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The problem of the equilibrium state of the charged many-particle system above dielectric surface is for-
mulated. We consider the case of the presence of the external attractive pressing field and the case of its
absence. The equilibrium distributions of charges and the electric field, which is generated by these charges
in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equati-
ons of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface,
is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface
and by the inhomogeneous charge distribution upon it. In particular, the case of the “wavy” spatially periodic
surface is considered taking into account the possible presence of the surface charges.
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1. Introduction

The problems concerned with the research of the charges above dielectric surface belong to
classical electrodynamics and electrostatics. A special interest to such problems appeared due to
the phenomenon of the Wigner crystallization. These studies were initiated in 1934 by Wigner in
his theoretical work [1], per se. In this work, the possibility of the existence of periodic structures
in the systems with repulsive forces between particles was demonstrated based on the example
of crystallization of three-dimensional low-density gas of electrons in the field generated by the
spatial-homogeneous positive charge. This field played exactly the role of a compensative factor
for repulsive forces. The Landau-Silin Fermi-liquid theory also enables us to predict the existence
of spatially-periodic state of electrons in metals and to describe its structure (see in this case
[2]). There is still no experimental improvement of Wigners’ prediction of the three-dimensional
crystallic structures (see, e.g., [3,4]). This is caused by difficulties in achieving the experimental
conditions for the mentioned phenomenon, which is also refered to as “Wigner crystallization”.

However, as it is well known, different two-dimensional periodic electron structures above the
surface of a fluid helium are experimentally realized (the so-called “Wigner crystals”). The works [5–
8] may be referred to as the first publications containing theoretical and real experimental results
of different properties of the surface electrons. Numerous works related to the theoretical and
experimental research in this area has appeared by now.

Theoretical papers that are devoted to microscopic description of the charge state above di-
electric surface are usually based on the conception of an isolated charge above dielectric surface
interacting with its electrostatic reflection in dielectric (“levitate electron”, see, e.g., [3,4,9]). In this
case, the quantum-mechanical state “charge – electrostatic reflection” is described as the hydrogen
like one-dimensional state with the corresponding energy structure. Very often the localization of
such quantum-mechanical object in the ground state is considered (see [3–6,9]) occuring at some
distance from the surface (first “Bohr radius”). This, particularly in most cases, allows us not to
take into account the effect of the surface inhomogeneity on the single charge state. However, in
describing the many-particle charge system above dielectric surface the mentioned approach in-
evitably faces some difficulties. For example, such a difficulty appears when the electron density
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above dielectric surface does not make it possible to consider the charged particles as isolated, i.e.,
it is necessary to take the interparticle interaction into account.

The references, which are devoted to the two-dimensional Wigner crystallization in the phe-
nomenological approach, predominantly consider the system that consists of a large number of
charged particles near the surface of the fluid dielectric as a two-dimensional structure (see, e.g., [3–
8]).

Basing on the premises, it becomes clear that the complete description of charges above di-
electric surface needs to take into account their spatial distribution in vacuum. The possibility
of adsorption of charges by the surface should also be taken into consideration (in this case the
surface inhomogeneities play a crucial role). The possibility of charge spatial distribution above
dielectric surface comes from the fact that a charged particle is always attracted by a dielectric
surface. Moreover, in the experiments [3,4] concerned with the registration of two-dimensional
Wigner crystallization an external electric field attracts charges to the surface and effects their
spatial distribution.

The present paper is devoted to the problem of equilibrium charge distribution above dielectric
surface both in the external pressing electric field and in its absence. This problem is considered for
the case of ideally plane vacuum-dielectric boundary and for the case of “wavy” spatial-periodic
surface taking into account the possible existence of the charges “sticked” to the surface. In our
opinion, the formulated problem is of great interest both from purely academic and from the
research viewpoint concerning the effect of volume charges located closely to the fluid helium
surface on the spatial-inhomogeneous state of the charges adsorbed on the helium surface.

2. Equations of electrostatics for many-charge system above dielectric sur-
face

Let us consider the equilibrium system of charged particles (Fermi-particles) with the charge Q
per particle that is situated in vacuum above dielectric surface with the permittivity ε. We describe
the profile below the surface by function ξ(ρ) ≡ ξ(x, y), where ρ ≡ {x, y} is the radius-vector in the
plane z = 0 of Cartesian coordinates {x, y, z}. The vacuum – dielectric boundary lies in the plane
z = 0 and we consider it to be unbounded below. All physical quantities considered in the area
above the dielectric, i.e., at z > ξ(ρ) are marked by the index “1” and all quantities concerned with
the dielectric (z < ξ(ρ)) are marked by the index “2”. Let us assume that the external pressing
electric field E acts on the particles and is directed along the z-axis. We also assume the existence
of some potential barrier that forbids the charges to penetrate inside the dielectric.

As it is mentioned above, the charged particles are always attracted by the dielectric. Therefore,
even in the absence of the external pressing electric field, there is a reason to believe that there are
conditions under which the stable equilibrium distribution along the z-axis is developed. To avoid
the problems of the repulsion of the likely charged particles along the plane ρ we shall consider
the system located in a vessel with the walls at ρ → ∞. These walls prevent the charges from
leaving the system. Let us describe the equilibrium charge distribution above the dielectric surface
by distribution function f(p; z,ρ).

The electric field potential ϕi in vacuum above the dielectric surface should satisfy the Poisson’s
equation

∆ϕ1(z,ρ) = −4πQn(z,ρ)θ(z − ξ(ρ)), (1)

where ∆ is the Laplace operator,

∆ ≡ ∂2

∂z2
+ ∆ρ, ∆ρ ≡ ∂2

∂x2
+

∂2

∂y2
, (2)

θ(z − ξ(ρ)) is the Heaviside function. In equation (1) the quantity n(z,ρ) is the charge density
above the dielectric surface, which can be expressed in terms of the distribution function f(p; z,ρ)
as

n(z,ρ) =

∫
d3pf(p; z,ρ). (3)
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As charges are considered to be Fermi-particles, the distribution function f(p; z,ρ) has the fol-
lowing form:

f(p; z,ρ) =
g

(2π~)3

{
expβ

[
p2

2m
+Qϕ1(z,ρ) − µ

]
+ 1

}−1

, (4)

where g = (2SQ + 1), SQ is the spin of the charged particle, β = 1/T , T is the temperature in
the energy units, m is the charge mass and µ is the chemical potential of charges. We emphasize
that taking into account relations (3) and (4) the equation (1) is often called the Thomas-Fermi
equation.

