in
collaboration with Sharov [9].

It is well known that thermodynamic properties of
isolated superconducting systems are sensitive to the
parity of the total number of electrons [44,45] even
though this number N is macroscopically large. This
parity effect is a direct consequence of the fundamen-
tal property of a superconducting ground state de-
scribed by the condensate of Cooper pairs. The num-
ber of electrons forming this condensate is necessarily
even, hence, for odd N at least one electron always re-
mains unpaired having an extra energy equal to the
superconducting energy gap �. At sufficiently low
temperatures a clear difference between the supercon-
ducting states with even and odd N was demonstrated
experimentally [45,46].

Can the supercurrent be affected by this parity ef-
fect? At the first sight the answer to this question
should be negative because of the fundamental uncer-
tainty relation � �N � � 1. Should the electron number
N be fixed, fluctuations of the superconducting phase
� become large disrupting the supercurrent in the sys-
tem. On the other hand, suppressing fluctuations of
the phase � will destroy the parity effect because of
large fluctuations of N .

Despite that, below we will demonstrate that in
certain superconducting structures the parity effect
can coexist with the nonvanishing supercurrent. Con-
sider a superconducting system which can support cir-
cular persistent currents (PC). An example is pro-
vided by an isolated superconducting ring pierced by
the magnetic flux5 in which case circulating PC is in-
duced in the ring. In accordance with the num-
ber-phase uncertainty relation the global supercon-
ducting phase of the ring fluctuates strongly in this

case, however these fluctuations are decoupled from
the supercurrent and therefore can be integrated out
without any influence on the latter. In what follows
we will show that the parity effect may substantially
modify PC in superconducting nanorings, in particu-
lar for odd number of electrons.

3.1. Parity projection formalism

In order to investigate systematically the influence
of the electron parity number on persistent currents in
superconducting nanorings we will employ the well
known parity projection formalism [48–50]. Recapi-
tulating the key points of this approach we will
closely follow Ref. 49.

The grand canonical partition function
Z H N( , ) [ ( )T 4 � 4� � �Tr exp ] is connected to the ca-
nonical one Z T( , )N by means of the following equa-
tion

Z
N

N
N

( , ) ( , ) expT Z T
T

4
4
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�
�

�

�
�

�

�

 
0

. (37)

Here and below H is the system Hamiltonian, N is
the total number of electrons and � 6 1/T. Inverting
this relation and defining the canonical partition
functions Ze and Zo , respectively, for even (N N6 e)
and odd (N N6 o) ensembles, one gets

Z T du T iTue o
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where

Z Te/o( , ) {[ ( ) ] }( )4 � 4� � � �� �1
2

1 1Tr eN H N

� � �
1
2

[ ( , ) ( , )]Z ZT T i T4 4 � (39)

are the parity projected grand canonical partition
functions. For N 		 1 it is sufficient to evaluate the
integral in (38) within the saddle point approxima-
tion which yields

Z Te/o e/o e/o e/o( ) [ ( ) ,� � �exp ]� 4! N (40)

where ! e/o e/oT T� � ln Z ( , )4 are the parity pro-
jected thermodynamic potentials. They can be pre-
sented in the form

! !
! !

e/o f T b f� � �$
%&

'
()

� �
ln ( ) ,

( )1
2

1 e
�

(41)

where

! f/b T� � � � �ln [ {( ) }] .( )Tr e1 N H N� 4 (42)
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Chemical potentials 4 e/o are defined by the saddle
point condition N T /e/o e/o e/o e/o� �� �! ( , )4 4 .

The main advantage of the above analysis is that it
allows to express the canonical partition functions and
thermodynamical potentials in terms of the parity pro-
jected grand canonical ones thereby enormously sim-
plifying the whole calculation. We further note that
! f is just the standard grand canonical thermo-
dynamic potential and !b represents the
corresponding potential linked to the partition func-
tion Z( , )T i T4 �� . It is easy to see [49] that in order
to recover this function one can evaluate the true
grand canonical partition function Z( , )T 4 , express the
result as a sum over the Fermi Matsubara frequencies
 �f T m /� �2 1 2( ) and then substitute the Bose
Matsubara frequencies  �b Tm� 2 instead of the
Fermi ones. This procedure will automatically yield
the correct expression for Z( , )T i T4 �� and, hence,
for !b.

