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We study the one-dimensional S = 1 Blume-Emery-Griffiths model. Upon transforming the spin model into
an equivalent fermionic model, we provide the exact solution within the Green’s function and equations of
motion formalism. We show that the relevant response functions as well as thermodynamic quantities can
be determined, in the whole parameters space, in terms of a finite set of local correlators. Furthermore,
considering the case of an antiferromagnetic chain with single-ion anisotropy in the presence of an external
magnetic field, we find three plateaus in the magnetization curve. In the neighborhood of the endpoints of the
intermediate plateau, the specific heat shows a double peak structure.
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1. Introduction

The spin-1 Ising model with bilinear (J) and biquadratic (K) nearest-neighbor pair interactions
and a single-ion potential (∆) is known as the Blume-Emery-Griffiths (BEG) model [1]. With
vanishing biquadratic interactions, the model is known as the Blume-Capel model [2,3].

There is a large and diffused interest in the study of this model, motivated by several reasons.
The BEG model was originally introduced to describe the phase separation and superfluidity in
the 3He–4He mixtures, but it can also describe the properties of a variety of systems ranging from
spin-1 magnets to liquid crystal mixtures, microemulsions, semiconductor alloys, to quote a few.
Both the BEG and BC models have been investigated using many different approaches for different
lattice types and dimensions. In one dimension and zero magnetic field, the spin-1 Ising model and
the BEG model have been solved exactly by means of the transfer matrix method [4] and by means
of the Bethe method [5]. Exact solutions have also been obtained for a Bethe lattice [6] and for
the two-dimensional honeycomb lattice [7]. For higher dimensions, among the various approximate
and simulation techniques, the most common approach to the BC and BEG models is based on the
use of mean field approximation. However, renormalization group studies show some qualitative
differences from the mean field results. The one-dimensional case for the BEG model was studied in
[8], where exact renormalization-group recursion relations were derived, exhibiting tricritical and
critical fixed points. We refer the interested reader to [9] for a rather broad list of works devoted
to the study of the BC and BEG models.

In previous works [10], we have shown that, upon transforming to fermionic variables, spin
systems can be conveniently studied by means of quantum field methods, namely: Green’s functions
and equations of motion methods. This approach has the advantage of offering a general formulation
for any dimension and to provide a rigorous determination of a complete set of eigenoperators of
the Hamiltonian and, correspondingly, of the set of elementary excitations. In this paper we apply
this formulation to the 1D BEG model, and we obtain the exact solution of the model in the whole
space of the parameters. Postponing to a forthcoming work a comprehensive analysis of the model,
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in this paper we focus our study on the thermal and magnetic properties of the antiferromagnetic
(J < 0) spin-1 chain with single-ion anisotropy in the presence of an external magnetic field, in the
limit of vanishing biquadratic interaction. This particular case is indeed interesting since one finds
magnetization plateaus, experimentally observed [12]. At T = 0 the magnetization curve forms
plateaus with abrupt jumps from one to another at certain values of the magnetic field h. When
∆ = 0, the ground state is purely antiferromagnetic for −2|J | < h < 2|J |. By varying the magnetic
field, the system undergoes a phase transition to a pure ferromagnetic regime at h = ±2|J |. When
the anisotropy ∆ is turned on, one observes an intermediate phase characterized by half of the spins
oriented along the external field and the rest perpendicular to it. The intermediate phase between
the anti- and ferromagnetic ones, has a width depending on ∆ whose endpoints are denoted by hc

and hs, i.e., critical and saturated field, respectively.
The paper is organized as follows. In section 2, upon introducing a complete set of composite

operators, eigenoperators of the Hamiltonian, we outline the analysis leading to the algebra closure
and to analytical expressions of the retarded Green’s functions (GFs) and correlation functions
(CFs). Since the composite operators do not satisfy a canonical algebra, the GF and CF depend
on a set of internal parameters, leading only to exact relations among the CFs. According to the
scheme of a composite operator method [11], it is possible to determine these parameters by means
of algebra constraints fixing the representation of the GF. By following this scheme, in section 3 we
obtain extra equations closing the set of relations and allowing for an exact and complete solution
of the 1D BEG model. Section 4 is devoted to the study of the finite temperature properties.
Finally, section 5 is devoted to our conclusions and final remarks, while the appendix reports some
relevant computational details.

