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We investigate the monotonic growth of longitudinal interlayer magnetoresistance ( ),zz zR B  analytically
and numerically in the self-consistent Born approximation. We show that in a weak magnetic field the mono-
tonic part of ( )zz zR B  is almost constant and starts to grow only above the crossover field ,cB  when the Lan-
dau levels (LL) become isolated, i.e., when the LL separation becomes greater than the LL broadening. In higher 
field ,z cB B>>  1/2( )zz z zR B B∝  in agreement with previous works.

PACS: 72.15.Gd Galvanomagnetic and other magnetotransport effects; 
73.43.Qt Magnetoresistance; 
74.70.Kn Organic superconductors; 
74.72.–h Cuprate superconductors. 
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1. Introduction

Magnetoresistance (MR) in strongly anisotropic layered 
metals is extensively studied during last decades, because 
it provides a powerful tool to determine the electronic pro-
perties of various layered materials, including high-tem-
perature superconductors [1–11], organic metals (see, e.g., 
Refs. 12–14 for recent reviews), heterostructures [15] etc. 
The standard three-dimensional theory of MR [13,16–18], 
based on the τ-approximation, is not valid in the two-
dimensional (2D) electron system because of the high 
Landau-level (LL) degeneracy (see, e.g., Refs. 19, 20 or 
Refs. 21, 22 for review) even in the fields insufficient for 
the quantum Hall effect (QHE) [23,24]. In strongly aniso-
tropic layered quasi-2D metals, when the interlayer transfer 
integral zt  is less than the LL separation = / ,c eB m c∗ω 

the standard MR theory [13,16–18] is also inapplicable. 
In particular, it predicts only a transverse MR, while the 
strong longitudinal interlayer MR ( )zz zR B  is observed in 
various compounds as a general feature of quasi-2D conduc-
tors [25–34]. In spite of a considerable theoretical attention 
to MR in quasi-2D compounds [35–40], this longitudinal 
interlayer MR has been explained only recently [41–43] in 
the high-field limit, when the LLs do not overlap, i.e., 
when the LL separation cω  is greater than the LL broad-

ening 02 = / ,Γ τ  while 0.zt Γ  Qualitatively, the longi-
tudinal interlayer MR 1/2( )zz z zR B B∝  originates from the
monotonic growth of the LL width 1/2( ) ,z zB BΓ ∝  well-
known in a 2D electron system [19]. This LL width, being 
equal to the imaginary part of electron self-energy Im ,Σ  
enters the denominator of the interlayer conductivity simi-
larly to the scattering rate [41–43]. Various LL shapes give 
slightly different coefficients 1η   in the high-field de-
pendence of ( )zz zR B  [43]: 

0( )/ (0) = / .zz z zz cR B R η ω Γ  (1) 

The Lorenztian LL shape gives = 4/ ,η π  the non-crossing 
(or single-site) approximation [44] gives = 3 /8η π  
[45], while the self-consistent Born approximation (SCBA) 
gives = /4η π  (see below). In Ref. 46 the calculation of 

( )zz zR B  was generalized to a finite 0zt Γ  in the high-
field limit > 4 .c ztω  The behavior at cω Γ   is still 
unknown. The smooth dependence 

( )
1/42

0( ) / 1 ,zz z cR B  ∝ ω Γ +  
  (2) 

assumed in Refs. 34, 41 to compare with experimental da-
ta, does not have a theoretical substantiation. The aim 
of this paper is to calculate longitudinal interlayer 
magnetoresistance at .cω Γ   
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2. Analytical calculations 

We apply the same “weakly incoherent” [35] model as 
in Refs. 41–43, i.e., we start from isolated 2D metallic layers 
with disorder, taken into account, at least in the self-
consistent Born approximation, and consider the interlayer 
tunneling as a weakest perturbation in the minimal non-
vanishing order. The interlayer conductivity is calculated 
using the Kubo formula [47] in the second order in the inter-
layer tunneling ,zt  taking into account only two adjacent 
conducting layers. As was shown in Ref. 46, this approach is 
valid at , .z ct Γ ω   The positions of short-range impuri-
ties on adjacent layers are assumed to be uncorrelated, 
which allows the independent averaging over disorder for 
each conducting layer. Then the interlayer conductivity 

( )zz zBσ  is expressed via the disorder-averaged electron 
Green’s functions 1 2( , , ) = ( , , )R RG j G jε − εr r r  on 2D 
conducting layer with number j  (see Eq. (12) of Ref. 43): 

 20 0

2

2
= [ ( )]zz F

D
d d n

σ Γ
′σ ε − ε ×

πν ∫ ∫r   

 Im ( , , ) Im ( , 1, ) ,R RG j G j× ε + εr r  (3) 

where 2( ) = 1/{4 cosh [( )/2 ]}Fn T T′ ε − ε −µ  is the deriva-
tive of the Fermi distribution function, µ  is the chemi-
cal potential, 

 2 2
0 2 0= /z De t dσ ν Γ  (4) 

is the interlayer conductivity without magnetic field, 

2
2 3= 2 / = / =D LL c Dg m d∗ν ω π ν   

is the 2D density of states (DoS) at the Fermi level in the 
absence of magnetic field per two spin components, d  is 
the interlayer distance, and = /2LL zg eB cπ  is the LL de-
generacy per unit area. 

