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We present a geometric model for the modelling of spectral energy distribution of inclined protoplanetary disks.
We investigate peculiarities in the geometry of nearly edge-on disks with an inner hole and a central object. In the
investigation we consider two cases: that of geometrically thin disks (where the star is larger than the rim of the
inner edge of the disk) and that of geometrically thick disks (when the star is smaller than the inner rim of the
disk). Our model is appropriate for modelling substellar objects with primordial gas-rich disks, as activity (such
as accretion or out�ows) in such disks has low amplitude and can be ignored even when modelling early evolution
stages. Furthermore, it can also be used to model any symmetric system with a disk and a spherical central body
(star, brown dwarf or giant planet).
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introduction

A circumstellar disk is a torus, annular or ring-
shaped structure, which consists of gas, dust, plan-
etesimals, rocks and parent bodies such as asteroids
and comets, surrounding a host star. Disk structure
modelling has developed signi�cantly in the past sev-
eral years, from simple models (see e. g. [2, 3, 6, 9])
to detailed dust continuum radiative transfer mod-
els (see e. g. [4, 5, 12]) and models which, in addition
to dust continuum radiative transfer, take into ac-
count gas radiative transfer in the disks [8, 13] with
dust and gas temperature deviations in the upper
layers. Radiative transfer models enable us to sim-
ulate disk structure with high precision, taking into
account disk physical and dynamical properties, as
well as disk inclination. In most cases, simple models
also provide a plausible interpretation of the obser-
vational data.

In the simple disk models for spectral energy dis-
tribution simulations, the system's geometry of the
inclined disk is taken into account by means of pro-
jecting the emitting area (i. e., multiplying by cos i:
see e. g. [3, 6]), while limiting the viewing angles
for which the disk does not occult the central star.
Previous modelling results for such con�gurations
and for the systems with typical primordial disks
around brown dwarfs [15] indicate, that the intensity
of the spectral energy distribution pro�le decreases
at wavelength > 1µm by means of increasing the in-
clination angle toward the observer. In this paper
we investigate the geometrical peculiarity of a disk

with an inner hole and a central object (potentially
a star, brown dwarf, or giant planet), when the sys-
tem is highly inclined toward the observer. Specif-
ically we focus on the con�gurations when the disk
partly/completely occults the central star. The basic
ideas of the model for geometrically thin disks (i. e.,
the star is larger than the rim of the inner edge of the
disk) have already been presented in [14] and [16].
In this paper, we generalize the existing model for
geometrically thin disks and present the calculation
method for geometrically thick disks (i. e., when the
star is smaller than the inner rim of the disk) to cover
all possible geometric combinations for protoplane-
tary disks with an inner hole.

general remarks and

critical angles determination

Non-zero inclined protoplanetary disks consist of
four elements: the central object, the disk, and the
inner and outer rims of the disk. The inner and
outer rims are the inner and outer edges of the disk
which, as we assume, have a �at shape and are per-
pendicular to the disk midplane. In this section we
describe the procedure for calculating the projected
emitting areas of these parts as a function of the disk
inclination angle. The calculations are done in two
steps. Firstly, the critical angles are calculated. The
critical angles are the limiting values that determine
the area con�gurations as presented in Fig. 1�2. Sec-
ondly, the projected emitting areas are calculated for
the disk parts.
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Fig. 1: Sketches of the key con�gurations for the criti-
cal angles and the corresponding projected areas for the
circular central object with �aring disk (hin < R∗). The
arrows are pointing to the observer.

0
o

R*Rin Rout

hin  hout

γ1

γ1

γ2(2)

γ2(1)
γ2(1)

γ2(2)

γ3(1) γ3(1)

γ3(2)

γ3(2)

γ4

γ4

 i
α

Fig. 2: Sketches of the key con�gurations for the criti-
cal angles and the corresponding projected areas for the
circular the central object with �aring disk (hin > R∗).

critical angles for the system

with a geometrically thin disk

Fig. 1 depicts the sketches of the key con�gura-
tions for the critical angles (right side of �gure) and
the corresponding projected areas of the spherical
central object with a geometrically thin �aring disk
as it is seen (although not resolved) by the observer
(left panels of �gure). For all disk con�gurations, the
surface of the central object that is not occulted by
the disk material is shown in black, the disk inner rim
is in medium grey, the disk is in light grey and the
disk outer rim in dark grey. The central object ra-
dius (R∗), disk inner and outer radii (Rin and Rout,
correspondingly), disk inner and outer half height
(hin and hout, correspondingly) are indicated in the
�gure. The arrows are pointing to the observer, in-

dicating the inclination angle. Angles are measured
from the 0◦ (orientation face-on disk).