The electric field potential ϕ2 is caused by the absence of the charge in the dielectric. In the
assumption of the dielectric homogeneity and isotropy it should satisfy the Laplace’s equation

ε∆ϕ2(z,ρ) = 0. (5)

If the system is placed in the external static homogeneous electric field, the potentials ϕ1 and
ϕ2 can be written in the form

ϕ1 = ϕ
(i)
1 + ϕ

(e)
1 , ϕ2 = ϕ

(i)
2 + ϕ

(e)
2 , (6)

where ϕ
(i)
1 , ϕ

(i)
2 are the potentials induced by the system of charges in vacuum and in the dielectric,

respectively, ϕ
(e)
1 and ϕ

(e)
2 are the potentials of the external field in vacuum and in the dielectric.

According to equations (1), (5), these fields satisfy the following equations:

∆ϕ
(i)
1 (z,ρ) = −4πQn(z,ρ), ∆ϕ

(e)
1 = 0,

∆ϕ
(i)
2 = 0, ∆ϕ

(e)
2 = 0.

(7)

Equations (1), (5) for the potentials should be expanded with the boundary conditions on
the vacuum-dielectric border (as usual, these conditions can be obtained directly from equati-
ons (1), (5), see e.g. [10]):

ϕ1(z,ρ)|z=ξ(ρ) = ϕ2(z,ρ)|z=ξ(ρ),

ni(ρ){ε∇iϕ2(z,ρ) − ε∇iϕ1(z,ρ)}z=ξ(ρ) = 4πσ(ρ, ξ(ρ′)),
(8)

where n(ρ) is the unit vector of the surface normal in the point ρ, σ(ρ, ξ(ρ′)) is the surface charge
density in the point ρ (here we emphasize the functional dependence of this value on the surface
profile ξ(ρ′) ). The surface charge density σ(ρ, ξ(ρ′)) should satisfy the following relation:

∫
dSξσ(ρ, ξ(ρ′)) = QNξ , (9)

where Nξ is the complete charge number on the dielectric surface and dSξ is the surface element
with the profile ξ(ρ′):

dSξ = d2ρ
√

1 + (∂ξ(ρ)/∂ρ)2. (10)

The surface charge density can appear for several reasons. For example, these charges may
be specially placed on the dielectric surface and can stay there for arbitrarily long time. At that
time, the surface charges and the charges above the dielectric surface can differ in sign. But in this
case we need to consider the possibility of the formation of bound states of the oppositly charged
particles. The presence of such bound states being taken into account represents a separate rather
complicated problem. In the present paper this case of surface charges is not considered. The case,
when some part of the charges condenses on the surface from the volume distribution, stays for
some period of time and then goes back to the volume, is possible too. In this case, the equilibrium
distribution of the charges above the surface that coexist with the “sticked” surface charges for
some period of time (the lifetime of the charge staying on the surface) is possible. Next, we shall
take into account only the possible presence of the surface charges that have the same sign as the
volume ones.
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It is easy to see that in equation (8) the directional cosines of the surface normal vector n(ρ)
in the point ρ play the main role: cos ν is cosine of the angle between the normal and z-axis, cosλ
is cosine of the angle between the normal and x-axis and cosµ is cosine of the angle between the
normal and y-axis. In the case when the surface profile is given explicitly (in our case z = ξ(ρ)),
these cosines are determined by the following relations:

cos ν =
1√

1 + (∂ξ(ρ)/∂ρ)2
, cosλ = − ∂ξ(ρ)/∂x√

1 + (∂ξ(ρ)/∂ρ)2
,

cosµ = − ∂ξ(ρ)/∂y√
1 + (∂ξ(ρ)/∂ρ)2

. (11)

The derived electrostatics equations (1), (5) with the boundary conditions (8), (11) can be
analytically solved in a very low case count. Some of these cases are considered below. Before
solving equations (1), (5), let us consider the simplification of the boundary conditions (8) in the
case, when the surface profile differs a little from the plane one. In this case we essentially have
the effective boundary conditions. From equations (10), (11) it is obvious that the surface slightly
differs from the plane one, when the surface profile slowly varies on the coordinate, i.e., when the
following inequalities take place:

|∂ξ(ρ)/∂x| � 1, |∂ξ(ρ)/∂y| � 1. (12)

Let us also consider that the surface profile ξ(ρ) can be presented as:

ξ(ρ) = ξ + ξ̃(ρ), |ξ| �
∣∣∣ξ̃(ρ)

∣∣∣ . (13)

It is easy to see that the inequality (12) is provided in this case by the conditions
∣∣∣∂ξ̃(ρ)/∂x

∣∣∣ � 1,
∣∣∣∂ξ̃(ρ)/∂y

∣∣∣ � 1. (14)

The directional cosines (11), with the accuracy up to the second order over ∂ξ̃(ρ)/∂ρ, have the
following form:

cos ν ≈ 1, cosλ = −∂ξ̃(ρ)/∂x, cosµ = −∂ξ̃(ρ)/∂y. (15)

If the relations (13)–(15) take place, we can expect that the charge and the field distributions
in the system slightly differ from the distributions that take place in the case of the plane dielectric
surface. Then, the potentials ϕ1(z,ρ) and ϕ2(z,ρ) (see equations (1), (5)) can be written as

ϕ1(z,ρ) = ϕ1(z) + ϕ̃1(z,ρ), ϕ2(z,ρ) = ϕ2(z) + ϕ̃2(z,ρ), (16)

where ϕ1(z) and ϕ2(z) are the potentials of some electric field above the dielectric and inside it
(but not on the surface!) in the case of the plane surface. The small distortions of the field above
the dielectric and inside it are described by the potentials ϕ̃1(z,ρ) and ϕ̃2(z,ρ) due to the surface
inhomogeneity in the above mentioned sense. The meaning of the introduced potentials ϕ1(z) and
ϕ2(z), as well as ϕ̃1(z,ρ) and ϕ̃2(z,ρ) becomes more clear after obtaining the Poisson’s equations
and effective boundary conditions for them.

