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In this paper we consider the Lagrangian formulation of a system of second
order quasilinear partial differential equations. Specifically we construct a
Lagrangian vector field such that the flows of the vector field satisfy the
original system of partial differential equations.
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1. Introduction

Variational principle has played a fundamental role in the foundation of math-
ematics and physics. Minimization of an action integral by means of a Lagrange
function gives rise to the set of Euler-Lagrange equations (ELs). Invariance of the
action integral or ELs is intimately related to conservation laws [1]. It is well known
in Lagrangian mechanics that the flows of the Lagrangian vector field satisfy ELs
[2], where the set of ELs form a system of second order ordinary differential equa-
tions. In this paper we consider the Lagrangian formulation of a system of second
order quasilinear partial differential equations in terms of ELs. Our objective is to
construct a Lagrangian vector field XL such that the flows of XL satisfy ELs. We
believe that this work is still lacking in the literature.

Let Bn be an open set in En with smooth boundary ∂Bn, and let x = (x1, x2,
. . . , xn) be the coordinate cover of Bn. Consider the following system of second order
quasilinear PDEs:

F ij

ab(x, f c, ∂kf
c)∂i∂jf

b + Ga(x, f c, ∂kf
c) = 0, (1)

where a, b, c ∈ [1, 2, . . . , N ] and {F ij

ab, Ga} are given functions. In (1) we have adopted
the conventional summation notation for repeated indices. The solution set of (1) for
the N functions fa can be viewed as a map Φ from the base space Bn to the graph
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space G = Bn×RN with coordinate cover (x, ua), 1 6 a 6 N . The map Φ is said to be
a regular map if Φ∗µ 6= 0, where Φ∗ is the pull back map of Φ, µ = dx1∧dx2∧. . .∧dxn

is the volume element of Bn, and ∧ is the exterior product of differential forms [3].
Next we imbed the graph space G in a larger space M = G × RnN with coordinate
cover (x, ua, ya

i ). We furnish M with N contact 1-forms wa = dua − ya
i dxi, where

wa ∧ (dwa)n 6= 0, and (dwa)n+1 = 0. Here (�)m denotes the mth exterior power.
Then we extend the map Φ from Bn to M under the conditions Φ∗µ 6= 0 and
Φ∗wa = 0. Since Φ∗wa = Φ∗(dua) − Φ∗(ya

i )Φ
∗(dxi) = dfa − Φ∗(ya

i )dxi = 0, we
have Φ∗(ya

i ) = ∂if
a, that is, the pull back of ya

i from M to G is ∂if
a. In the

following discussions we say that Φ : Bn → M is a regular map if Φ∗µ 6= 0 and
Φ∗wa = 0. From geometric point of view, a regular map Φ has the representation
Φ | xi = xi, ua = fa(x), ya

i = ∂if
a(x). It defines an n-dimensional section of M .

Based on the system of PDEs in (1), we define the system of n-forms {Ea},

Ea = F ij

ab(x, uc, yc
k)dyb

i ∧ µj + Ga(x, uc, yc
k)µ, (2)

where µj = ∂jyµ, y is the inner multiplication between the partial differential oper-
ator ∂j and the n-form µ, such that, ∂jydxi = δi

j . Then

Φ∗Ea = {F ij

ab(x, f c, ∂kf
c)∂i∂jf

b + Ga(x, f c, ∂kf
c)}µ.

Hence regular maps Φ solve the system of PDEs (1) if and only if Φ∗Ea = 0.
Therefore, instead of considering the system of PDEs (1), we concentrate on the set
of n-forms {Ea} and consider regular maps Φ such that Φ∗Ea = 0.

2. Lagrangian formulation of PDEs

The solution set {fa(x)} forms the states of the system of PDEs (1). Suppose
the system has a smooth Lagrangian function L(x, fa(x), ∂if

a(x)). Define the action
integral A[fa] of the system by

A[fa] =

∫

Bn

L(x, fa(x), ∂if
a(x))µ. (3)

Lift the Lagrangian functionL from the graph space G to M so that L(x, ua, ya
i )

is defined on M . Then Φ∗L(x, ua, ya
i ) = L(x, fa(x), ∂if

a(x)). We also define the
Euler-Lagrange n-forms Ea(L) by

Ea(L) = Luaµ − (dLya
i
) ∧ µi , (4a)

which can be rewritten as

Ea(L) = Luaµ −
{

(Lya
i ub)dub + (Lya

i yb
j
)dyb

j

}

∧ µi . (4b)

