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We report on properties of Nb(/Ti)–carbon–(Ti/)Nb junctions fabricated on graphite flakes using e-beam li-
thography. The devices were characterized at temperatures above 1.8 K where a Josephson current was not ob-
served, but the differential conductivity revealed features below the critical temperature of Nb, and overall me-
tallic conductivity, in spite of a high-junctions resistance. Since the conductivity of graphite along the planes is 
essentially two-dimensional (2D), we use a theoretical model developed for metal/graphene junctions for inter-
pretation of the results. The model involves two very different graphene “access” lengths. The shorter length 
characterizes ordinary tunneling between the three-dimensional Nb(/Ti) electrode and 2D graphene, while 
the second, much longer length, is associated with the Andreev reflections (AR) inside the junction and involves 
also “reflectionless” AR processes. The relevant transmission factors are small in the first case and much larger 
in the second, which explains the apparent contradiction of the observed behaviors. 

PACS: 72.80.Vp Electronic transport in graphene; 
74.45.+c Proximity effects; Andreev reflection; SN and SNS junctions; 
74.50.+r Tunneling phenomena; Josephson effects; 
74.78.Na Mesoscopic and nanoscale systems. 

Keywords: carbon, graphene, superconductivity, tunnel junctions, Josephson effect, Andreev reflection. 

1. Introduction

Graphene (G) is attractive as a barrier material for Jo-
sephson junctions due to high carrier mobility and unsur-
passed flexibility in controlling its properties using various 
methods. In addition, such junctions offer an opportunity 
for physicists to study “relativistic” superconductivity [1] 
and unusual proximity effects [2]. Studying these effects 
and making useful devices is hampered, however, by the 
quality of the contacts between the G and metal banks [3–6]. 
Due to the difference in the work functions between the G 
and metals, Schottky-type barrier may be formed at the 
interface, thereby significantly changing the transport 
properties of the metal/G devices. 

In attempt to study Nb/G Josephson junctions, we tested 
transport properties of Nb(/Ti)–carbon(C)–(Ti/)Nb junc-
tions fabricated on exfoliated graphite flakes. Characteris-
tics of the junctions are strongly dependent on the interface 
properties. In spite of a high junction resistance, presuma-
bly associated with the formation of potential barriers at 
the Nb(/Ti)–C interfaces, the junctions display an overall 
metallic conductivity. A theoretical model is proposed to 
explain this behavior. 

2. Experiment

A total four devices were fabricated and tested. Graph-
ite flakes were deposited onto oxidized Si substrates by 
mechanical exfoliation of highly-oriented pyrolytic graph-
ite (HOPG). Using e-beam lithography, a PMMA mask 
was patterned on the graphite flakes. Then 2 nm of Ti was 
deposited, followed by 40 nm of Nb, to form devices G1 
and G3; in devices G2 and G4, 40 nm thick Nb film was 
deposited directly onto the flakes. Prior to deposition of the 
Ti and Nb layers, 4 nm of the surface layer were removed 
from device G1 (made on thicker flake) by ion milling; no 
ion milling was used for devices G2 to G4 (which involve 
thinner flakes). The thickness of the flakes was measured 
using AFM. The device parameters are summarized in the 
Table 1. Figure 1(a) shows an SEM image of a typical de-
vice structure; Fig. 1(b) shows a schematic of the I–V curve 
measurement. 

In order to record I–V curves, dc current from a battery-
powered, computer-controlled power source was fed into 
the junction in steps of about 0.06 µA; the voltage across 
the junction was amplified and acquired by the computer 
using a National Instruments analog-to-digital converter. 
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Table 1. Summary of the device parameters 

Device 
number 

Material of leads 
(in parentheses 

thickness in nm) 

Spacing 
between 
the leads, 

nm 

Flake 
thickness, 

nm 

Device re-
sistance at 5 K 

and 5 mV, 
Ω 

G1 
G2 
G3 
G4 

Ti(2)/Nb(40) 
Nb(40) 

Ti(2)/Nb(40) 
Nb(40) 

430 
640 
440 
170 

148 
19 
9 
8 

224 
— 

369 
600 

Devices measurements were carried out in a Quantum 
Design PPMS cryostat at temperatures down to 1.8 K us-
ing a two-probe method. Due to the latter, the measured 
resistance (see Table 1) contains a 25 Ω contribution from 
the wires. Measurable characteristics were obtained for 
devices G1, G3, and G4; the resistance of the device G2 
was too high to be measured with our technique. 

The measured characteristics of the different devices 
were similar and displayed a nonlinearity of the I–V curve 
which was most pronounced for device G1. The I–V curves 
of this latter device, taken at various temperatures, are 
shown in Fig. 2(a). The junction resistance increases sig-
nificantly with increasing temperature starting from about 
7.0 K, indicating the beginning of transition of the Nb film 

into a resistive state (the critical temperature, Tc, is reduced 
for a 40 nm-thick Nb film as compared with usual 
Tc ≈ 9.0 K for our thicker films). 