Having found the thermodynamic potentials for the
even and odd ensembles one can easily determine the
equilibrium current I. Here we will be interested in
describing the currents flowing in isolated supercon-
ducting rings pierced by the external magnetic flux
5x . Then in the case of even/odd total number of
electrons one obtains

I I
I I

e/o f
b f

b f
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�

�
�

e
�( )

,
! !

1
(43)

where the upper/lower sign corresponds to the
even/odd ensemble and we have defined
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3.2. Parity effect in nanorings and blocking of the
supercurrent

Let us now make use of the above general expres-
sions and investigate the influence of the parity effect
on PC in superconducting nanorings with quantum
point contacts (QPC). Before turning to concrete cal-
culations we shall specify the model for our system.
We shall consider mesoscopic superconducting rings
with cross section s and perimeter L R� 2� . The rings
will be assumed sufficiently thin, i.e. s L�� 3 , where
3L is the London penetration length. Superconducti-
vity will be described within the (parity projected)
mean field BCS theory. At sufficiently low tempera-
tures this description is justified provided quantum
phase slips (QPS) [51–53] in nanorings can be ne-
glected. This requirement in turn implies that the ring
cross section should be sufficiently large. With the aid
of the results [51] one concludes that the QPS tunnel-

ing amplitude remains exponentially small provided
the condition s /lF		 3 
2

0 is satisfied. Here 3F is
the Fermi wavelength, 
0 � v /F � is the coherence
length and l is the electron elastic mean free path
which is assumed to be shorter than 
0. For generic
systems QPS effects can usually be neglected provided
the transversal size of the wire/ring s exceeds
� 10 nm. Hence, the total number of conducting chan-
nels in the ring N s/r F� 32 should inevitably be large
Nr 		 1. In addition, the ring perimeter L should not
be too large, so that one could disregard the QPS-in-
duced reduction of the PC amplitude [53]. Finally, we
will neglect the difference between the mean field val-
ues of the BCS order parameter for the even and odd
ensembles [48,49]. This is legitimate provided the
volume of a superconducting ring is large enough,
V � 		Ls /1 7�, where 7 is the density of states at the
Fermi level and � is the BCS order parameter for a
bulk superconductor at T � 0. All these requirements
can easily be met in a modern experiment.

The task at hand is now to evaluate the thermody-
namic potentials ! f/b. Within the mean field treat-
ment these quantities can be expressed in terms of the
excitation energies �k and the superconducting order
parameter �( )r . One finds [49]
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where ~ | ( )| {�} ,! �� ��d /g3 2r r Tr 
 g is the BCS

coupling constant and �
 is the single-particle energy
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A r( ) is the vector potential andU( )r describes the po-
tential profile due to disorder and interfaces.

The excitation spectrum �k has the form

� � 
k s� � � �( ) ,p pv 2 2� (47)

where p is the quasiparticle momentum, 
 � �(p2

� ~)4 / m2 , and ~ ( )4 4� �5x smv /2 2. The superconduct-
ing velocity vector v s is oriented in the direction
along the ring and is defined by the well known ex-
pression

v
mR

ns n
x� �

�

�
��

�

�
��

�

2 0
min

5
5

. (48)
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This expression as well as the excitation spectrum
(47) are the periodic functions of the flux 5x with
the period equal to the superconducting flux quantum
50 2� hc/ e.

Consider the most interesting case T � 0. Making
use of the above expressions one easily finds

I ev s mv /e s e e e s� � �8 4 4 8, ( ) 2 2 (49)

for the even ensemble and

I ev s e
v

L
v

v

vo s o
F

s o
s� � � �8 8 8
4

sgn ( ),
| |1

V
(50)

for the odd one. Here 8e/o e/o/� N V are the electron
densities for the even and odd ensembles, 8 is the
grand canonical electron density at T � 0,
v /m4 4� 2 and vs is assumed to be small as com-
pared to the critical velocity v /pc F� � . We also
note that the second Eq. (50) is an implicit equation
for the chemical potential 4o .

Equation (49) — being combined with (48) — co-
incides with that obtained for the grand canonical en-
semble. In particular, the current Ie represents the
well known «saw tooth» dependence on magnetic
flux. In contrast, for odd ensembles there exists an ad-
ditional flux-dependent contribution to PC (50)
which cannot be viewed just as a renormalization of
8o .