Here Lya
i ub = ∂2L/(∂ub∂ya

i ), Lya
i yb

j
= ∂2L/(∂yb

j∂ya
i ). Assume that L is independent of

x explicitly. Further assume that the values of {fa(x)} are specified on the boundary
∂Bn. It can be proved that a regular map Φ : Bn → M stationarizes the action
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integral A[fa] if and only if Φ∗Ea(L) = 0 at every interior point of Bn [4]. Hence
Φ∗Ea(L) = 0 yields the Euler-Lagrange equations

∂L

∂fa

= Di

[

∂L

∂(∂ifa)

]

, 1 6 a 6 N, (5)

where
Di =

(

∂if
b
) ∂

∂f b
+

(

∂i∂jf
b
) ∂

∂ (∂jf b)

is the total derivative operator.
Now we consider the existence as well as the construction of the Lagrangian

function L on M . To this end, we let Va = Ga, dV i
a = −F ij

abdyb
j , and Qa = Vaµ −

dV i
a ∧ µi. The system {Qa} is said to admit a variational principle if and only if

there exists a Lagrangian function L(x, ua, ya
i ) defined on M such that Va = Lua

and V i
a = Lya

i
. Set Q = Vadua + V i

adya
i . Then Q = dL and Q ∧ µ = d(Lµ) is a

closed (n + 1)-form. On the other hand, if Q ∧ µ is a closed (n + 1)-form, it can
be proved that the system {Qa} admits a variational principle [5]. Thus we first
define Q = Vadua + V i

adya
i and determine whether or not Q ∧ µ is a closed (n + 1)-

form. Suppose the answer is affirmative. The Lagrange function L can be written as
L = Vau

a + V i
aya

i . Then Ea(L) = Qa.
On the other hand, suppose the system {Qa} does not admit a variational princi-

ple. We can extend the space M to a larger space M̂ = M ×EN+nN with coordinate
cover (x, ua, ya

i , û
a, ŷa

i ). Equip M̂ with the contact 1-forms wa = dua − ya
i dxi and

ŵa = dûa − ŷa
i dxi. In addition to the n-forms Qa, we introduce N auxiliary n-forms

Q̂a = V̂aµ − dV̂ i
a ∧ µi, where V̂a and V̂ i

a are given by

V̂a = ∂a

(

Vbû
b + V j

b ŷb
j

)

, (6a)

V̂ i
a = ∂i

a

(

Vbû
b + V j

b ŷb
j

)

(6b)

with ∂a = ∂/∂ua and ∂i
a = ∂/∂ya

i .
Let L = Vbû

b + V j

b ŷb
j . Define the 1-form Q for the extended system {Qa, Q̂a} by

Q = Vadûa + V i
adŷa

i + V̂adua + V̂ i
adya

i . (7)

Then Q∧µ = d(Lµ). Hence the extended system {Qa, Q̂a} admits a variational pri-
nciple with the Lagrangian function L = Vaû

a+V i
a ŷa

i . The Euler-Lagrange equations
for the extended system can be written as

Φ∗Qa = Φ∗

{

Lua −
(

Lya
i ûb

)

ŷb
i −

(

Lya
i ŷb

j

)

∂iŷ
b
j

}

µ = 0, (8a)

Φ∗Q̂a = Φ∗

{

Lûa −
(

Lŷa
i ub

)

yb
i −

(

Lŷa
i yb

j

)

∂iy
b
j

}

µ = 0. (8b)

3. Construction of the Lagrangian vector field

In the following discussions we assume that L is independent of x explicitly. In
Lagrangian Mechanics, the Lagrangian 1-form θ, the Lagrangian 2-form Ω, and the
total energy of the system E are defined as follows [6]:
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θ =
∑

i

Lq̇idqi, (9a)

Ω = Lq̇iqjdqi ∧ dqj + Lq̇i q̇jdq̇i ∧ dqj , (9b)

E = q̇iLq̇i − L. (9c)

In a similar manner, we define the Lagrangian 1-form θL, the Lagrangian 2-form ΩL,
and the energy density EL for the extended system {Qa, Q̂a} by

θL =
∑

i

[

Lya
i
dua + Lŷa

i
dûa

]

, (10a)