According to the assumption of small field pertrubations provided by the wave surface, the
following inequalities take place:

|ϕ1(z)| � |ϕ̃1(z,ρ)| , |ϕ2(z)| � |ϕ̃2(z,ρ)| . (17)

Let us also consider that the distribution of charges that can be condensed on the surface slightly
differs from the homogeneous one:

σ(ρ, ξ) = σ(ξ) + σ̃(ρ, ξ) +
∂σ(ξ)

∂ξ
ξ̃(ρ),

|σ(ξ)| � |σ̃(ρ; ξ)| , |σ(ξ)| �
∣∣∣∣
∂σ(ξ)

∂ξ
ξ̃(ρ)

∣∣∣∣ . (18)
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In the expressions (18) the quantity σ̃(ρ, ξ) corresponds to the impact of the weakly inhomogeneous

charge distribution on the plane dielectric surface with z = ξ profile. The quantity ξ̃(ρ)[∂σ(ξ)/∂ξ]
in equation (18) describes the surface charge inhomogeneity related to the weak irregularity of the
surface itself.

In the expressions (16), (17) we consider that in the case of uniformly charged surface, which is
ideally plane and infinitely extended with charge density σ(ξ) both the field and the charge distri-
butions are homogeneous along ρ plane. In other words, the spatial charge and field distribution
depend only on z coordinates.

From the relations (13)–(18) it is easy to obtain the effective boundary conditions for field
potentials on vacuum-dielectric boundary in the case, when the dielectric surface weakly differs
from the ideally plane one. To this end, we should develop the perturbation theory over small
values ξ̃(ρ), σ̃(ρ, ξ) and ∂ξ̃(ρ)/∂ρ, which, according to the expressions (12)–(18), can be given as
follows: {

ϕ1(z) + ϕ̃1(z,ρ)

}

ξ+ξ̃(ρ)

=

{
ϕ2(z) + ϕ̃2(z,ρ)

}

ξ+ξ̃(ρ)

,

{
ε
∂

∂z
[ϕ2(z) + ϕ̃2(z,ρ)] − ∂

∂z
[ϕ1(z) + ϕ̃1(z,ρ)]

}

ξ+ξ̃(ρ)

= 4πσ(ρ; ξ + ξ̃(ρ)). (19)

Making the necessary calculations up to the first order of the perturbation theory from the first
relation of equation (19) we obtain

ϕ1(z)|z=ξ = ϕ2(z)|z=ξ ,
{
ϕ̃1(z,ρ) − ϕ̃2(z,ρ),

}

z=ξ

=

{
∂ϕ2(z)

∂z
− ∂ϕ1(z)

∂z

}

z=ξ

ξ̃(ρ). (20)

The use of the perturbation theory up to the first order for the second relation of equation (19)
results in the following equalities:

{
ε
∂ϕ2(z)

∂z
− ∂ϕ1(z)

∂z

}

z=ξ

= 4πσ(ξ),

{
ε
∂2ϕ2(z)

∂z2
− ∂2ϕ1(z)

∂z2
− 4π

∂σ(ξ)

∂ξ

}

z=ξ

ξ̃(ρ) − 4πσ̃(ρ; ξ) =

{
∂ϕ̃1(z,ρ)

∂z
− ε

∂ϕ̃2(z,ρ)

∂z

}

z=ξ

. (21)

Let us recall that in electrostatics the denotations like {∂2ϕ1(z)/∂z
2}z=ξ, {∂2ϕ2(z)/∂z

2}z=ξ have
the meaning of limits

{∂2ϕ1(z)/∂z
2}z=ξ = lim

h→0
{∂2ϕ1(z)/∂z

2}z=ξ+h ,

{∂2ϕ2(z)/∂z
2}z=ξ = lim

h→0
{∂2ϕ2(z)/∂z

2}z=ξ−h .

Then, for a further simplification of the obtained effective boundary conditions (20), (21), according
to equations (1), (5), (16) we can use the following equations, which are satisfied by the potentials
ϕ1(z), ϕ2(z):

∂2

∂2
ϕ1(z) = −4πQn(z)θ(z − ξ),

∂2

∂2
ϕ2(z) = 0, (22)

where

n(z) =

∫
d3pf(p, z), f(p; z) =

g

(2π~)3

{
expβ

[
p2

2m
+Qϕ1(z) − µ

]
+ 1

}
−1

. (23)

Taking into account equation (21), the conditions (20) can be expressed in the following form (the
first one remains the same):

{
ε
∂ϕ2(z)

∂z
− ∂ϕ1(z)

∂z

}

z=ξ

= 4πσ(ξ),

4π

{
Qn(z)− ∂σ(ξ)

∂ξ

}

z=ξ

ξ̃(ρ) − 4πσ̃(ρ; ξ) =

{
∂ϕ̃1(z,ρ)

∂z
− ε

∂ϕ̃2(z,ρ)

∂z

}

z=ξ

. (24)
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Thus, we obtain effective boundary conditions (20), (24) for the fields in the system of charges
above the dielectric surface with the surface profile that slightly differs from the plane one:

∂2ϕ̃1(z,ρ)

∂z2
+ ∆ρϕ̃1(z,ρ) = 4πQ2∂n(z)

∂µ
ϕ̃1(z,ρ),

∂2ϕ̃2(z,ρ)

∂z2
+ ∆ρϕ̃2(z,ρ) = 0. (25)