2. Composite fields and Green functions

The Blume-Emery-Griffiths (BEG) model describes a system with three states per spin. The
Hamiltonian of the one-dimensional BEG model with first-nearest neighbor interaction is given by

H = −J
∑

i

S(i)S(i+ 1) −K
∑

i

S2(i)S2(i+ 1) + ∆
∑

i

S2(i) − h
∑

i

S(i), (1)

where the spin variable S(i) takes the values S(i) = −1, 0, 1. We use the Heisenberg picture:
i = (i, t), where i stands for the lattice vector Ri. This model can be mapped into a fermionic
model by means of the transformation

S(i) = [n(i) − 1], (2)

where n(i) =
∑

σ c
†
σ(i)cσ(i) = c†(i)c(i) is the density number operator of a fermionic system; c(i)

(c†(i)) is the annihilation (creation) operator of fermionic field in the spinor notation and satisfies
canonical anti-commutation relations. Under the transformation (2), the Hamiltonian (1) takes the
form

H = V
∑

i

n(i)nα(i) + Ũ
∑

i

D(i) +
1

2
W

∑

i

n(i)Dα(i)

+
1

2
W

∑

i

D(i)nα(i) −W
∑

i

D(i)Dα(i) − µ̃
∑

i

n(i) +E0, (3)

where we have defined

V = −(J +K), Ũ = 2(−2K + ∆),

W = 4K, µ̃ = −(2J + 2K − ∆ − h),

E0 = (−J −K + ∆ + h)N. (4)

Hereafter, for a generic operator Φ(i) we shall use the following notation: Φα(i) = [Φ(i + 1) +
Φ(i− 1)]/2. The Hamiltonian (3) is pertinent to an Hubbard model extended to include intersite
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interactions, namely: charge-charge (V ), charge-double occupancy (W ) and double occupancy-
double occupancy (−W ) interactions. However, Hamiltonian (3) does not exactly correspond to
the BEG Hamiltonian (1) since the mapping between S and n should take into account the four
possible values of the particle density (n(i) = 0, n↑(i) = 1 and n↓(i) = 1, n(i) = 2). Letting
the zero-state spin be degenerate, makes the Hamiltonians (1) and (3) equivalent, provided one
redefines the chemical potential µ̃ and the onsite potential Ũ as

µ̃→ µ = µ̃− β−1 ln 2, Ũ → U = Ũ − 2β−1 ln 2, (5)

where β = 1/kBT . As a result, for a translationally invariant chain, one has

H = V
∑

i

n(i)nα(i) + U
∑

i

D(i) +W
∑

i

n(i)Dα(i) −W
∑

i

D(i)Dα(i) − µ
∑

i

n(i) +E0. (6)

It is straightforward to verify that the partition functions relative to the two models (1) and (6)
are the same. Therefore, in the following we shall consider the fermionic model, described by the
Hamiltonian (6), which is exactly equivalent to the BEG model. To solve this Hamiltonian we shall
use the formalism of Green’s functions and equations of motion. As a first step, we show that there
exists a complete set of eigenoperators and eigenvalues of H . To this end, one can introduce the
Hubbard projection operators

ξ(i) = [1 − n(i)]c(i), η(i) = n(i)c(i). (7)

These fields satisfy the equations of motion

i
∂

∂t
ξ(i) = [ξ(i), H ] = [−µ+ 2V nα(i) +WDα(i)] ξ(i),

i
∂

∂t
η(i) = [η(i), H ] = [−µ+ U + (2V + 2W )nα(i) −WDα(i)] η(i). (8)

By noting that the particle density n(i) and double occupancy D(i) operators satisfy the following
algebra

np(i) = n(i) + apD(i)

Dp(i) = D(i)

np(i)D(i) = 2D(i) + apD(i)

for p > 1, (9)

where ap = 2p − 2, one can derive the following recursion rules

[nα(i)]p =
4

∑

m=1

A(p)
m [nα(i)]m , [Dα(i)]p =

2
∑

m=1

B(p)
m [Dα(i)]m. (10)

The coefficients A
(p)
m and B

(p)
m are rational numbers, satisfying the sum rules

∑4
m=1A

(p)
m = 1 and

∑2
m=1B

(p)
m = 1, whose explicit expressions are given in the appendix.