ΩL = dθL =
∑

i

{(

Lya
i ŷb

j

)

dŷb
j ∧ dua +

(

Lya
i ûb

)

dûb ∧ dua

+
(

Lŷa
i yb

j

)

dyb
j ∧ dûa +

(

Lŷa
i ub

)

dub ∧ dûa
}

, (10b)

EL = ya
i Lya

i
+ ŷb

jLŷb
j
− L. (10c)

We assume that the Lagrangian function L is nondegenerate, i.e., Lya
i ŷb

j
, Lŷa

i yb
j

are

nowhere vanishing on M̂ . Since L, ΩL and EL are independent of x, we define the
Lagrangian vector field XL ∈ TM̂ 1 by

XL = Y c
k Dkuc + Ŷ b

k Dkûb + Zc
klDkyc

l
+ Ẑc

klDkŷc
l
,

where Y c
k , Ŷ b

k , Zc
kl, Ẑ

c
kl are functions defined on M̂ , while Dkuc, Dkûb, Dkyc

l
, Dkŷc

l
are

partial differentiation operators with respect to uc, ûb, yc
l , ŷ

c
l respectively. Notice that

we have adopted double subscripts for the D operators to emphasize that the flows
of XL are given by

Y c
k =

∂uc

∂tk
, Ŷ b

k =
∂ûb

∂tk
, Zc

kl =
∂yc

l

∂tk
, Ẑc

kl =
∂ŷc

l

∂tk
, (11)

where (t1, t2, . . . , tn) are n parameters.
In Lagrangian mechanics the Lagrangian vector field X is constructed by the

condition XyΩ = −dE. It is well known that the flows of X satisfy the Euler-
Lagrange equations [6]. In a similar manner, we determine the Lagrangian vector
field XL by the condition

XLyΩL = −dEL. (12)

By comparing the coefficients of dya
i , dŷb

j , dua and dûb on both sides of (12) we can
obtain the following results:

−Y a
i (Lya

i
ŷb

j
) = −ya

i (Lya
i
ŷb

j
) , (13a)

−Ŷ b
j (Lŷb

jya
i
) = −ŷb

j(Lŷb
jya

i
) , (13b)

(Lya
i
ûb)Ŷ b

i + (Lya
i
ŷb

j
)Ẑb

ij = Lua , (13c)

(Lŷb
jua)Y a

j + (Lŷb
jya

i
)Za

ji = Lûb . (13d)

1Alternatively, we can write

XL = Wi∂i + Y c
k Dkuc + Ŷ b

k Dkûb + ZklDkyc

l
+ Ẑc

klDkŷc

l
.

However, Wi turns out to be zero identically.
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Since the Lagrangian function is nondegenerate, by (13a) and (13b) we obtain Y a
i =

ya
i , Ŷ

b
j = ŷb

j . On the other hand, Ẑb
ij and Za

ji can be solved from (13c) and (13d)

respectively. In view of (11) we can identify tk = xk. Thus, Za
ji = ∂jy

a
i , Ẑ

b
ij = ∂iŷ

b
j ,

and (13c), (13d) become

(Lya
i ûb)ŷb

i + (Lya
i ŷb

j
)(∂iŷ

b
j) = La

u , (14a)

(Lŷb
jua)ya

j + (Lŷb
jya

i
)(∂jy

a
i ) = Lûb . (14b)

Hence (14a) and (14b) in conjunction with (11) give rise to (8a) and (8b). Therefore
the flows of XL satisfy the Euler-Lagrange equations.

To conclude this section we consider an example in extended irreversible ther-
modynamics:

∂2
xT −

τ

χ
∂2

t T −
1

χ
∂tT = 0, (15)

where T is the temperature, τ and χ are constants.
Let x1 = x, x2 = t. Then y1 = ∂1T, y2 = ∂2T, µ = dx ∧ dt = dx1 ∧ dx2, µ1 =

∂1yµ = dx2, µ2 = ∂2yµ = −dx1. The contact manifold M has the global coordinate
cover (x1, x2, u, y1, y2), and is equipped with the contact 1-form ω = du − yidxi,
i = 1, 2.

(i) By (15) the 2-form E is given by

E = −d

(

1

χ
u +

τ

χ
y2

)

∧ µ2 + dy1 ∧ µ1 .