3. System of charges above the ideally plane dielectric surface

It is easy to see that the obtained equations (22), (23) of electrostatics and the effective bound-
ary conditions (20), (24) for these equations are much simpler than the initial electrostatic equa-
tions (1), (5) and than the boundary conditions (8). Firstly, to solve the equations that determine
the charge and the field distribution above the vacuum-dielectric boundary one needs to consider
the case of an ideally plane surface of this boundary that lies in z = ξ. Let us start withe consid-
ering the case of the surface in the absence of the charge σ = 0. Then, the solution of (22) should
satisfy the following boundary conditions:

ϕ1(z)|z=ξ = ϕ2(z) |z=ξ ,
{
ε
∂ϕ2(z)

∂z
− ∂ϕ2(z)

∂z

}

z=ξ

= 0. (26)

To simplify the further calculations, let us write the first formula from equation (22) in the following
form:

∂ϕ2
1(z)

∂z2
= −4πQν

∞∫

0

dεε1/2{ expβ(ε− ψ) + 1}, (27)

where we denote
ψ(z) ≡ µ−Qϕ1(z), ν ≡ (2m)3/2/2π2

~
3. (28)

Here we also consider the spin of a charged particle equal to 1/2, ψ is the so-called electrochemical
potential.

Multiplying equation (27) by the derivative (∂ϕ1(z)/∂z) and using the following equality

(
∂ϕ1

∂z

)
1

eβ(ε−ψ) + 1
= − 1

βQ

∂

∂z
ln

[
e−β(ε−ψ) + 1

]
,

after simple calculations we obtain the first-order differential equation:

(
∂ϕ1

∂z

)2

=
16π

3
ν

∞∫

0

dεε3/2{eβ(ε−ψ) + 1}−1 + C,

where C is an arbitrary integration constant. Thus, there arises the need to solve the equation as
follows:

∂ϕ1

∂z
= ±

{
16π

3
ν

∞∫

0

dεε3/2{eβ(ε−ψ) + 1}−1 + C

}1/2

. (29)

The sign before the square root in equation (29) should be chosen on the following considerations.
The force acting on the charges at z > ξ presses these charges to a dielectric surface. Thus, in the
case of positive charges above the dielectric we choose the positive sign, and in the case of negative
charges we choose the negative sign. Let us consider the distribution of negative charges above the
dielectric surface, Q = −e, e > 0. Hence, the potential ϕ1 satisfies the relation:

∂ϕ1

∂z
= −

{
16π

3
ν

∞∫

0

dεε3/2{eβ(ε−ψ) + 1}−1 + C

}1/2

. (30)
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Now we make the following denotations:

ϕ1(z = 0) ≡ ϕ0, ψ(z = 0) ≡ µ+ eϕ1(z = 0), E0 ≡ −
(
∂ϕ1(z)

∂z

)

z=0

. (31)

Let us recall that we consider the case of the electric forces that attract charges to the dielectric
surface. Thus, at z → ∞ there are no charges, f(p; z) →

z→∞

0, or

{expβ (ε− ψ) + 1}−1 →
z→∞

0. (32)

The action of the electrostatic image force along z-axis must vanish at z → ∞:

∂ϕ
(i)
1 (z)

∂z
→
z→∞

0.

As the result, it is essential to say that at z → ∞ the following relation takes place:

−∂ϕ1(z)

∂z
→
z→∞

−∂ϕ
(e)
1 (z)

∂z
≡ E, (33)

where E is the external field intensity that attracts the charges to the dielectric surface.
At z = 0 from equation (30) one can get

E2
0 =

16π

3
ν

∞∫

0

dεε3/2 {expβ (ε− ψ0) + 1}−1
+ C.

On the other hand, from the same equation and taking into account equations (32), (33) at z → ∞
we obtain:

C = E2. (34)

Comparing the last two expressions, we come to the relation between the constants ψ0, E0 (see
equation (31)) and the external electromagnetic field E:

E2
0 −E2 =

16π

3
ν

∞∫

0

dεε3/2 {expβ (ε− ψ0) + 1}−1
. (35)

Then, after integrating the first expression from equation (23) over z within the limits from ξ to ε
and using equations (32), (34), we get:

E0 −E = 4πens , e > 0, (36)

where ns is the number of the volume charges per unit of the plane dielectric surface:

ns =

∞∫

ξ

dzn(z), n(z) = ν

∞∫

0

dεε1/2 {expβ (ε− ψ(z)) + 1}−1
. (37)

Let us emphasize that for the equilibrium charge system above dielectric the value of the number
ns depends neither on the coordinates nor on the fields’ distribution. This is determined only by
the entire number N of the charges above dielectric. We also point out that this value characterizes
the additional field intensity that presses the charges to the dielectric surface. Besides that, this
field is generated by the charges themselves.

Thus, equations (35), (36) make it possible to express the unknown quantities ψ0 and E0

(integration constants of equation (27)) in terms of the external pressing electric field E and the
number of charges above the unit item of the dielectric surface ns (see equation (37)).
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The second equation in (38) can be solved trivially in general case, because the electric field
intensity in the dielectric does not depend on z. Using the boundary conditions (26), we can express
the potential of the electric field in the dielectric in the following form:

ϕ2 = −E0

ε
z + ϕ0, E2 =

E0

ε
, (38)

whereE2 is the electric field intensity in the dielectric,E0 can be expressed from equations (35), (36)
and ϕ0 is the potential on the surface. Like in the electrostatic case, the field potential is determined
accurate within a constant. Therefore, we set the potential ϕ0 equal to zero below. In this case,
the value of the electrochemical potential on the dielectric surface coincides with the chemical one:

ψ(z = 0) ≡ ψ0 = µ, ϕ0 = 0. (39)

Taking into account equation (34), the spatial distribution of the potential (see equation (30)) can
be written as follows:

∂ϕ1

∂z
= −





16π

3
ν

∞∫

0

dεε3/2 {expβ (ε− ψ) + 1}−1 +E2





1/2

, ψ(z) ≡ µ+ eϕ1(z). (40)

It is easy to see that in a general case the solution of this equation can be found only in quadratures
(see below). However, the gas of charged Fermi-particles above the dielectric surface is nondegen-
erate. Therefore, the solution of equation (40) can be obtained analytically. Indeed, in the case of
nondegenerate gas its distribution function has the form that weakly differs from the Boltzmans’
one

{expβ (ε− ψ) + 1}−1 ∼ expβ (ψ − ε) .