These con�gurations correspond to the case when
the disk inner rim half-thickness is lower than the
radius of the central object (viz. hin < R∗). Such
a system is characterized by 5 critical angles as is
shown in Fig. 1. At inclinations i lower than the �rst
critical angle β1 the disk and the central object do
not occult each other, being β1:

β1 =

= arctan

(
hinRin −

√
h2
inR

2
in − (h2

in −R2
∗) (R

2
in −R2

∗)

h2
in −R2

∗

)
.

For the angle interval β1 < i ≤ β2, the central ob-
ject blocks the fraction of the disk inner rim, and the
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opposite side of the disk inner rim blocks the equal
part of the central object. The second critical angle
is determined as following:

β2 = 2arctan

(
hin

(Rin +R∗)
+

+

√
h2in

(Rin +R∗)2
+

Rin −R∗
Rin +R∗

 .

Once i > β2 the central object shields the frac-
tion of the disk as well. When the disk inclination
exceeds the angle β3 the inner hole is not visible any-
more. The value of this angle depends on the disk
�aring angle α. If α > arctan(hin/Rin), then

β3(1) =
π

2
− arctan

(
hout + hin
Rin +Rout

)
. (1)

If α ≤ arctan(hin/Rin), then

β3(2) =
π

2
− arctan

 hin√
R2

in −R2
∗

 . (2)

The angle β4 determines the disk inclination when
the inner rim is not visible anymore:

β4 =
π

2
− arctan

(
hout − hin
Rout +Rin

)
.

Finally, the last critical angle is β5, when the cen-
tral object is completely hidden by the disk:

β5 =
π

2
− arctan

(
hout −R∗

Rout

)
.

critical angles for the system

with a geometrically thick disk

Systems with geometrically thick disks (hin > R∗)
would have di�erent critical angles, because in this
con�guration the central object can only shield the
disk inner rim. Sketches of the key con�gurations for
the geometrically thick disk are presented in Fig. 2.

Comparing Fig. 2 with Fig. 1 the correspondence
of the calculation procedure for the critical angles of
these two cases is evident:

γ1 = β1; γ2(1) = β3(1); γ2(2) = β3(2); γ4 = β4.
The angle γ3 determines the moment when the

central object is not seen anymore (i. e. it is an ana-
logue of the angle β5 for the geometrically thin disk).
For the geometrically thick disk the value of this an-
gle depends on α: if α > arctan((hin − R∗)/Rin),
then γ3(1) = β5; if α ≤ arctan((hin −R∗)/Rin), then

γ3(2) =
π

2
− arctan

(
hin −R∗

Rin

)
.

projected areas for system

with geometrically thin disk

After determining the values for the critical angles
we can calculate the areas of the emitting surfaces
projections for every system component. The ana-
lytical expressions for all projected areas have been
derived using the classical method of mathematical
analysis. The detailed description of this procedure
for the geometrically thin disk has already been pre-
sented in [14, 16]. Here, we skip this part and present
only the resulting generalized equations.

The area of the central object projection equals
πR2

∗ if i ≤ β1. When i > β1, the inner rim of the
disk overlaps part of the central object, so its area
should now be calculated with the expression below.

If β1 < i < β3 (Hereinafter β3 stands for either
β3(1) or β3(2), using equation (1) or (2), as appropri-
ate.), then

S∗(β1<i<β3(1)) = πR2
∗ + k(Rin, x1) cos i−
− k(R∗, x1)− 2hinx1 sin i, (3)

where x1 is a variable that is determined by R∗, Rin,
hin and i (in Appendix A) we show how to compute
x1), k is a function introduced to shorten the equa-
tions, in terms of Rin and x1 is given by:

k(Rin, x1) = R2
in arcsin

(
x1
Rin

)
+ x1

√
R2

in − x21.

The expression 3 must also be equal for β3(2),
while using the outer rim parameters (radius and
half thickness) of the disk, including the calculations
for x1.

If β3(2) ≤ i < β4, then

S∗(β3(2)≤i<β4) = k(Rin, x1) cos i+

+ k(R∗, x1)− 2hinx1 sin i. (4)

For the inclination angle β3(1) ≤ i < β5 (if
α > arctan (hin/Rin)) and for β4 ≤ i < β5 (if
α ≤ arctan(hin/Rin)), the central object projected
area is calculated using equation 4 also, while using
the outer rim parameters, including the calculations
for x1.