The regular map Φ : B2 → M yields Φ∗E = 0, which is identical to (15). Let
Q1 = E = v1µ − dvi

1 ∧ µi. We have v1 = 0, v1
1 = −y1, v

2
1 = 1

χ
(u + τy2). If we

set Q = v1du+ v1
1dy1 + v2

1dy2, then Q∧µ is not a closed 3-form. Consequently
(15) does not admit a variational principle2. For this reason we enlarge M to
M̂ , where M̂ has the coordinate cover (x, u, y1, y2, û, ŷ1, ŷ2), and is equipped
with the contact 1-forms ω = du − yidxi, ω̂ = dû − ŷidxi.

(ii) Let
L = v1û + v1

1 ŷ1 + v2
1 ŷ2 = −y1ŷ1 +

(

1

χ
u +

τ

χ
y2

)

ŷ2 .

2It should be noted that there are many different formulations for a system of second order
quasi-linear PDEs to be transcribed into a system on n-forms. For the specific PDE in (15), we
could have constructed the 2-form

E′ = dy1 ∧ µ1 −
τ

χ
dy2 ∧ µ2 −

1

χ
y2µ.

In view of the of the contact 1-form ω = du − yidxi, we can easily show that

E = E′ −
1

χ
ω ∧ µ2,

i.e., E′ = E mod ω. Hence both Φ∗E = 0 and Φ∗E′ = 0 give rise to (15). Similarly, if we set
v1 = −χ−1y2, dv1

1
= −dy1, dv2

1
= τχ−1dy2, then Q′

1
= v1µ − dvi

1
∧ µi = Q1 + χ−1ω ∧ µ2. Hence

Q′

1 = E′ and Q1 ∧ µ = Q′

1 ∧ µ.
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Then

v̂1 = ∂uL =
1

χ
ŷ2, v̂

1
1 = Ly1

= −ŷ1, v̂
2
1 = Ly2

=
τ

χ
ŷ2.

Thus

Q̂1 = v̂1µ − dv̂i
1 ∧ µi =

1

χ
ŷ2µ + dŷ1 ∧ µ1 −

τ

χ
dŷ2 ∧ µ2. (16)

Set
Q = v1dû + v1

1dŷ1 + v2
1dŷ2 + v̂1du + v̂1

1dy1 + v̂2
1dy2 .

Then Q = dL. Hence Q ∧ µ = d(Lµ) and, the extended system {Q1, Q̂1}
admits a variational principle with the Lagrange function L given by

L = −y1ŷ1 +
τ

χ
y2ŷ2 +

1

χ
uŷ2.

(iii) Based on the Lagrange function L, we can construct the Euler-Lagrange 2-
forms as follows:

E(L) = Luµ − dLyi
∧ µi =

1

χ
ŷ2µ + dŷ1 ∧ µ1 −

τ

χ
dŷ2 ∧ µ2 = Q̂1,

Ê(L) = Lûµ − dLŷi
∧ µi = dy1 ∧ µ1 −

τ

χ
dy2 ∧ µ2 −

1

χ
du ∧ µ2 = Q1 .

Hence the Euler-Lagrange equations for the extended system {Q1, Q̂1} become

Φ∗E(L) = Φ∗

{

Lu − (Lyiû)ŷi − (Lyiŷj
)∂iŷj

}

µ

= Φ∗

{

1

χ
ŷ2 + ∂1ŷ1 −

τ

χ
∂2ŷ2

}

µ = 0, (17a)

Φ∗Ê(L) = Φ∗

{

Lû − (Lŷiu)yi − (Lŷiyj
)∂iyj

}

µ

= Φ∗

{

1

χ
y2 − ∂1y1 +

τ

χ
∂2y2

}

µ = 0. (17b)

Equations (17a) and (17b) in turn yield

∂2
xT̂ +

1

χ
∂tT̂ −

τ

χ
∂2

t T̂ = 0, (18a)

∂2
xT −

1

χ
∂tT −

τ

χ
∂2

t T = 0. (18b)

(iv) By the Lagrangian function

L = −y1ŷ1 +

(

1

χ
u +

τ

χ
y2

)

ŷ2

we construct the Lagrangian 1-form

θL =
∑

i

(Lyi
du + Lŷi

dû) = −ŷ1du +
τ

χ
ŷ2du − y1dû + (

τ

χ
y2 +

1

χ
u)dû.
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Then the Lagrangian 2-form ΩL becomes

ΩL = dθL = −dŷ1 ∧ du +
τ

χ
dŷ2 ∧ du − dy1 ∧ dû +

τ

χ
dy2 ∧ dû +

1

χ
du ∧ dû.