Unfortunately this parity effect is rather small in
multichannel rings as we mentioned above. Esti-
mating the leading contribution to Ie/o as
I ev N /LF r� , we find

( ) .I I /I /Ne o r� ��� 1 1

The results (49), (50) hold as long as T v /LF�� � .
At higher temperatures the parity effect gets even
smaller and eventually disappears at temperatures ex-
ceeding the parameter [45] T / T* *ln ( )* � �7V .
The corresponding expressions are readily obtained
within our formalism, but we will not consider them
here.

Rather we turn to a somewhat different system — a
superconducting ring interrupted by QPC — in which
the parity effect turns out to play a much more impor-
tant role. In this case the thermodynamic potential of
the system ! consists of two different contributions*

! ! 5 !� � � �( ) ( )( , , , ) ( , , )r
x

cT T4 4 (51)

from the bulk part of the ring and from QPC, respec-
tively. The optimal value of the phase difference �
across QPC is fixed by the condition � �� �!/ 0 which
reads

�
�
�

� �
�
��

c
er

x

c!
5

!( ) ( )
.

2
�

(52)

Here we made use of the fact that the thermodynamic
potentials of the ring depend both on 5x and � only
via the superfluid velocity v / mRs � 9( )1 4�
9 � �( )2 0�5 5x/ , in which case one can put
� � � � � ��/ e/ c /x5 ( )( )2 � . The left-hand side of
Eq. (52) represents the current flowing inside
the superconducting ring I c /r r

x
( ) ( )� � � �! 5 �

� ( )( )ev N /L /F r x� � 2 0�5 5 . This value should be
equal to the current across QPC which is given by the
right-hand side of Eq. (52). Estimating the maximum
value of the latter for a single channel QPC as
2e /T� �, we obtain

� ��� 2
0

�
5
5

x L L, if ,* (53)

� 		� 2�n L L, if ,* (54)

where L N /r
* � 		
 
0 0T . In a more general case of

QPC with N conducting channels in the expression
for L* one should set

T T�  n
n

N

.

In what follows we will consider the most interest-
ing limit N Nr�� and L L�� *. Due to Eq. (53) in
this case the dependence Ie/o x( )5 is fully determined
by the current-phase relation for QPS which
can be found by means of Eq. (43) with If/b �
� � � ��( ) ( )2e/ /f/b

c
� ! . It is convenient to employ the

formula [8]
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(55)

In the case of short QPS one has

W / /n n( ) ( )( ) � � �2 1 12 2T � ,

where T n is the transmission of the nth conducting
channel. Substituting this function into (55) and

766 Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8

Andrei D. Zaikin

* The relation (51) is strictly applicable only for grand canonical ensembles. However, at this point the difference
between canonical and grand canonical ensembles is unimportant and can be disregarded.



summing over f one recovers the standard result
[16,21]
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where
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The same summation over Bose Matsubara frequen-
cies b yields
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Finally, the difference ! ! !b f bf� 6 is evaluated as
a sum of the ring (!bf

r( )) and QPS (!bf
c( )) contribu-

tions. The latter is found by integrating If b/ ( )� over
the phase difference �:
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while the former is defined by the standard expres-
sion [49]
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Combining all these results with Eq. (43) we get
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Equation (60) represents the central result of this sec-
tion. Together with Eq. (53) it establishes the com-
plete dependence of PC on the magnetic flux 5 in iso-
lated superconducting nanorings with QPC.

Consider the most interesting limit T � 0. In this
case for the even number of electrons in the ring PC is
given by the expression (56) which coincides identi-
cally with that for grand canonical ensembles [16,21].
On the other hand, for the odd number of electrons
PC will acquire an additional contribution which
turns out to be most important for the case of single
channel QPS N � 1. In that case the expression in the
square brackets of Eq. (60) reduces to zero, i.e., PC

will be totally blocked by the odd electron. Thus, we
predict a novel mesoscopic effect — parity affected
blocking of PC in superconducting nanorings with
QPC.