At the temperatures of the experiment, a Josephson cur-
rent was not observed in the I–V curves. In order to see if 
the I–V curves have nonlinearities, we differentiated them 
numerically to obtain dV/dI vs. V dependences. The most 
pronounced features were observed for sample G1 (see 
Fig. 2(b)). Numerical differentiation typically results in 
“noisy” curves. Better results can be obtained using ac 
modulation, a “physical differentiation” technique; howev-
er, in these preliminary experiments, we used the available 
digitized data, which already showed interesting proper-
ties. Specifically, we found that the differential resistance 
shows structure associated with the superconducting transi-
tion in Nb, and an overall metallic-like conductivity (initial 
portion is concave up), in spite of a high junction resis-
tance presumably associated with the formation of poten-
tial barriers at the Nb/Ti–C interfaces. In order to better 
reveal the features in the noisy dV/dI vs. V dependences, 
we smoothed the curves using an adjacent averaging algo-
rithm available from commercial software. As a result of 
averaging we obtained two traces (black curves) corre-
sponding to “forward” and “backward” current ramping for 
the dependences taken at specific temperatures. Reproduc-
ibility of these traces, especially at the lowest tempera-
tures, and the symmetry of the positions with respect to 
zero voltage (designated by arrows) argue that the observ-
ed nonlinearities are associated with the physical properties 
of the system and are not spurious. In samples G3 and G4 
the nonlinearities were weaker, and the resistance of the 
junctions was higher, as shown in Table 1. Below we con-
sider properties of the sample G1 in a more detail. 

The dimensions of our sample as determined by AFM 
(Fig. 1(a)) are: Nb/Ti lead spacing, L = 430 nm; junction 
width, W ≈ 10 µm; and flake thickness is 148 nm. 

Given this thickness, the electric properties of the flake 
should be regarded as those of the graphite. Then, assum-

Fig. 1. SEM image of the device G1 made on 148 nm thick car-
bon flake (a) and schematic of the I–V curve measurement (b). 
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Fig. 2. I–V curves of Nb/Ti–C–Ti/Nb device (G1) at various temperatures from 1.8 to 7.5 K (a). Numerical derivatives, dV/dI (V), for 
the I–V curves measured at different temperatures T, K (thin grey lines). Curves for 3.0, 4.0, and 5.0 K are arbitrarily shifted in vertical 
direction for clarity. Thick black lines are averaged curves (see text for details) (b). 
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ing that the resistivity of graphite is about 9·10–6 Ω·m, and 
taking into account its temperature dependence [7], we 
estimate that the resistance of our junction should be about 
6 Ω; in fact, it is 224 Ω at low temperatures. Excluding the 
contribution of 25 Ω from the wires and 6 Ω from the 
graphite flake, we obtain a resistance of 193 Ω, which is 
probably originating from the interfaces between the Ti/Nb 
and the graphite flake. 

Assuming that the two interfaces are identical, with an 
average area of A = 1 µm ×10 µm, we obtain the specific 
tunneling resistance (R×A) of the interface to be of the or-
der of 10−5 Ω·cm2, indicating a rather strong barrier. It is 
known that such a barrier appears at the metal–G interface 
due to the different electron concentrations and work func-
tions [6,8]. 

At lower temperatures, features are observed in the 
dV/dI(V) dependences (marked by arrows in Fig. 2(b)). It is 
interesting to compare characteristic energies of these fea-
tures with the Nb energy gap, ∆. Using the Bardeen–
Cooper–Schrieffer (BCS) relation 2∆/kBTc = 3.52 (where ∆ 
is the superconducting energy gap, kB is the Boltzmann con-
stant, kB = 8.62·10–5 eV/K), with Tc ≈ 7 K as deduced 
above, we obtain an estimated maximum value ∆ ≈ 1 meV. 
Because the device consists of two Nb/Ti–C junctions con-
nected in series, one may expect manifestation of the gap-
sum feature at about 2 mV; however, we observe a conduct-
ance peak within a voltage range of about ±1 mV (see 
curves for 1.8 K), and the conductivity anomalies at higher 
voltages (~4 and 7 mV). The first feature (conductance peak 
around zero voltage) may be indirectly related to the gap but 
rather to a contribution of the “reflectionless” Andreev re-
flection (AR) process (see our theoretical model below). 

The features at about 4 and 7 mV (Fig. 2(b)) are unusual. 
A similar anomaly (as well as metallic junction type) was 
observed by Choi et al. for devices reported to be made 
from monolayer graphene [9]. The peaks at V > 2∆/e can 
appear if the energy gap is induced in C, as explained in 
the next section. Further investigation is required to estab-
lish the nature of these features. 

For this study, most important is the fact that the device 
conductance has a maximum at zero voltage (i.e., it is of 
metallic-type). Metallic type of conductivity takes place in 
junctions with high-conductive channels. Also, the conduc-
tance may continuously increase with voltage if the barrier 
is not rectangular but its width decreases with energy; it is 
suggested that the metal–G interface barrier has essentially 
a triangular shape [6,9]. The barrier is probably also asym-
metric, as follows from the asymmetry of the dV/dI(V) 
dependences with respect to zero voltage (cf. Fig. 2(b)). 
However, if a nonrectangular barrier is the only reason for 
the increase in the conductance, then it should not have an 
inflection point, as indicated here and in [9–11]. Therefore, 
we have to look for another mechanism for such behavior. 