The 2D metallic electron system in a perpendicular 
magnetic field in the point-like impurity potential has been 
extensively studied [19–24,44,48–53]. In the self-
consistent single-site approximation [44], which takes into 
account all diagrams without intersection of impurity lines 
[54], the coordinate electron Green’s function, averaged 
over impurity configurations, is given by 

 0 0
1 2 2 1, ,

,
( , , ) = ( ) ( ) ( , ),n k n ky yn ky

G r r G n∗ε Ψ Ψ ε∑r r  (5) 

where 0
1, ( )n ky
rΨ  are the 2D electron wave functions in a 

perpendicular magnetic field [55], and the 2D electron 
Green's function ( , )G nε  does not depend on :yk  

 1( , ) = ,
( 1/2) ( )c

G n
n

ε
ε − ω + −Σ ε

 (6) 

where we have used that the 2D electron dispersion in mag-
netic field 2 ( ) = ( 1/2),D cn nε ω +  and ( )Σ ε  is the electron 
self-energy part due to the scattering by impurities. 

In a perpendicular-to-layers magnetic field the integra-
tion over coordinate in Eq. (3) with the Green’s functions 
(5) reduces to the normalization of the wave functions and 
gives (see Eq. (14) of Ref. 43)  

 [ ] 20 0= ( ) Im ( , )c
zz F

n
d n G n

σ Γ ω
′σ ε − ε ε

π ∑∫


 (7) 

with Im ( , )G nε  given by Eq. (6). After substitution of 
Eq. (6) to Eq. (7), and introducing the notations  

 2 ( Re ( ))/ , 2 Im ( ) / ,c cα ≡ π ε − Σ ε ω γ ≡ π Σ ε ω   (8) 

the sum over n  in Eq. (7) gives 

 0

0

sinh( )
=

Im ( ) cosh cos
Fzz n

d
 γ′− ε Γσ

ε −σ Σ ε γ + α
∫   

 2
cos cosh 1

[cosh cos ]

α γ +
− γ 

γ + α 
 (9) 

in agreement with Eqs. (19)–(21) of Ref. 37 or with Eq. (C3) 
of Ref. 56. 

The expressions for interlayer conductivity zzσ  contain 
the electron self-energy ( )Σ ε  coming from the scattering 
on impurity potential ( ).iV r  The impurities are assumed to 
be short-range (point-like) and randomly distributed with 
volume concentration :in  

 3( ) = ( ).i i
i

V U δ −∑r r r  (10) 

The scattering by impurity potential given by Eq. (10) is 
spin-independent. In the self-consistent single-site (non-
crossing) approximation the electron self energy satisfies 
the following equation [44]: 

 ( ) = ,
1 ( )

in U
UG

Σ ε
− ε

 (11) 

where the Green’s function  

 
, ,

( ) = ( , ) = ( , )LL

n k k ny z

gG G n G n
d

ε ε ε =∑ ∑  (12) 

 ( )= tan .LL

c c

g
d

 π ε −Σ ε
− π ω ω  

 (13) 

The summation over yk  in Eq. (12) gives the LL degener-
acy LLg  and the summation over zk  gives 1/ .d  It is con-
venient to use the normalized electron Green’s function 

 ( ) ( ) / .c LLg G d gε ≡ ε ω π  (14) 
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To obtain the monotonic growth of longitudinal inter-
layer magnetoresistance, the self-consistent Born approxi-
mation (SCBA) is sufficient, which gives 

 2
0( ) = ( ) = ( ).i in U n U G gΣ ε − ε Γ ε  (15) 

instead of Eq. (11). Here we used that the zero-field level 
broadening is 

2 2
0 3= = / .i D i LL cn U n U g dΓ π ν π ω  

Below we also neglect the constant energy shift in U  in 
Eq. (15), which does not affect physical quantities as con-
ductivity. 

Equations (13)–(15) give the following equations on 
( ):g g≡ ε  

 0

0

sinh (2 Im / )
Im = ,

cosh (2 Im / ) cos (2 / )
c

c c

g
g

g ∗

πΓ ω

πΓ ω + πε ω



 

 (16) 

 
0

sin (2 / )
Re = .

cosh (2 Im / ) cos (2 / )
c

c c
g

g

∗

∗

− πε ω

πΓ ω + πε ω



 

 (17) 

where 

 0Re ( ) = Re ( ).R g∗ε ≡ ε − Σ ε ε −Γ ε  (18) 

These equations can be written also for ( ).RΣ ε  

With notations 0 0= 2 / ,cγ πΓ ω  2 Im ( )/ ,R
cγ ≡ π Σ ε ω  

2 / ,c
∗α ≡ πε ω  2δ ≡ − πRe ( )/ = 2 ( )/ ,R

c c
∗Σ ε ω π ε − ε ω   

Eqs. (13) and (15) give 

 
0

sinh ( )= ,
cosh ( ) cos ( )

γ γ
γ γ + α

 (19) 

 0 sin ( )2 = .
cosh ( ) cos ( )c

γ απε
δ ≡ α −

ω γ + α

 (20) 

The solution of Eq. (19) gives Im ( ),Σ α  while Eq. (20) 
allows to find ( )α ε  and Re ( ).Σ ε  Equation (9), (19) and 
(20) will be used for numerical calculations in the next 
section. 