This result has a transparent physical interpreta-
tion. Indeed, it is well known [47] that the result (56)
can be expressed via the contributions of discrete
Andreev levels E� � � � �( ) ( )�D inside QPS as

I
e E

f E
E
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where D( )� is defined in Eq. (19). Using the Fermi
filling factors for these levels f E� � �( )
� � ��

�[ exp ( ( ) )]1 1E /T one arrives at Eq. (56). If
we now fix the number of electrons inside the ring
and consider the limit T � 0 the filling factors will
be modified as follows. For the even number N all
electrons are paired occupying states with energies
below the Fermi level. In this case one has
f E� � �( ) 1, f E� � �( ) 0, the current is entirely deter-
mined by the contribution of the quasiparticle state
E� and Eq. (61) yields the same result as one for the
grand canonical ensemble. By contrast, in the case of
odd number of electrons one electron always remains
unpaired and occupies the lowest available energy
state — in our case E� — above the Fermi level.
Hence, for odd N one has f E� � �( ) 1, the contribu-
tions of two quasiparticle energy states in Eq. (61)
exactly cancel each other, and the current across QPS
remains zero for any � or the magnetic flux 5x . This
is just the blocking effect which we have already ob-
tained above from a more formal consideration.

For N 	 1 and/or at nonzero temperatures this par-
ity-affected blocking of PC becomes incomplete. But
also in this case the parity effect remains essential at
temperatures T T� * substantially affecting, e.g., the
current-phase relation for QPC. For T 	 0 this relation
will deviate from the grand canonical one both for
even and odd ensembles [9].

Finally, we consider superconducting rings con-
taining a piece of a normal metal. Here we only re-
strict our attention to transparent SNS junctions with
length of the normal metal d 		 
0. In this case for
 �� � one hasW d/vi F( ) cosh ( ) � 2 . Substituting
this function into (55) and repeating the whole calcu-
lation as above, in the limit T � 0 we obtain
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These results apply for � � � �� � and should be
2�-periodically continued otherwise. We observe that
the current Ie again coincides with that for the grand
canonical ensembles [11], while for odd N the cur-
rent-phase relation is shifted by the value �/N. This
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shift has a simple interpretation as being related to
the odd electron contribution ( )2 0e/ E /� � �� from the
lowest (above the Fermi level) Andreev state E0( )�
inside the SNS junction. Unlike in QPC, this contri-
bution does not compensate for the current from other
quasiparticle states. Rather it provides a possibility
for a parity-induced �-junction state in our system.
Indeed, according to Eq. (62) for single mode SNS
junctions the «saw tooth» current-phase relation will
be shifted exactly by �. For more than one conducting
channel N 	 1 within the interval � � � �� � there
exists a twofold degenerate minimum energy (zero
current) state occurring at � � � �/N [54]. In the
special case N � 2 the current-phase relation Io( )�
turns �-periodic.

The well known feature of superconducting rings
interrupted by a �-junction is the possibility to de-
velop spontaneous supercurrent in the ground state
[55]. Although this feature is inherent to any type of
�-junctions, in the case of the standard sinusoidal cur-
rent-phase relation such spontaneous supercurrents
can occur only for sufficiently large values of the ring
inductance L [55]. In contrast, in the situation studied
here the spontaneous current state is realized for any
inductance of the ring because of the nonsinusoidal de-
pendence Io( )� (62).

In order to demonstrate that let us assume that no
external flux is applied to our system. Then at T � 0
the energy of an SNS ring with odd number of elec-
trons can be written in the form

E
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5
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2

0
2
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where 5 is the flux related to the circular current
flowing in the ring. Minimizing this energy with re-
spect to 5, one easily observes that a nonzero sponta-
neous current
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should flow in the ground state of our system. This is
yet one more remarkable consequence of the parity ef-
fect: Just by changing N from even to odd one can in-
duce nonzero PC without any external flux 5x . In
the limit of small inductances L �� 50d/ev NF —
which is easy to reach in the systems under consider-
ation — the value of I does not depend on the number
of channels N and is given by the universal formula
I ev /dF� � . For generic parameters this value can
easily be as large as I � 10 nA.

In summary, new physical effects emerge from an
interplay between the electron parity number and per-
sistent currents in superconducting nanorings. These

effects can be directly tested in modern experiments
and possibly used for engineering new types of super-
conducting flux-charge qubits.