For the disk inclination i < β3 the projected area
of the inner rim approximately equals

Sin(i<β3) = 4hin sin i

√
R2

in − (hin tan i)
2−

−∆Sin(i<β3), (5)
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where ∆Sin(i<β3) is an area that is shielded by the
central object, ∆Sin(i<β3) = 0 for i ≤ β1. For
β1 < i ≤ β2,

∆Sin(i<β3) = k(R∗, x1)− k(Rin, x1) cos i+

+ 2hinx1 sin i. (6)

For β2 < i < β3:

∆Sin(i<β3) = cos i [k(Rin, x2)− k(Rin, x1)]+

+ k(R∗, x1)− k(R∗, x2) + 2hin(x1 + x2) sin i,

where x2 is a variable that is determined together
with x1 in Appendix A.

If β3(1) ≤ i < β4, then the inner rim area is

Sin(β3(1)≤i<β4) = cos i [k(Rin, x3) + k(Rout, x3)]+

+ 2(hin − hout)x3 sin i−∆Sin(β3(1)<i≤β4),

where x3 is a variable that is determined by Rin, hin,
Rout, hout and i. In Appendix A we show how to
compute x3.

If β3(2) ≤ i < β4 then

Sin(β3(2)≤i<β4) = cos iπR2
in −∆Sin(β3(2)≤i<β4),

where ∆Sin(β3(1)≤i<β4) and ∆Sin(β3(2)≤i<β4) are the
areas that are shielded by the central object, and
are calculated using the same equation, while us-
ing the outer or inner rims geometrical parameters,
as appropriate. In case of inner rim parameters
(β3(2) ≤ i < β4) it is:

∆Sin(β3(2)≤i<β4) = cos i [k(Rin, x2) + k(Rin, x1)] +

+ k(R∗, x1)− k(R∗, x2)− 2hin(x1 − x2) sin i.

The outer rim area equals Sout = 4Routhout sin i
for i 6= 0.

The area of the disk inclined at i < β3 is described
with the equation:

Sd(i<β3) = (πR2
out − πR2

in) cos i−∆Sd(i<β3),

where ∆Sd(i<β3) is an area that is shielded by the
central object, it= 0 for i ≤ β2. And for β2 < i < β3:

∆Sd(β2<i<β3) = k(R∗, x2)−
− k(Rin, x2) cos i− 2hinx2 sin i.

For the inclination angle i ≥ β3 the disk projected
area is:

Sd(i≥β3) = πR2
out cos i−∆Sd(i≥β3),

where ∆Sd(i≥β3) is a part of the disk that is shielded
by the central object and the disk inner rim, it de-
pends on the i:
∆Sd(i≥β3) = S∗(β3≤i<β4)+Sin(β3≤i<β4) if β3 ≤ i < β4;

∆Sd(i≥β3) = S∗(β4≤i<β5) if β4 ≤ i < β5;

∆Sd(i≥β3) = 0 if i ≥ β5.

projected areas for the system

with geometrically thick disk

As for the geometrically thin disk, the central ob-
ject projected area equals πR2

∗ for i ≤ γ1. For angles
ranging γ1 < i < γ2 it is calculated from equation 3
(using the inner or outer rim parameters for γ2(1)
and γ2(2), correspondingly). For γ2(2) ≤ i < γ3(2) it
is calculated using the equation (4) and for γ2(1) ≤
i < γ3(1) also from equation (4), but for the outer
rim geometrical parameters of the disk (including the
calculations of the value for x1).

The inner rim projected area for inclination i <
γ2 is calculated using equation (5). Where ∆Sin = 0
for i ≤ γ1 and for γ1 < i < γ2 (Hereinafter γ2 and γ3
stand for either γ2(1) or γ2(2) and γ3(1) or γ3(2), cor-
respondingly), ∆Sin is calculated with equation (6).
For γ2 ≤ i < γ4, the inner rim projected area, de-
pending on α, is

Sin(γ2(1)≤i<γ4) = cos i [k(Rin, x3)− k(Rout, x3)] +

+ 2(hin − hout)x3 sin i− S∗(β3(1)<i≤β4),

Sin(γ2(2)≤i<γ4) = πR2
in cos i− S∗(β3(2)<i≤β4),

S∗(γ3≤i<γ4) = 0.