First, we analyze the junction resistance in a more de-
tail. In general, there are three contributions to the junction 

resistance: (i) the Schottky barrier resistance due to differ-
ence of the work functions; (ii) a contribution due to 
a change in the number of channels for quantum tunneling 
from three-dimensional (3D) metallic electrode into the 
essentially two-dimensional (2D) graphite flake; and (iii) 
the resistance of the flake itself (estimated to be 6 Ω for the 
device G1); and (iv) a finite resistance originating from 
the mismatch of electronic properties between the two re-
gions — the C just below the metal (G′), where electronic 
structure is modified due to the contact with the metal, and 
the open C region (G″). A schematic cross-sectional view 
of the device structure is shown in Fig. 3. 

One can separate the contributions (i) and (ii) to the in-
terface resistance from the experimental data by analyzing 
the ratio of the excess zero-voltage conductance (measured 
at a very low temperature) to the normal state conductance. 
We estimate this ratio by comparing zero-voltage differen-
tial resistance values at 1.8 K (the lowest temperature ac-
cessible in this experiment) and 5.0 K. The choice of 
the curve for 5.0 K is dictated by the fact that, at higher 
temperatures, an increasing overall shift of the differential 
resistance curve appears, indicating that some regions of 
the Nb leads become resistive below an estimated Tc value 
of 7 K; this makes the curves for higher temperatures un-
suitable for the estimation. Then from the results shown in 
Fig. 2(b) we obtain an excess resistance for the 5.0 K curve 
of 2.7 Ω, which implies that the excess zero-voltage con-
ductance due to contribution (ii) above is about 1.4% of the 
interface conductance. For the qualitative consideration, 
most important is presence of an excess conductance (the 
true value should be even slightly larger), which we dis-
cuss below. 

Fig. 3. Various processes involved in the electric transport in 
a Nb/Ti–C junction: in process 1, an electron moving in 2D C 
flake from left can be either Andreev-reflected as a hole moving 
in opposite direction or normally reflected (not shown) from the 
interface A between the regions G″ and G′; inside the area G′, it 
can be either Andreev-reflected at the Nb/Ti–C interface I creat-
ing the Cooper pair in Nb (process 2), or continue moving in the 
graphite sheet ballistically (process 3). If the electron energy E is 
low (E << U0), the electron bounces many times back and forth 
between the two barriers at x = xA and x = xB (process 4) before it 
is either Andreev-reflected from the Nb/Ti–C interface or it es-
capes the contact region into the open C sections G″. 
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3. Theoretical model 

A theoretical model proposed here is based on single-
layer graphene that is a 2D material. The junction region in 
our devices contains many carbon layers; i.e., it is a graph-
ite flake rather than graphene (although in the literature 
even multilayered carbon samples have been often referred 
to as graphene). However, the epitaxial graphite is highly 
anisotropic material with the conductivity along the crystal 
planes being hundreds of times larger than across the 
planes [12]. For this reason, we believe such a model can 
qualitatively explain transport properties of our system, 
specifically, the large value for the junction resistance 
(R0 = 193 Ω  in device G1) coexisting with the metallic-
like shape of the dV/dI(V) curves at T < Tc,Nb as seen in 
Fig. 2(b). 

On one hand, the overall high value of dV/dI(V) indi-
cates that a low-transparency barrier is formed at the met-
al/carbon interface. On the other hand, the metallic-like 
shape of dV/dI(V) implies that the electric transport in-
volves AR process that usually occurs at high-transparency 
interfaces. These two apparently contradictory facts can be 
reconciled within a model in which the metal/2D C contact 
is simulated by double-barrier S–I–G′–I–G″ junctions con-
nected in series. The model is based on the modified BTK 
theory [13]. We shall show that the model qualitatively 
explains the experimental data taking into account the 
nanodevice geometry and the assumed interface structure. 
More technical details of the model are provided in the 
Appendix. 

An important distinction between the junction consid-
ered within the BTK model [13] and our device is the 
change of electron state dimensionality 3D → 2D in the 
tunneling process between the Nb/Ti electrode (S elec-
trode) and the C in the latter case. The number of quantum 
channels in 2D C is finite, which limits the tunneling prob-
ability from Nb/Ti into C. 