Define the Lagrangian vector field XL by

XL = YiDiu + ŶiDiû + ZijDiyj
+ ẐijDiŷj

.

The flows of XL can be written as

∂u

∂ti
= Yi ,

∂û

∂ti
= Ŷi ,

∂yj

∂ti
= Zij ,

∂ŷj

∂ti
= Ẑij .

On the other hand, the energy density of the extended system {Q1, Q̂1} is
given by3

EL = yiLyi
+ ŷiLŷi

− L = −y1ŷ1 +
τ

χ
y2ŷ2 .

Now XL can be determined by the equation XLyΩL = −dEL. Hence
Yi = yi , Ŷi = ŷi ,

τ

χ
Z22 +

1

χ
Y2 − Z11 =

τ

χ
∂2y2 +

1

χ
y2 − ∂1y1 = 0, (19a)

τ

χ
Ẑ22 −

1

χ
Ŷ2 − Ẑ11 =

τ

χ
∂2ŷ2 −

1

χ
ŷ2 − ∂1ŷ1 = 0. (19b)

Applying Φ∗ on (19a) and (19b) we can recover (18a) and (18b) respectively.
Hence the flows of XL give rise to the Euler-Lagrange equations.

4. Conclusions

It is well known that many important theories in physical sciences can be de-
scribed by ordinary or partial differential equations. In general these equations can be
formulated via the variational principle in terms of a Lagrangian function. In this pa-
per we consider the Lagrangian formulation of a system of quasilinear PDEs, where
the underlying system of equations can be recast in terms of the Euler-Lagrange
equations. Then we construct a vector field such that the flows of the vector field
satisfy the Euler-Lagrange equations.

A similar approach to the problem considered in this paper has also been de-
veloped by Guo, Shang and Mei [7]. Based on the idea of adjoint symmetries, they
modified a nonconservative system by adding a set of adjoint equations to the system.
Thus the dimension of the configurational manifold is double of the dimension of
the original system. Consequently the modified system admits a regular Lagrangian.
From this point of view, there appears to be some similarity between our work and
the work of Guo, et al . However, the methodology is very different, especially in the
construction of the Lagrangian vector field. It would be interesting to extend this
work to a wider class of PDEs, or to consider the Hamiltonian formulation of PDEs
and the construction of the Hamiltonian vector field.

3We have abused the definition of the energy density EL for the extended system {Q1, Q̂1}. If
EL is given by EL = y1ŷ1 + τχ−1y2ŷ2, then

∫

Bn

ELµ is a constant. But the determination of XL

by the condition XLyΩL = −dEL leads to contradiction.

323



M.Chen

Acknowledgements

The author wishes to thank the reviewer for many valuable comments, in parti-
cular, for bringing reference [7] to the attention of the author.

References

1. Bluman G.W., Kumei J. Symmetry and Differential Equations. Springer-Verlag, New
York, 1989; Olver P.J. Applications of Lie Groups to Differential Equations. Springer-
Verlag, Berlin, 1993.

2. Libermann P., Marle C.-M. Symplectic Geometry and Analytic Mechanics. D. Reidel
Publishing Company, Dordrecht, Holland, 1987.

3. Edelen D.G.B. Applied Exterior Calculus. John Wiley and sons, New York, 1985.
4. See [3], Chapter 7, p. 297.
5. See [3], Chapter 7, p. 301.
6. See [1], p. 74; Wasserman R.H. Tensors and Manifolds with Applications to Mechanics

and Relativity, p. 277. Oxford University Press, 1992.
7. Guo Y.K., Shang M., Mei F.X., Int. J. Theoret. Phys., 1999, 38, 1017.

Векторне поле Лагранжа та лагранжове

формулювання парціальних диференціальних

рівнянь

М.Чен

Коледж Ваньє, Квебек, Канада

Отримано 4 листопада 2004 р.

В роботі розглядається лагранжове формулювання системи квазі-
лінійних парціальних диференціальних рівнянь другого порядку.
Зокрема, представлена конструкція векторного поля Лагранжа у

формі, коли потік векторного поля задовільняє вихідні системи

парціальних диференціальних рівнянь.

Ключові слова: рівняння Ейлера-Лагранжа, векторні поля,
квазілінійні парціальні диференціальні рівняння
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