Acknowledgments

The author gratefully acknowledges collaboration
and numerous discussions with A.V. Galaktionov,
D.S. Golubev, and S.V. Sharov. This work is part of
the Kompetenznetz «Funktionelle Nanostructuren»
supported by the Landestiftung Baden-Württemberg
gGmbH. This work has also been supported by the
European Community’s Framework Programme
NMP4-CT-2003-505457 ULTRA-1D “Experimental
and theoretical investigation of electron transport in
ultra-narrow 1-dimensional nanostructures”.

1. A. Einstein, Kuratoriumssitzung der Physikalisch-
Technischen Reichsanstalt (Berlin Charlottenburg),
March 1926: «Von besonderem Interesse ist die Frage,
ob die Verbindungsstelle zwischen zwei Supraleitern
auch supraleitend wird».

2. B. Josephson, Phys. Lett. A1, 251 (1962).
3. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10,

486 (1963); ibid. 11, 104 (1963).
4. A.I. Larkin and Yu.N. Ovchinnikov, Zh. Eksp. Teor.

Fiz. 51, 1535 (1966) [Sov. Phys. JETP 24, 1035
(1967)].

5. N.R. Werthamer, Phys. Rev. 147, 255 (1966).
6. P.W. Anderson and J.M. Rowell, Phys. Rev. Lett.

10, 230 (1963); J.M. Rowell, ibid. 11, 200 (1963).
7. I.K. Yanson, V.M. Svistunov, and I.M. Dmitrenko,

Zh. Eksp. Teor. Fiz. 47, 2091 (1964) [Sov. Phys.
JETP 20, 1404 (1965)].

8. A.V. Galaktionov and A.D. Zaikin, Phys. Rev. B65,
184507 (2002).

9. S.V. Sharov and A.D. Zaikin, cond-mat/0401338.
10. A.F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964)

[Sov. Phys. JETP 19, 1228 (1964)].
11. I.O. Kulik, Zh. Eksp. Teor. Fiz. 57, 1745 (1969)

[Sov. Phys. JETP 30, 944 (1970)].
12. C. Ishii, Progr. Theor. Phys. 44, 1525 (1970).
13. K.K. Likharev, Pis'ma Zh. Tech. Phys. 2, 29 (1976)

[Sov. Tech. Phys. Lett. 2, 12 (1976)].
14. A.D. Zaikin and G.F. Zharkov, Fiz. Nizk. Temp. 7,

375 (1981) [Sov. J. Low Temp. Phys. 7, 184 (1981)].
15. P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm,

A.D. Zaikin, and G. Schön, Phys. Rev. B63, 064502
(2001).

16. I.O. Kulik and A.N. Omel’yanchouk, Fiz. Nizk.
Temp. 4, 296 (1978) [Sov. J. Low Temp. Phys. 4, 142
(1978)].

17. G. Eilenberger, Z. Phys. 214, 195 (1968).
18. A.I. Larkin and Yu.N. Ovchinnikov, in: Nonequi-

librium Superconductivity, D.N. Langenberg and A.I.
Larkin (eds.), North-Holland, Amsterdam (1986).

19. A. Schmid, in: Nonequilibrium Superconductivity,
K.E. Gray (ed.), Plenum, New York (1981).

768 Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8

Andrei D. Zaikin



20. K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
21. W. Haberkorn, H. Knauer, and J. Richter, Phys.

Status Solidi A47, K161 (1978).
22. A.D. Zaikin and G.F. Zharkov, Zh. Eksp. Teor. Fiz.

78, 721 (1980) [Sov. Phys. JETP 51, 364 (1980)].
23. A.D. Zaikin and G.F. Zharkov, Zh. Eksp. Teor. Fiz.

81, 1781 (1981) [Sov. Phys. JETP 57, 944 (1981)].
24. A.A. Svidzinskii, Spatially Nonhomogeneous Problems

in the Theory of Superconductivity, Nauka, Moscow
(1982).