The projected area of the disk outer rim is calcu-
lated the same way as that of the geometrically thin
disk.

In case of the geometrically thick disk, the disk
projected area is not shielded by the central object,
and for all inclinations it equals (πR2

out−πR2
in) cos i.

Exceptions are the cases when α > arctan(hin/Rin):

Sd(γ2(1)≤i<γ4) = πR2
out cos i−
− Sin(γ2(1)≤i<γ4) − S∗(β3≤i<β4);

and when α > arctan((hin −R∗)/Rin):

Sd(γ3(1)≤i<γ4) = πR2
out cos i− Sin(γ3(1)≤i<γ4).

conclusions

We have presented a geometrical model for young
stellar, substellar, and planetary objects, valid for
highly inclined protoplanetary disks. We considered
two cases: geometrically thin (hin < R∗) and geo-
metrically thick (hin > R∗) disks. A typical example
of a geometrically thin disk is a gas-rich primordial
disk with a relatively small inner hole. We have also
developed a geometrically thick disk model for tran-
sitional disks with large inner radii and, therefore,
hin � R∗. The proposed model can be applied di-
rectly to the optically thick primordial disks coupled
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with a simple radiative transfer model. In the fol-
lowing paper we will present our model application
on the example of circumsubstellar primordial disks,
whose activity (like accretion, out�ows) have smaller
rates and for SEDs modelling can be ignored even at
early evolution stages [1, 7, 10, 11].
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appendix a:

emitting areas projections

To derive the equations for x1 and x2, that are re-
quired for the calculations of the emitting areas pro-
jections, let us consider the con�guration that cor-
responds to the disk inclination β2 < i < β3. Fig. 3
shows the inner region of that disk.

Shaded dark grey area shows the projection of the
part of the central object and shaded light grey area
shows the projection of the part of the inner rim as
seen by the observer. The central object projection
area is limited by the circle (that describes the cen-
tral object projection) and ellipse (that describes the
upper edge of the disk inner rim); they are described
by the equations

x2 + y2 = R2
∗,

x2

R2
in

+
(y − hin sin i)

2

R2
in cos

2 i
= 1. (A1)

Presenting these equations explicitly we obtain
the system of equations y1(x) =±

√
R2

∗ − x2,

y2(x) =hin sin i± cos i
√

R2
in − x2.

These two curves intersect in 4 points. The positive
solutions of this system are

x1 =

√
−ξ2 +

√
ξ22 − 4ξ1ξ3
2ξ1

,

x2 =

√
−ξ2 −

√
ξ22 − 4ξ1ξ3
2ξ1

,

where:
ξ1 = sin4 i,

ξ2 = 2 sin2 i
[
R2

in cos
2 i−R2

∗ + h2in(cos
2 i+ 1)

]
,

ξ3 =
(
R2

∗ − h2in sin
2 i−R2

in cos
2 i
)2−

− (2hinRin cos i sin i)
2 .

As a result of the symmetry of the upper and
lower edge of the disk inner rim relative to the OX
axis, and as it is seen from the geometrical construc-
tions in Fig. 3, x1 is also the solution for the equa-
tions describing the central object circle and the el-
lipse of the lower edge of the disk inner rim located
in the �rst quarter.

To derive the equation for x3, let us consider the
con�guration that corresponds to the disk inclina-
tion β3(1) ≤ i < β4. In Fig. 4 grey colour shows the
part of the disk inner rim as seen by the observer.
The central object is not shown in Fig. 4, to avoid
�gure obstruction.

Hence the variable is an intersection point of two
ellipses describing the upper edges of the inner y2(x)
and outer y3(x) rims. According to the geometrical
constructions we use the positive half of the y2(x)
(Eq. (A1)) and the negative half for the y3(x). The
system of equations is

y2(x) = hin sin i+ cos i
√

R2
in − x2,

y3(x) = hout sin i− cos i
√

R2
out − x2.

The positive solution of this system is

x3 =

√
4R2

inR
2
out −

[
tan2 i(hout − hin)2 −R2

in −R2
out

]2
2 tan i (hout − hin)

.
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Fig. 3: Schematic of the projected area of the central ob-
ject shielded by the inner rim, for the β2 < i < β3.
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Fig. 4: Schematic of the projected area of the inner rim
shielded by the outer rim, for the β3(1) < i ≤ β4.
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