Another difference between the BTK model and our 
geometries stems from a specific electron momentum con-
servation in our case. On one hand, only the electrons with 
momentum p⊥  perpendicular to the interface contribute to 
the conventional tunneling (CT) between the Nb/Ti (S-elec-
trode) and 2D carbon. On the other hand, only the electrons 
whose momentum ||p  is parallel to the interface actually 
contribute to the AR process. This is due to the fact that the 
AR occurs on a much longer scale, of the order of the co-
herence length in 2D C ξG, rather than the regular tunnel-
ing across the C layers which occurs on a scale of order 
the lattice constant a [14]. Yet another difference between 
the model of Ref. 13 and our model is that, in the 1D ge-
ometry [13], an electron incoming from the N electrode 
reverses its momentum (px → –px) after being normally 
reflected from the S/N interface barrier. For finite interface 
barrier strength 0Z ≠  this causes suppression of the elec-
tric current at voltages /SV e< ∆ . In our geometry this 

does not happen since during the reflection at the S-I-G' 
interface the x-component of the electron momentum is not 
reversed, px → px. 

Our model involves two very different characteristic 
scales — an “access” length [15], LT, and the coherence 
length in 2D C, ξG, which are related as LT << ξG. The 
short length LT ≈ a characterizes CT of electrons between 
the 3D Ti/Nb electrode and 2D carbon perpendicular to the 
Nb/Ti–C interface ( 0p⊥ ≠ ). The much longer ξG is related 
to AR at the 3D/2D Ti/Nb–C interface which occurs in 
parallel with the Nb/Ti–C interface ( || 0p ≠ ). This is shown 
schematically in Fig. 3 as process 2. Additionally there is 
another AR at the transitional G′/G″-region between the C 
section under the metal contact G′ (highlighted by lighter 
color in Fig. 3) and the C outside the contact region G″. 
We assume that the G′/G″ interfaces are characterized by 
potential barriers A and B shown in lower panel of Fig. 3 
and located at x = xA,B. The superconducting order parame-
ter, ∆G, induced due to the proximity effect, is finite not 
only in G′, but also in the uncovered C section G″, and 
spreads outside the contact area on the coherence length 
scale ξG. Thus the main contribution to the junction re-
sistance comes from the CT through the Nb/Ti–G′ and 
G′/G″ interfaces. 

The CT, acting during the first stage, actually restricts 
the AR to just a small fraction of electrons coming from 
Nb to C. The next stage is dominated by AR which takes 
place on a much longer spatial scale ξG. This AR process 
involves only the electrons whose momentum is parallel to 
the barrier component, i.e., || 0p ≠ . In the latter case, since 
the contact length Lc = LG' + 2LG" (see Fig. 3) is Lc >> a, 
the electrons spend much longer time Lc/vF near the barrier 
before being Andreev-reflected (here vF is the Fermi velocity 
in C). Because Lc/vF >> τT (where τT is the CT time through 
the Nb/Ti–G′ barrier), the prolonged stay of electrons near 
the Nb/Ti–G′ barrier strongly increases probability of the 
AR T2 as compared to the CT probability T1 for electrons 
with || 0p ≠ . Another important contribution comes from 
the “reflectionless” AR which happens when an electron 
spends sufficient time in vicinity of the N/S interface. The 
corresponding dwell time, τd, should much exceed the du-
ration of an individual AR process, τAR, which is the case 
for an electron residing in the region G′. Furthermore, the 
τd is energy dependent. In our theoretical model we as-
sume that the prolonged dwell time in the region G′ is 
caused by multiple reflections of electrons back and forth 
from the barriers A and B (see Fig. 3). In this model, the 
energy dependence of the τd naturally originates from the 
energy dependence of transparencies of the barriers A and 
B. At low energies, E ~ 0, the barriers are thicker and thus 
less transparent, which corresponds to a longer dwell time 
τd >> τAR. An electron tends to bounce several times be-
tween the barriers A and B before leaving the region G′. 
The barriers are thinner and more transparent as the elec-
tron energy increases, which makes the dwell time shorter, 
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τd ~ τAR. For this reason, the probability of the “reflection-
less” AR is higher at low energies, and a conductance peak 
appears around zero voltage. We believe the feature within 
the voltage interval of about ±1 mV (cf. Fig. 2(b)) is 
caused by this process. The peak width is determined by 
the energy dependence of the transparencies of the barriers 
A and B rather than by the Nb energy gap magnitude. 

Summarizing, all the electrons with 0p⊥ ≠  contribute 
into CT although its probability could be small due to 
presence of a finite interface barrier. On the other hand, 
only a small fraction of electrons with || 0p ≠  contribute to 
AR from the Nb/Ti–G′ interface, although the AR process 
probability is high. The associated transmission factors are 
small in the first case and much larger in the second case, 
which explains the apparent contradiction of the observed 
behaviors. The calculations have been performed by solving 
the Dirac equation for G and using the S-matrix technique 
extended to include superconducting correlations [1,2]. 