Accordingly, the expression for the density distribution of a gas along the z coordinate (see equa-
tion (37)) becomes:

n(z) ≈
√
π

2
νβ−3/2 exp(βψ). (41)

As the Fermi-particle gas is degenerate at low temperature and at high density ranges (see e.g. [11])
from equation (41) one can get the gas nondegeneracy condition:

exp(βψ) � 1,

As the electrochemical potential depends on z, this condition is obviously realized in the case when
the following inequality takes place:

exp(βψ0) � 1, (42)

where ψ0 is the electrochemical potential on the dielectric surface (see equations (28), (39) in this
case). The latter statement takes place due to the assumption of the particle absence at z → ∞,
see above. So, according to equation (41), (42), the formula (40) can be expressed as follows:

∂ψ

∂z
= −

{
4π3/2e2β−5/2ν exp(βψ) + e2E2

}1/2

. (43)

This equation has an analytical solution:

√
π

2
νβ−3/2 exp (βψ(z)) = β

E2

8π

4χ(z)

(1 − χ(z))
2 , ψ(z) ≡ µ+ eϕ1(z), (44)

where the function χ(z) is defined by the relation:

χ(z) ≡ E0 −E

E0 +E
exp {−(z − ξ)/z0} , z0 ≡ (βeE)−1, β−1 = T. (45)
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Let us emphasize that the multiplier before the exponent in equation (45) according to equation (36)
can be expressed in terms of the intensity of the external electric field and the number of charges
ns in the “column” above the surface unit element:

E0 −E

E0 +E
=

2πens
E + 2πens

.

From the equations (41), (43) and (44) it follows that the charge density above the dielectric surface
has the distribution:

n(z) = β
E2

8π

4χ(z)

(1 − χ(z))
2 , (46)

and the electric field intensity above the dielectric E1(z) is expressed as

E1(z) = E
1 + χ(z)

1 − χ(z)
. (47)

It is easy to see that at high values of z, z � z0 (see equation (45)), the charge distribution
above the dielectric surface is close to the Boltzman distribution and the electric field density
exponentially tends to the external pressing electric field density. This fact confirms the above
assumptions(see equations (32), (33)).

The inequality (42) that determines the nondegeneracy condition of the charge gas can be
written in terms of the obtained solutions:

ensν
−1β5/2 (E + 2πens) � 1. (48)

It is obvious that this inequality is not accomplished in the case of low temperature range or high
values of the external pressing field.

Expressions (44)–(48) make it possible to make the limit process at E → 0. In the case of the
absence of the external pressing field, these solutions have the following form:

E1(z) →
E→0

E0

{
1 +

z − ξ

2z0

}
−1

, n(z) →
E→0

β
E2

0

8π

{
1 +

z − ξ

2z0

}
−2

, E2 = E0/ε, (49)

where
z0 ≡ (βeE0)

−1, E0 = 4πens . (50)

Comparing the expressions (46), (47) and (49), it is easy to see that in the case of the absence of
the external pressing field, the exponential law of the electric field and the charge density above
the dielectric surface changes to the weaker power depedence. In this case, the inequality (48) can
be written as:

(ens)
2
ν−1β5/2 � 1. (51)

Note, that this takes place in the region of relatively high temperatures and low charge number in
the volume above a surface area unit, see equation (37).

The obtained formulae (38), (44)–(51) are the solution of the problem of the field and nonde-
generate charged gas distribution in charged particle system above the plane dielectric surface both
in the external pressing field and in its absence. Let us emphasize that the dielectric permittivity
does not appear in these expressions. The reason is that the problem is homogeneous along the
surface coordinate ρ. In the case of inhomogeneity along ρ, the solution of equations essentially
depends on the sort of the dielectric, i.e., on its permittivity ε. These inhomogeneities may be
caused by the inhomogeneities of the surface itself or by inhomogeneity charge distribution on it
(or both reasons simultaneously, see equations (8), (11), (20), (24)).

In the case of the degenerate gas, i.e., when the condition (48) or (51) fails, the solution that
is obtained earlier is inapplicable. Let us make the following remark relative to this fact. As it is
mentioned earlier, the charge density distribution decreases with the distance from the surface.
For this reason, in a general case described by equation (40) the gas can be degenerate in the area
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near the dielectric surface and nondegenerate far from it. The typical distance from the surface
that separates these cases can be obtained using the following considerations. As it is well known
(see e. g. [11]), in low temperature region, the temperature expansions are widely used for the
calculus of the thermodynamic quantities characterizing the gas. Applying such an expansion to
the integral over the energy in equation (40), we obtain:

∞∫

0

dεε3/2 {expβ (ε− ψ) + 1}−1 ≈ 2

5
ψ5/2 +

π2

4
β−2ψ1/2 − 7π4

960
β−4ψ−3/2 + · · · (52)

From this expression it is easy to see that such an expansion is absolutely useless near the point
z1 obtained from the condition

ψ(z1) = µ+ eϕ1(z1) = 0. (53)

The solution of equation (40) obtained in quadratures is given by

z − ξ = −z0
βψ∫

βψ0

dζ





16π

3
νβ−5/2E−2

∞∫

0

dyy3/2 {exp (y − ζ) + 1}−1 + 1





−1/2

, (54)

where the distance z0 is determined by equation (45). Taking into account equations (53), (54),
the expression of the border distance z1 can be written as follows:

z1 = ξ + z0

βψ0∫

0

dζ





16π

3
νβ−5/2E−2

∞∫

0

dyy3/2 {exp (y − ζ) + 1}−1 + 1





−1/2

, (55)

where the electrochemical potential ψ0 as the function of temperature T = β−1 and the external
electric field is obtained from the equation (see equations (35), (36), (39))

(4πens +E)
2 −E2 =

16π

3
ν

∞∫

0

dεε3/2 {expβ (ε− ψ0) + 1}−1
. (56)

As it is mentioned above, the potential ϕ1(z) is defined accurate within an arbitrary constant, which
can be set equal to zero. Hence, equation (56) is the expression defining the chemical potential µ,
see equation (39).