25. A.D. Zaikin and G.F. Zharkov, Pisma Zh. Eksp. Teor.
Fiz. 35, 514 (1982) [JETP Pis'ma 35, 636 (1982)].

26. M.Yu. Kupriyanov and V.F. Lukichev, Zh. Eksp.
Teor. Fiz. 94, 139 (1988) [Sov. Phys. JETP 67, 1163
(1988)].

27. A.A. Golubov and M.Yu. Kupriyanov, J. Low Temp.
Phys. 70, 83 (1988).

28. A.A. Golubov and M.Yu. Kupriyanov, Zh. Eksp.
Teor. Fiz. 105, 1442 (1994) [Sov. Phys. JETP 78, 777
(1994)].

29. C.J. Lambert and R. Raimondi, J. Phys. Cond. Mat.
10, 901 (1998).

30. W. Belzig, F.K. Wilhelm, C. Bruder, G. Schön, and
A.D. Zaikin, Superlattices and Microstructures 25,
1251 (1999).

31. A.A. Golubov, M.Yu. Kupriyanov, and E. Il'ichev,
Rev. Mod. Phys. 76, 411 (2004).

32. Yu. Kasumov et al., Science 281, 540 (1998).
33. M.R. Buitelaar, T. Nussbaumer, and C. Schoenen-

berger, Phys. Rev. Lett. 89, 256801 (2003).
34. M.R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic,

C. Bruder, and C. Schoenenberger, Phys. Rev. Lett.
91, 057003 (2003).

35. M.Yu. Kupriyanov, A. Brinkman, A.A. Golubov, M.
Siegel, and H. Rogalla, Physica C326–327, 16 (1999).

36. A.V. Zaitsev, Zh. Eksp. Teor. Fiz. 86, 1742 (1984)
[Sov. Phys. JETP 59, 1015 (1984)].

37. A.D. Zaikin and S.V. Panyukov, in: Nonequilibrium
Superconductivity, V.L. Ginzburg (ed.), Nova Science
Publ., New York (1988), p. 137.

38. U. Gunsenheimer and A.D. Zaikin, Phys. Rev. B50,
6317 (1994).

39. A.A. Abrikosov, L.P. Gor’kov, and I.Ye. Dzyaloshink-
ski, Quantum Field Theoretical Methods in Statistical
Physics, Second Edition, Pergamon, Oxford (1965).

40. A. Brinkman and A.A. Golubov, Phys. Rev. B61,
11297 (2000).

41. L.D. Landau and E.M. Lifshitz, Quantum Mechanics,
Pergamon, Oxford (1962).

42. L.I. Glazman and K.A. Matveev, Zh. Eskp. Teor. Fiz.
Pis'ma Red. 49, 570 (1989) [JETP Lett. 49, 659
(1989)].

43. C.W.J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
44. D.V. Averin and Yu.V. Nazarov, Phys. Rev. Lett. 69,

1993 (1992).
45. M.T. Tuominen, J.M. Hergenrother, T.S. Tighe, and

M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).
46. P. Lafarge, P. Joyes, D. Esteve, C. Urbina, and M.H.

Devoret, Phys. Rev. Lett. 70, 994 (1993).
47. A. Furusaki and M. Tsukada, Physica B165–166, 967

(1990); C.W.J. Beenakker and H. van Houten, Phys.
Rev. Lett. 66, 3056 (1991).

48. B. Janko, A. Smith, and V. Ambegaokar, Phys. Rev.
B50, 1152 (1994).

49. D.S. Golubev and A.D. Zaikin, Phys. Lett. B195, 380
(1994).

50. D.V. Averin and Yu.V. Nazarov, Physica B203, 310
(1994).

51. A.D. Zaikin, D.S. Golubev, A. van Otterlo, and G.T.
Zimányi, Phys. Rev. Lett. 78, 1552 (1997); D.S.
Golubev and A.D. Zaikin, Phys. Rev. B64, 014504
(2001).

52. A. Bezryadin, C.N. Lau, and M. Tinkham, Nature
(London) 404, 971 (2000); C.N. Lau et al., Phys.
Rev. Lett. 87, 217003 (2001).

53. K.A. Matveev, A.I. Larkin, and L.I. Glazman, Phys.
Rev. Lett. 89, 096802 (2002).

54. A similar behavior is expected for SNS junctions
formed by d-wave superconductors, for further
discussion see Yu.S. Barash, A.V. Galaktionov, and
A.D. Zaikin, Phys. Rev. B52, 665 (1995).

55. L.N. Bulaevskii, V.V. Kuzii, and A.A. Sobyanin,
JETP Lett. 25, 290 (1977).

Some novel effects in superconducting nanojunctions

Fizika Nizkikh Temperatur, 2004, v. 30, Nos. 7/8 769