Since the real device (cf. Fig. 1) has two metal-carbon 
contacts, each of them assumed to have the double barrier 
S–I–G′–I–G″ structure shown in Fig. 3, the device is mod-
eled by two S–I–G′–I–G″ junctions connected in series. 
Here S stands for the superconducting metal, I is the inter-
face barrier, G′ is the carbon under the contact, G″ is the 
open carbon. The computed differential resistance dV/dI(V) 
of such a double barrier S–I–G′–I–G″ junction is shown in 
Fig. 4 where we used the S–I–G′ subjunction transparency, 
T1 = 0.04, and the G′–I–G″ subjunction transparency, T2 = 
= 0.65. One sees three pronounced features in the dV/dI(V) 
curve. The feature within the voltage range ±1 mV corre-

sponds to reflectionless tunneling, as described above. 
More specifically, as an electron traverses the contact area 
enclosed between the two barriers at x = xA and x = xB, it 
either can be Andreev-reflected with probability T1 at the 
S–I–G′ interface, or it can be normally reflected (or trans-
mitted) with probability R2 (T2) at the G′–I–G″ interface 
barrier. The number of reflections depends on the elec-
tron’s energy since the transparency of the potential barriers 
at x = xA and x = xB is energy-dependent. At low energies, 
the electron can bounce back and forth several times which 
increases the AR probability considerably [11]. This results 
in a pronounced minimum in the dV/dI(V) curve in the 
vicinity of 0V = . The second feature at Nb~ 2( ) /GV e′∆ + ∆  
is related to AR in the S–I–G′ subjunction. Here ∆G′ is the 
proximity energy gap induced in the layer adjacent to the 
metal. There are two such S–I–G′ subjunctions in the meas-
urement circuit which yields the coefficient 2. The third 
feature at Nb~ 2( )/G GV e′ ′′∆ + ∆ + ∆  corresponds to AR 
at the G′–I–G″ subjunction which is connected in series 
with the S–I–G′ subjunction. Similarly, since there are two 
G′–I–G″ subjunctions in the circuit, it also gives the factor 
2. Note that the shape of the feature at Nb~ 2( ) /GV e′∆ + ∆  
is different from the shape of another feature at 

Nb~ 2( ) /G GV e′ ′′∆ + ∆ + ∆ . The difference comes from dif-
ferent geometry of the S–I–G′ and G′–I–G″ subjunctions. 
During the reflection in the S–I–G′ junction, the x-com-
ponent of the electron momentum is not reversed, px → px, 
whereas it is reversed in the reflection process at the G'–I–G" 
subjunction, resulting in px → −px. The calculated data re-
veal an excess conductance at voltages Nb2( )/GV e′≤ ∆ + ∆  
for 1 > T2 > 0.5, in qualitative agreement with our experi-
mental observation. 

Similar excess conductance has been reported not on-
ly for superconductor–graphene–superconductor junctions 
[9–11], but also for the Nb/Pd–CNT–Pd/Nb junctions 
(where CNT stands for carbon nanotube) [16,17], implying 
that our model may be applicable for a broader class of 
systems than considered here. 

4. Conclusion 

Experimental data on Nb(/Ti)–C–(Ti/)Nb junctions re-
veal a strong barrier at the metal–C interfaces, which prob-
ably results in suppression of Josephson current in the de-
vices down to 1.8 K. However, the device conductivity is 
metallic-type, which is not expected for the strong inter-
face barriers. A theoretical model is presented which ex-
plains this apparent contradiction in terms of two tunneling 
processes: CT between the Nb(/Ti) electrode and 2D car-
bon, and the second process, associated with the AR which 
also involves “reflectionless” processes. The associated 
transmission factors are small in the first case and much 
larger in the second case, leading to a noticeable contribu-
tion of the AR to the conductivity. 

It should be noted that interfacial phenomena between a 
superconductor and carbon (in the form of both graphite 

Fig. 4. Calculated differential resistance of the Nb/Ti–C–Ti/Nb 
junction. A broad minimum in the vicinity of zero bias is 
caused by the reflectionless tunneling inside the contact region 
(xA < x < xB). An even broader minimum at the voltages 

Nb2( ) /GV e′≤ ∆ + ∆  occurs due to the AR in the S–I–G′ sub-
junction (where 'G∆ is the proximity induced energy gap in the C 
under the metal). Additional tunneling-like feature occurs at 

Nb~ 2( ) /G GV e′ ′′∆ + ∆ + ∆  where G′′∆ is the proximity in-
duced gap in the open carbon regions G″ right outside the contact 
area (cf. Fig. 3). 
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and graphene) are not well studied, both experimentally 
and theoretically. Clearly more experimental work is need-
ed to study this system. 
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Appendix 

Below we provide details on the theoretical model that 
has been used to interpret the data from this experiment. We 
assume that the overall electron transmission trajectory 
through the S–I–C–I–S junction is represented by a broken 
line since CT takes place in the z-direction while AR in-
volves the x-direction. Note that the broken-line trajectory 
(cf. Fig. 5(a)) differs from the straight-line trajectory consid-
ered in the Ref. 13. The major distinction between our ge-
ometry and that considered in the original BTK model [13] 
is that there is no conventional reflection at the superconduc-
tor — 2D carbon (S–I–C) interface in our geometry: when 
an electron inside the C sheet approaches the vicinity of 
the S–I–C contact, it either penetrates through the S–I–C 
interface with a certain probability T1 or it continues moving 
ahead inside the same carbon sheet, thereby directly trans-
mitted the S–I–C contact area without any reflection. Only 
those electrons penetrating the S electrode contribute to the 
AR process whereas the directly transmitted electrons do 
not. Note, the CT and the AR processes occur on different 
scales (~a for the former and ~ξG for the latter). Because the 
electron trajectory in our case is not a straight line, the two 
different scales serve to spatially separate the microscopic 
tunneling from the AR. 