As expected, the typical distance z1 (see equation (55)) is defined by the temperature, the
external pressing field and the number of charges above the dielectric surface area unit. Thus, the
charge gas is nondegenerate in the region z � z1 and degenerate at z � z1. Let us point out
that the solutions (45)–(50) are obtained assuming the charge gas nondegeneracy in the entire
area above the dielectric surface. Therefore, in a general case the mentioned expressions describe
the charge system only in the region z � z1. The charge gas above the dielectric surface can be
degenerate even in the case of the absence of the external pressing field. It is easy to see whether
it is necessary to analyze the expression (55) at E → 0 taking equation (45) into account.

In the case of the generate charge gas above dielectric surface, equation (40) according to
equation (52) can be written in a simpler form:

∂ϕ1

∂z
= −

{
32π

15
νψ5/2 +E2

}1/2

, ψ(z) ≡ µ+ eϕ1(z). (57)

However, in this case equation (57) cannot be solved analytically, and the numerical integration
methods are needed.

Let us show in the present section of the paper the effect of the plane dielectric surface charges
on the obtained results. It is well known that infinitely thin homogeneously charged plate with
charge density σ(ξ) induces the homogeneous field intensity Eσ = 2πσ(ξ) in vacuum (in this case
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the expression σ(ξ) shows that the surface plane is described by the equation z = ξ). This field has
the opposite direction in the opposite sides of the plane. In the case of a charged plane dielectric
surface the situation is absolutely similar. E.g., the negatively charged dielectric surface induces
the field intensity E2σ = 2π |σ(ξ)| /ε in the dielectric and E1σ = −2π |σ(ξ)| above the dielectric
surface (see equation (24)). As mentioned earlier in the present paper, we consider only the cases
of the same signs of charges both on the dielectric surface and in the volume above it (in our case
we consider the negative charges). In this case, the field induced by the surface charges repulses the
volume charges from the surface. So, the results obtained in the present Section remain useful if
we substitute the external electric field in vacuum E for E−2π |σ(ξ)| in the expressions (31)–(56),

E → E − 2π |σ(ξ)| . (58)

It is easy to see that it is necessary to satisfy the condition

E0 − 2π |σ(ξ)| > 0 (59)

that provides the possibility of the equilibrium volume charge distribution existing above the
dielectric surface in the repulsive field of the surface charges.

4. The charge system above the spatially inhomogeneous dielectric surface

As already mentioned, the spatial inhomogeneities can be caused by the surface heterogeneities
or by the inhomogeneous charge distribution on it (or both reasons simultaneously, see equati-
ons (8), (11), (20), (24))). Let us consider the mentioned surface inhomogeneities that slightly
distort the electric field induced by the charge system above the plane dielectric:

ϕ1(z,ρ) = ϕ1(z) + ϕ̃1(z,ρ), ϕ2(z,ρ) = ϕ2(z) + ϕ̃2(z,ρ),

|ϕ1(z)| � |ϕ̃1(z,ρ)| , |ϕ2(z)| � |ϕ̃2(z,ρ)| ,

where ϕ1(z), ϕ2(z) are the potentials above the dielectric and inside it, respectively, in the case of
the ideally plane dielectric surface with the equation of the profile z = ξ (see equations (16)–(18)).
The obtained procedure for the potentials ϕ1(z), ϕ2(z) and charge density n(z) is described in
detail in the previous section of the present paper, see equations (26)–(59).

The next problem concerns obtaining the potentials ϕ̃1(z,ρ) and ϕ̃2(z,ρ). For these potentials
one can use the equation (25) and the boundary conditions (20), (24). In terms of the Fourier-
transforms ϕ̃1(z,q) , ϕ̃2(z,q) over coordinate ρ of the potentials ϕ̃1(z,ρ) and ϕ̃2(z,ρ)

ϕ̃1(z,ρ) =

∫
d2q exp (iqρ) ϕ̃1(z,q), ϕ̃2(z,ρ) =

∫
d2q exp (iqρ) ϕ̃2(z,q) (60)

the equations (25) have the following form:

∂2ϕ̃1(z,q)

∂z2
− q2ϕ̃1(z,q) = 4πe2

∂n(z)

∂µ
ϕ̃1(z,q),

∂2ϕ̃2(z,q)

∂z2
− q2ϕ̃2(z,q) = 0. (61)

According to equations (20), (24), the boundary conditions concerning these equations can be
written as:

{ϕ̃1(z,q) − ϕ̃2(z,q)}z=ξ =

{
∂ϕ2(z)

∂z
− ∂ϕ1(z)

∂z

}

z=ξ

ξ̃(q),

−4π

{
en(z) +

∂σ(ξ)

∂ξ

}

z=ξ

ξ̃(q) − 4πσ̃(q; ξ) =

{
∂ϕ̃1(z,q)

∂z
− ε

∂ϕ̃2(z,q)

∂z

}

z=ξ

, (62)
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where ξ̃(q), σ̃(q; ξ) are the Fourier-transforms of the quantities ξ̃(ρ) and σ̃(ρ; ξ), respectively (see
equations (14), (18)):

ξ̃(ρ) =

∫
d2q exp (iqρ) ξ̃(q), σ̃(ρ; ξ) =

∫
d2q exp (iqρ) σ̃(q; ξ). (63)

Let us consider the intensity perturbations of the electric fields caused by inhomogeneities of
the dielectric surface rapidly decreasing at z → ±∞. It is easy to see that the first equation in
equation (61) in general case cannot be solved analytically. However, in two particular cases the
analytical solution exists. In the first case, we solve equation (61) at z ∼ ξ setting ∂n(z)/∂µ equal
to its value on the plane surface, z = ξ:

∂n(z)

∂µ
≈ ∂n(ξ)

∂µ
. (64)

Such a consideration is possible in the case when the typical size of spatial inhomogeneities of
the unperturbed charge density n(z) is considerably larger than the typical size of the spatial
inhomogeneities of the potential ϕ̃1(z,q) along z-axis:

∣∣∣∣∣

(
∂n(z)

∂µ

)
−1

∂

∂z

∂n(z)

∂µ

∣∣∣∣∣
z=ξ

�
∣∣∣∣{ϕ̃1(z,q)}−1 ∂ϕ̃1(z,q)

∂z

∣∣∣∣
z=ξ

. (65)

Let us return to the discussion of the condition (64) below.
Then, taking into account the assumption of rapidly fading field densities at z → ±∞, the

solution of equation (60) can be given in the following form:

ϕ̃1(z,q) = A1(q) exp (−zb(q)) , ϕ̃2(z,q) = A2(q) exp (zq) , (66)

where (see equation (64))

b(q) ≡
√

q2 + 4πe2
∂n(ξ)

∂µ
, (67)

and A1(q), A2(q) are obtained from the boundary conditions (62). To this end, we put the expres-
sions (66) into the boundary conditions (62) and obtain the following relations for the potentials
ϕ̃1(z,q), ϕ̃2(z,q):

ϕ̃1(z,q) =
exp (−(z − ξ)b(q))

εq + b(q)

{
[εq (E1(ξ) −E2(ξ))

+ 4π (en(ξ) + (∂σ(ξ)/∂ξ))] ξ̃(q; ξ) + 4πσ̃(q; ξ)
}
,

ϕ̃2(z,q) = −exp ((z − ξ)q)

εq + b(q)

{
[b(q) (E1(ξ) −E2(ξ))

− 4π (en(ξ) + (∂σ(ξ)/∂ξ))] ξ̃(q; ξ) − 4πσ̃(q; ξ)
}
, (68)

where (see equations (22), (26))

E1(ξ) ≡ −
(
∂ϕ1(z)

∂z

)

z=ξ

, E2(ξ) ≡ −
(
∂ϕ2(z)

∂z

)

z=ξ

.

Let us emphasize that according to the boundary conditions (20), (21) (see also equations (58),
(59)) the values of the quantities E1(ξ), E2(ξ) can be expressed as

E1(ξ) = E0 − 2π |σ(ξ)| > 0, E2(ξ) = (E0 + 2π |σ(ξ)|) /ε, (69)

where the field intensity E0 is defined by the relation (36):

E0 = E + 4πens .
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Let us recall that the values of the potentials ϕ̃1(z,q), ϕ̃2(z,q) at z = ξ do not coincide due
to the fact that the potential continuity on the surface in the case of its inhomogeneous wavy
structure is provided by the inequalities (see equations (16)–(20)):

ϕ1(z) |z=ξ = ϕ2(z) |z=ξ , δϕ1(ξ,q) = δϕ2(ξ,q),

where δϕ1(ξ,q) ≡ ξ̃(q) (∂ϕ1(z)/∂z)z=ξ + ϕ̃1(ξ,q). According to equation (68), one can get:

δϕ1(ξ,q) = − 1

εq + b(q)

{
[εqE2(ξ) + b(q)E1(ξ)−

4π (en(ξ) + (∂σ(ξ)/∂ξ))] ξ̃(q; ξ) − 4πσ̃(q; ξ)
}
, (70)

where E1(ξ), E2(ξ) are still defined by the relations (69). It is easy to see from the obtained
formulae (68), (70) that the gas of the volume charges can sufficiently effect the potential of the
electric field near the dielectric surface.

Now let us show that the solution of equation (61) in the forms (66), (68) is correct. As it is
mentioned above, the condition of the existence of such solution is defined by the relation (65).
According to equation (67) it can be expressed as follows:

∣∣∣∣∣

(
∂n(ξ)

∂µ

)
−1

∂

∂z

∂n(ξ)

∂µ

∣∣∣∣∣ �
√

q2 + 4πe2
∂n(ξ)

∂µ
. (71)

An explicit expression for the derivative ∂n(ξ)/∂µ can be obtained from equations (31), (35),
(36), (41), (46), (52), (56) both in the case of degenerate charge gas above the dielectric surface
and in the case of nondegenerate one. In the second case the condition (71) has a rather simple
form:

q2 � β2e2
{
(E + 2πens)

2
+ 4π2e2n2

s

}
. (72)

In the case, when the gas of charged Fermi-particles is degenerate at z � z1 (see equation (55)) and
low temperature expansions (52) take place, we can obtain the following expressions for the volume
charge density n(z) at z ∼ ξ and the electrochemical potential ψ0 at z = ξ (see equations (35),
(52), (56)):

n(z) ≈ 2

3
νψ3/2, ψ0 ≈

{
15

32

E2
0 −E2

πν

}2/5

, (73)

where ν and ψ are still defined by the relations (28) with Q = −e, and E0, E are expressed by (36).
Using the expression (73), one can write the condition (71):

E2 − 52πensE − 8π2e2n2
s � 4q2e−2

{
15

4

ens (E + 2πens)

ν

}4/5

. (74)

Taking into account the solutions (68) and the Fourier-transforms of the potentials ϕ̃1(z,ρ),
ϕ̃2(z,ρ) (see equation (60)), the relations (71)–(74) in a general case are correct for any value of
q, including the value q = 0 as well. It is easy to see that the relation (72) does not satisfy such a
requirement. The relation (74) can take place at all values of q in the case of the external pressing
field E which satisfies the following inequality:

0 6 E 6 E′, E′ ≈ 52πens . (75)

At E > E′ the expressions (68) do not take place. In this case, as in the case of the condition (72)
realization, the equations (61) should be solved using the numerical methods.