2.1. High-field limit 

In the high-field limit, the monotonic growth of longi-
tudinal interlayer MR ( ),zz zR B  given by Eq. (1), was 
calculated for the Lorentzian LL shape in Refs. 41, 42. In 
Ref. 43 ( )zz zR B  was calculated in the noncrossing ap-
proximation, but the coefficient η  in Eq. (24) of Ref. 43 is 
greater than the correct value by a factor 4/3 [45]. Follow-
ing the procedure of Ref. 43, we calculate ( )zz zR B  in the 
SCBA at 0cω Γ   to compare with the numerical results 
in Sec. 3. At 0cω Γ   the summation over n  in Eq. (12) 
is restricted to only one LL = Fn n  on the Fermi level and 
gives the equation for ( ) = ( / ) ( , ):LL FG g d G n∆ε ε  

 2( ) = / / ( ) ,LL iG g d n U G ∆ε ∆ε − ∆ε   (21) 

where we have used Eq. (15) and the notation 
= ( 1/2) .c F in n U∆ε ε − ω + −  This equation yields 

 2
0

0
Im ( , ) = 4 / ( ) ,

2F c
c

G n π
∆ε ω Γ π− ∆ε

Γ ω




 (22) 

which is nonzero only at 1 0< 4 / .cE∆ε ≡ ω Γ π  Substi-
tuting Eq. (22) to Eq. (7) and keeping only one LL at the 
Fermi level, after averaging over MQO period we get 

 
2 1

2 20 0
1

0
1

= ( )
2

E

zz
c E

d E
−

 σ Γ π  σ ε − ∆ε =   π Γ ω 
∫



  

 
2 3

0 0 01
0

0

44
= = ,

2 3c c

E σ Γ Γπ
σ π Γ ω π ω  

 (23) 

corresponding to = /4η π  in Eq. (1). 

3. Numerical results and discussion 

Substituting the solutions of Eqs. (19) and (20) into 
Eq. (9) one can calculate interlayer conductivity zzσ  nu-
merically in the SCBA in the full interval of magnetic 
field. The result is shown in Figs. 1 and 2. As one can 
see from Fig. 2, in high field the calculated dependence 

1/2
0( ) /4zz z c zR B B≈ π ω Γ ∝  in agreement with Eq. (23) 

and Refs. 41–43, 46. From Fig. 1 one can clearly see, that the 
drop of interlayer conductivity ( )zz zBσ  starts not from zero 
field, but from some critical field ,cB  where 0 /2.cω ≈ Γ  
At this field in SCBA the Landau levels become isolated, i.e. 
the LL separation cω  exceeds the LL broadening 2Γ  (see 
Fig. 3). Below this field, at < ,cB B  ( )zz zBσ  is flat within 
the accuracy of our calculation. This means, that the field 
dependence of the monotonic part of longitudinal MR 

( )zz zR B  is not a simple analytic function, as was assumed 

Fig. 1. (Color online) Average interlayer conductivity zzσ  as 
function of the LL separation ,c zBω ∝  calculated numerically 
using Eqs. (19), (20) and (9) for three different values Γ0 = 1 K 
(solid black line), Γ0 = 2 K (dashed red line), and Γ0 = 3 K (dot-
ted green line). 
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in Refs. 34, 41 [see Eq. (2)]: within SCBA it is constant at 
< cB B  and starts to grow at > ,cB B  reaching the depend-

ence ( ) 1/2
zz z zR B B∝  at 0.cω Γ   Such crossover from 

low-field flat to the high-field increasing MR ( )zz zR B  was 
observed in the strongly anisotropic quasi-2D organic metal 
β″-(BEDT-TTF)2 SF5CH2CF2SO3 at 8B ≈ T [29]. 

The predicted crossover of MR at = cB B  needs further 
theoretical investigation. The SCBA assumes sharp edges 
of the electron DoS for each LL. It works well as a zero ap-
proximation, capturing rough physical effects, such as the 
monotonic growth of MR 1/2( )zz z zR B B∝  in strong field. 

However, more elaborated theories predict exponential tails 
of the electronic DoS for each LL [19–24,44,48–53], which 
may lead to the small deviations from the flat average MR 

( )zz zR B  at < .cB B  
The work was supported by the program “Strongly corre-

lated electron–fonon system” of the Physics Branch of RAS. 
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