We describe the electron transport properties of the 
S–I–G′–I–G″ junction (cf. Fig. 3) within the scattering 
matrix approach by assuming that the carbon sheet is mon-
olayer G and that the major contribution comes from the 
vicinity of the K(K′)-point. The incoming iΨ



 and outgoing 
oΨ


 envelope electron wave functions are connected by the 
S-matrix as o iSΨ = Ψ

 

 [16]. Following Refs. 1, 2, AR in G 
must also account for the electron/hole chirality. This 
causes a more complex structure of electron and hole states 
in graphene, and also introduces new features into the AR 
at the superconducting metal/G interface as compared to 
conventional materials. In the G junctions, one may ob-
serve not only the conventional Andreev retro-reflection, 
which takes place inside the same (conduction) band, but 
also a specular AR which occurs as the result of an inter-
band processes. The ( )o iΨ



 states are represented by vectors 

 ( )
ˆ

,
ˆ

o
L

o i o
R

 ψ
 Ψ =
 ψ 



 
( )
( )( )

( ) ( )
( )

ˆ
o i
L Ro i

L R o i
L R

u 
 ψ =   
 v

. (A.1) 

Here ( )
( )ˆ o i

L Rψ  are the Nambu spinors composed of the elec-

tron ( ( )
( )

o i
L Ru ) and of its time-reversed hole ( ( )

( )
o i
L Rv ) states. 

The wave functions ( )
( )

o i
L Ru  and ( )

( )
o i
L Rv  describe incoming and 

outgoing electrons and holes from the left (L) and right (R) 
of the scatterer, which together constitute the S–I–G–I–S 
junction. As compared to spinless electron states in con-
ventional conductors, the electrons and holes in G are cha-
racterized by additional quantum numbers which are the 
two 1/2-pseudospins. Therefore an electron state ( )

( )
o i
L Ru  is re-

presented by a four-dimensional vector ( , , , )A B B Au ′ ′= φ φ −φ φ  
where the indices A and B denote two different G 
sublattices while the prime indicates the K′ valley. The 
corresponding hole state ( )

( )
o i
L Rv  is represented as 

( , , , )A B B ATu ∗ ∗ ∗ ∗′ ′= = φ φ −φ φv , where T is the time reversal 
operator [1,2]. The Cooper coupling between u and v is 
determined from the Dirac–Bogoliubov–de Gennes equa-
tion [1]: 

 0 0

0 0

( )

( ) ( )
F

F

H E u u
H E∗

− ∆ σ ⊗ τ    
= ε     ∆ σ ⊗ τ − −      v v

, (A.2) 

where 0 0 0( ) ( )H U r= ⋅ ⊗ τ + σ ⊗ τp σv , ∆ is the supercon-
ducting pair potential which couples u and its time-
reversed state, v. The S-matrix has the following structure: 

 †

ˆˆ
ˆˆ, ,

ˆ ˆ
A A

A A

r t r r t t
S r t

t r r r t t

∗ ∗

∗ ∗

    
   = = =           



; (A.3) 

here one sees that in addition to the diagonal elements, 
which correspond to the conventional reflection (r) and 
transmission (t ) amplitudes, there are also nondiagonal 
elements Ar  and At  which describe the AR processes. 
The r and t  amplitudes are 4 4×  matrices since they also 
account for the 1/2-psuedospin flips. 

The transmission through the S–I–G–I–S junction can 
be represented by two S-matrices TS  and AS   

 tot T AS S S= ⊗ , (A.4) 

where TS  corresponds to pure tunneling on a “short” scale 
(~a) perpendicular to the S/G-interface, while AS  describes 
a pure AR happening on a “long” scale ~ξG inside S. The 
composition rules for the reflection r, r′ and transmission t, 
t′ amplitudes are: 

 
( )

1
tot 2 1 2 1

1
tot 1 1 2 1 2 1

1
tot 1 2 1 2 1 2

1
tot 2 2 1 2 1 2

( ) ;

( ) ;

[ ] ;

( ) .

t t I r r t

r r t r I r r t

t t I r I r r r t

r r t I r r r t

−

−

−

−

′= −

′ ′= + −

′ ′ ′ ′ ′= + −

′ ′ ′ ′ ′= + −

 (A.5) 