The case of particular interest is the spatially periodic inhomogeneities caused by the di-
electric surface. As it is mentioned in the present paper, such inhomogeneities concern the two-
dimensional Wigner crystallization. In the simplest case of spatial periodic inhomogeneities, the
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Fourier-transforms of the quantities ξ̃(ρ), σ̃(ρ; ξ) (see equation (63)) can be expressed in the form:

σ̃(q; ξ) =
1

2

2∑

α=1

σ̃(qασ ; ξ) {δ (q + qασ) + δ (q − qασ)},

ξ̃(q) =
1

2

2∑

α=1

ξ̃(qαξ) {δ (q + qαξ) + δ (q − qαξ)}, (76)

where qασ (α = 1, 2) are the vectors of the reciprocal two-dimensional lattice concerning the
spatial periodic charge distribution on the dielectric surface, qαξ (α = 1, 2) are the vectors of the
reciprocal two-dimensional lattice concerning the spatial periodic wavy surface type, and σ̃(qασ ; ξ),
ξ̃(qαξ) are the amplitudes of the corresponding surface heterogeneities. Of course, it is necessary
to consider that the conditions (14) take place, which in this case can be written as:

qαξ ξ̃(qαξ) � 1, qασ ξ̃(qασ) � 1. (77)

Then, putting the expressions (76) into equation (68) and making inverse Fourier transformation
according to equation (60), it is easy to obtain the following expressions for the potentials ϕ̃1(z,ρ),
ϕ̃2(z,ρ):

ϕ̃1(z,ρ) = 4π

2∑

α=1

exp (−(z − ξ)b(qασ))

εqασ + b(qασ)
σ̃(qασ ; ξ) cos (qασρ)

+

2∑

α=1

exp (−(z − ξ)b(qαξ))

εqαξ + b(qαξ)
{εqαξ (E1(ξ) −E2(ξ))

+ 4π (en(ξ) + (∂σ(ξ)/∂ξ))} ξ̃(qαξ) cos (qαξρ) ,

ϕ̃2(z,ρ) = 4π
2∑

α=1

exp (−(z − ξ)qασ)

εqασ + b(qασ)
σ̃(qασ ; ξ) cos (qασρ)

−
2∑

α=1

exp (−(z − ξ)qαξ)

εqαξ + b(qαξ)
{b(qαξ) (E1(ξ) −E2(ξ))

− 4π (en(ξ) + (∂σ(ξ)/∂ξ))} ξ̃(qαξ) cos (qαξρ) . (78)

The obtained expressions represent the solution of the potential distribution problem (so, the charge
density distribution, too) in the area near the dielectric surface with the weak (see equation (77))
spatially periodic inhomogeneities. Let us emphasize that for the validity of the expressions (78) it is
no longer necessary to satisfy the conditions (71) for all the values of q. Its sufficiency is provided by
the accomplishment of the conditions (71) (or equations (72), (74)) for two-dimensional reciprocal
lattice distances qασ , qαξ .

Let us recall that we consider the simplest type of the spatial periodic inhomogeneities related to
the dielectric surface. In the case of a more complicated structure of spatial-periodic homogeneities
it is necessary to use the coefficients of two-dimensional Fourier series expansion for ξ̃(ρ) and
σ̃(ρ; ξ), which describe these inhomogeneities.

5. Conclusion

Thus, the problem of an equilibrium state of the charged particles above the dielectric surface
is solved. Equilibrium distributions for the charge and electric field induced by these charges in the
system are obtained both in the case of ideally plane dielectric surface and in the case of weak spatial
inhomogeneities that concern the dielectric surface. The weak spatial inhomogeneities caused both
by the inhomogeneities of the surface itself and by the inhomogeneous charge distributions on
it are taken into account. The case of “wavy” surface, in particular, the spatially periodic one,

32



On equilibrium charge distribution above dielectric surface

concerns the possible presence of the surface charge on it being taken into account. The effect
of the external pressing electric field acting on the system is also taken into consideration. It is
shown that the presence of the gas of volume charges essentially effects the value of the electric
field potential in the area near the dielectric surface. Mostly, this fact plays an important role in
describing the deformation of the liquid dielectric surface caused by near-surface charges pressure
on it. The authors of the present paper are working at this problem at the moment.

However, in our opinion, the problem being solved is useful not only regarding the two-
dimensional Wigner crystallization aspect. The problem is worth solving for purely academic
purposes because it can be related to the number of classical problems of electrodynamics and
statistical physics. Due to this fact, in this paper we do not use the results of the real experiments
on two-dimensional Wigner crystallization research. The formulations and the results obtained in
this paper can be used for the research of the effect of the volume charges near the liquid helium
surface on the spatial inhomogeneous states of the charges, which are adsorbed on the helium
surface at the system parameters close to the experimental ones.
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Про рiвноважний розподiл електричних зарядiв над

поверхнею дiелектрикiв

Д.М.Литвиненко, Ю.В.Слюсаренко

Iнститут теоретичної фiзики iм. А.I. Ахiєзера ННЦ ХФТI, вул. Академiчна, 1, Харкiв, Україна

Отримано 27 грудня 2008 р.

Сформульовано задачу про рiвноважний стан системи багатьох заряджених частинок над поверх-
нею дiелектрику як у присутностi зовнiшнього притягувального електричного поля, так i при йо-
го вiдсутностi. Отримано рiвноважнi розподiли зарядiв та електричного поля, що виникає завдяки

цим зарядам, у випадку iдеально плоскої поверхнi дiелектрику. Також отриманi розв’язки рiвнянь

електростатики для дослiджуванної системи у випадку малих просторових неоднорiдностей, по-
в’язаних iз поверхнею дiелектрику. Вiдмiченi просторовi неоднорiдностi можуть бути пов’язанi як iз
неоднорiдностями самої поверхнi, так i з неоднорiдним розподiлом заряду на нiй. Розглянуто також

випадок хвилястої, зокрема, просторово-перiодичної поверхнi з урахуванням можливостi iснування

на нiй просторових зарядiв.

Ключовi слова: зарядженi фермiони, поверхня, твердий та рiдкий дiелектрики, рiвноважнi
розподiли зарядiв та електричного поля
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