Every partial S-matrix Si (here i = T, A) connects the incom-
ing and outgoing states for the ith scatterer. The reflection 
and transmission amplitudes in Eqs. (A.5) are themselves 
8 8×  matrices (because for each u-v coupling there are two ± 
orientations of the two 1/2-pseudospins). 
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For definiteness we also assume that the electron 
transport is coherent, i.e., the CT and AR are phase-
correlated. Then we combine the successive sections co-
herently. If the scattering is incoherent we should not use 
the scattering amplitudes but rather the scattering probabil-
ities [16]. Our experimental data do not indicate the pres-
ence of specular AR [1]. Therefore, for the sake of simplic-
ity, we only consider conventional AR (an incident 
electron is converted into a Cooper pair and a retro-
reflected hole). In addition, we adopt the BTK approxima-
tion [13] that the interface barrier shape is described by a 
Dirac δ-function. Under these assumptions, the S-matrix 
for the pure tunneling amplitudes through the interface 
barrier is approximated by  

 1 1 1 1
†

1 111

ˆˆ 0 0ˆˆ, ,
ˆ 0 0ˆT
r t r t

S r t
r tt r

     
 = = =     ′ ′′     



, (A.6) 

where we neglect the AR processes. On the other hand, the 
S-matrix of a pure AR is 

 
2 2 2

2 2†
222

ˆˆ 00 ˆˆ, ,
ˆ 0ˆ 0

A
A

A

r t trS r t
trt r

∗     
 = = =      ′   



, (A.7) 

where we neglect the conventional reflection and tunneling 
amplitudes. The reflection and transmission amplitudes 1r

1( )r′ , 1t 1( )t′ , and 2t 2( )t′  entering Eqs. (A.6) and (A.7) connect 
the incoming and outgoing states ( , , , )A B B Au ′ ′= φ φ −φ φ  
and ( , , , )A B B A

∗ ∗ ∗ ∗′ ′= φ φ −φ φv ; therefore, they are matrices 
4 4× . The CT preserves the particle's chirality, thus one 
sets 1̂it t= ⋅  where 1̂ is the 4 4×  unit matrix. The AR pre-
serves the time invariance and couples the electron state u 
and its time-reversed hole state v which has an opposite 
momentum (i.e., the corresponding electron and hole are 
located at the K and K′ points). Thus one sets 

2 2= ( )i
A A Ar r T r C= − τ ⊗ σ  where T and C are the time re-

versal and the complex conjugation operators, respectively. 
The composite AR amplitude of an S–N–I–N junction is 
then obtained as 

 
2
1

22
1

e

1

i
A

A
A

t rr
r r

ϕ ∗
=

−
, (A.8) 

while the composite conventional reflection amplitude is 

 
22 2

1 1
1 22

1

1 ( )

1
A

A

t r r
r r

r r

+ −
=

−
; (A.9) 

the composite CT amplitude is 

 1 2
22

11 A

t tt
r r

=
−

. (A.10) 

Our experimental data can be understood if we take into 
account conventional AR as in the BTK model [13]. Then 
we use:  

2 2

0, 0,( )2 2
0, 0,( ) ( )

( )
0, ( ) 0

( ) ( )

e(2 )
( ) , 4 ,

(2 ) 2
2 e , e .

i
i iii

i i i i Ai i
A A

i
i ii i ii

i Ai i
A A

ui Z
r Z u r

D D

u iZ iv Z
t t

D D

ϕ ϕ

ϕ−
= − =

+
= = −

v
v

 (A.11) 

Here 1,2i = ; iZ  is the interface barrier strength, 
( ) ( ) ( ) ( )2 2 2 2

0 0 04( ) [( ) ( ) ]i i i i
iAD u Z u= + − v , 

0 1 / / 2u ε= + ξ ε , 0 1 / / 2ε= − ξ εv . 

One also obtains 

2 2 2
1 1 1 1/ ( 4)R r Z Z= = + , 2 2

1 1 1 11 1/ [( / 2) 1],T t R Z= = − = +  

which for 6
1 10T −=  gives 2

1 2 10Z = ⋅ . The S–I–G interface 
barrier strength 1Z  is expressed via the interface barrier 
transparency 1T  as ( )1 1 12 1 /Z T T= − . As an illustrative 
example, we first assume that no superconducting proximi-
ty gap is induced in C. We then represent the S–I–C–I–S 
junction as a combination of two S–N–I–N and N–I–N–S 
block junctions. In the simplest approximation 2 0Z =  
(i.e., there are no barriers at the S/N and N/S interfaces). 
Then, in the one-dimensional BTK model, one gets 

2
1 1 1 1(2 ) / (4 )r Z i Z Z= − + . On the other hand, in our bro-

ken-line model, we use 1 0r = . The other parameters are 
common for the both cases, 2

1 1 1(1 /2) / (1 /4)t iZ Z= + + , 
(1) 0At = , (2)

2 0 0 01/ , ( / )At u r u= = v , 2 0r = , and (2) 0At = . We 
also consider an additional contribution from multiple AR 
processes occurring when an electron bounces back and 
forth inside the contact region G′. Such multiple processes 
are illustrated in Fig. 3. The multiple AR scenario takes 
place as follows. An electron e enters the contact region G′ 
from the uncovered C section G″. Since there are two po-
tential barriers separating the G′ and G″ regions [11,18], 
after entering G′, the electron is Andreev-reflected many 
times inside G′ before it exits into G″ region. The multiple 
AR processes are described by higher-order products 

 
( ) ( )
( ) ( )

2

1

T A ATA
N N

ATA TA

S S S S

S S S+

= ⊗ ⊗

= ⊗

   

 

  



, (A.12) 

etc., where 4x4 matrices TS  and SA are given by Eqs. (A.6) 
and (A.7). 

We will assume that the barrier transparency is energy-
dependent with the barrier shapes modeled as 

2 2
0( ) exp ( ( ) / )AU x U x x b= − − , where b is the geometrical 

barrier width. Parameters Ax  and b of the interface barrier 
separating the G′ and G″ regions are obtained from fitting 
the experimental I–V curve. Then, if an electron leaving 
the carbon G″ region arrives in G′ region, its further prop-
agation is as follows. (i) It is Andreev reflected at the 
Nb/Ti–C interface, creating a Cooper pair in the Nb and 
a hole moving back into barrier A located at x = xA 
(cf. Fig. 3). Consequently, the hole is reflected from the 
barrier A or tunnels through it. 
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Current–voltage characteristics of Nb–carbon–Nb junctions 

Substituting the amplitudes it  and ir  into Eqs. (A.10)–
(A.12), and also into the BTK formula for the electric cur-
rent yields 

( )
2

2 22 ( ) ( ) ( ) ( )A F F eV
eI dE M E t E r E f f
h −= + −∫ , (A.13) 

where ( )M E  is the number of modes in the carbon, Ff  is 
the Fermi distribution function, V is the bias voltage. The 
conductance computed from the above Eq. (A.12) is repre-
sented in Figs. 5(b),(c). In Fig. 5(b), we plot the conduct-
ance of the S–N–I–N block junction assuming that there is 
no conventional reflection at the N–I–N interface (i.e., we 
set 1 0r =  according to our broken-line trajectory model). 
From Fig. 5(b), one can infer that the conductance vs. volt-
age dependence follows the shape of the barrierless AR, 
while its amplitude is strongly reduced due to the low-tun-
neling amplitude, 2

1 << 1t , through the interface barrier I. 
For comparison, Fig. 5(c) represents results for the conven-
tional BTK model that assumes the electron trajectory is a 
straight line and the reflection coefficient is finite and de-
fined as 2

1 1 1 1(2 ) / (4 ) 0r Z i Z Z= − + ≠ . 
A more realistic correspondence with our experimental 

data can be achieved if we assume that a finite supercon-
ducting energy gap is induced in carbon as a result of the 
proximity effect. We then have an S–S′–I–N block junction 

rather than an S–N–I–N junction. Qualitative agreement 
with the experimental data shown in Fig. 2(b) can be obtain-
ed if we assume that the energy gap ∆′ induced by the su-
perconducting metal electrode in the carbon region G′ (i.e., S′) 
is only slightly smaller than ∆ in S. The S–S′–I–N–I–S′–S 
junction is composed of two S–S'–I–N and N–I–S′–S block 
junctions (cf. Fig. 5(a)); its calculated differential re-
sistance dV/dI vs. voltage V is shown in Fig. 4. The calcu-
lation shows that there is a visible suppression of the re-
sistance at voltages Nb G Nb G( ) / ( ) /e V e− ∆ + ∆ < < ∆ + ∆  
occurring when the AR probability 1 > T2 > 0.5. In our 
experiment, the excess Andreev conductance (which corre-
sponds to the suppressed differential resistance) occurs in 
the bias voltage interval corresponding to four S–I–S′ junc-
tions connected in series. The two junctions originate im-
mediately from the Nb/Ti–C 3D/2D interfaces, whereas 
two additional S′–I–S″ junctions are formed inside the car-
bon layer between the region underneath of metal (G′) and 
outside adjacent region (G″) as shown in the lower panel of 
Fig. 3. The four junctions connected in series thus provide 
the bias voltage interval Nb G Nb G4( )/ 4( )/e V e− ∆ + ∆ < < ∆ + ∆  
(where Nb G( ) / e∆ + ∆  ≈ 1.9 mV) for the excess Andreev 
conductance (suppressed resistance). Similar phenomena 
have been reported recently for the Nb/Pd/CNT/Pd/Nb 
junctions [16,17]. 

Fig. 5. (Color online) The Nb/Ti–C–Nb/Ti junction which is composed of two Nb/Ti–C block contacts. Each of the Nb/Ti–C contacts is 
represented in our model by the double barrier S–I–G′–I–G″ junction (cf. Fig. 3 in the main text) (a). The normalized “reflectionless” 
conductance σ(V) of the S–N–I–N junction computed within the BTK model with the broken line trajectory ( 1 0r = ). The energy gap is 

1 0.002i∆ = + ⋅ , transmission coefficient through the barrier I is 1t = 0.3, 0.8 and 0.95 (b). The same characteristic as before but for the 
straight line electron trajectory when 2

1 1 1 1(2 ) / (4 )r Z i Z Z= − +  (c). AR in the asymmetric S–I–S′ junction where S and S′ are super-
conducting electrodes characterized by different energy gaps ∆′ = 0.8∆ (d). 
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