On the basis of the equations of motion (8) and by means of the recursion rules (10), one can
easily infer that the composite multiplet operators

ψ(ξ)(i) =





















ξ(i)
ξ(i)nα(i)
ξ(i)[nα(i)]2

ξ(i)[nα(i)]3

ξ(i)[nα(i)]4

ξ(i)Dα(i)
ξ(i)[Dα(i)]2





















, ψ(η)(i) =





















η(i)
η(i)nα(i)
η(i)[nα(i)]2

η(i)[nα(i)]3

η(i)[nα(i)]4

η(i)Dα(i)
η(i)[Dα(i)]2





















(11)
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are eigenoperators of H :

i
∂

∂t
ψ(ξ)(i) = [ψ(ξ)(i), H ] = ε(ξ)ψ(ξ)(i), (12)

i
∂

∂t
ψ(η)(i) = [ψ(η)(i), H ] = ε(η)ψ(η)(i). (13)

The energy matrices ε(ξ) and ε(η) are matrices of rank 7 × 7 and have the expressions

ε(ξ) =





















−µ 2V 0 0 0 W 0

0 −µ+ W

6
2V − 1

2
W 1

3
W 0 W 0

0 W

6
−µ− 1

3
W 2V −W

6

1

3
W W 0

0 − 1

3
W 7

4
W −µ− 35

12
W 2V + 3W

2
W 0

0 −3V − 25

12
W 25

2
V + 205

24
W − 35

2
V − 265

24
W −µ+10V + 55

12
W W 0

0 1

3
V −V 2

3
V 0 −µ+2V W

0 − 1

3
V 4

3
V − 5

3
V 2

3
V −W

2
−µ+2V + 3W

2





















, (14)

ε(η) =





















−(µ−U) Υ 0 0 0 −W 0

0 U−µ− 1

6
W 2V + 3W

2
− 1

3
W 0 −W 0

0 − 1

6
W U−µ+ 1

3
W 2V + 7

6
W − 1

3
W −W 0

0 1

3
W − 7

4
W U−µ+ 35

12
W 2V −W

2
−W 0

0 7

12
W−3V 25

2
V − 55

24
W 55

24
W− 35

2
V U−µ+10V + 5

12
W −W 0

0 1

6
Υ − 1

2
Υ 1

3
Υ 0 U−µ+Υ −W

0 − 1

6
Υ 2

3
Υ − 5

6
Υ 1

3
Υ W

2
U−µ+2V − 1

2
W





















, (15)

where Υ = 2V +W . The energy levels are given by the eigenvalues of the energy matrices and are
as follows:

E(ξ)
n =





















−µ
−µ+ V
−µ+ 2V

−µ+W + 2V
−µ+W/2 + 2V
−µ+W + 4V
−µ+W/2 + 3V





















, E(η)
n =





















−µ+ U
−µ+ U +W/2 + V
−µ+ U +W + 2V

−µ+ U + 2V
−µ+ U +W/2 + 2V
−µ+ U +W + 4V
−µ+ U +W + 3V





















. (16)

The knowledge of a complete set of eigenoperators and eigenvalues of the Hamiltonian allows for
an exact expression of the retarded Green’s function

G(s)(t− t′) = θ(t− t′)〈{ψ(s)(i, t), ψ(s)†(i, t′)}〉 =
i

(2π)

∫ +∞

−∞

dωe−iω(t−t′)G(s)(ω) (17)

and, consequently, of the correlation function

C(s)(t− t′) = 〈ψ(s)(i, t)ψ(s)†(i, t′)〉 =
1

(2π)

∫ +∞

−∞

dωe−iω(t−t′)C(s)(ω). (18)

In the above equations s = ξ, η and 〈· · · 〉 denotes the quantum-statistical average over the grand
canonical ensemble. One finds

G(s)(ω) =

7
∑

n=1

σ(s,n)

ω −E
(s)
n + iδ

, (19)

C(s)(ω) = π

7
∑

n=1

σ(s,n)T (s)
n δ(ω −E(s)

n ) , (20)
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where T
(s)
n = 1 + tanh(βE

(s)
n /2) and the spectral density matrices σ(s,n) are computed by means

of the formula

σ(s,n)
µν = Ω(s)

µn

7
∑

λ=1

[Ω
(s)
nλ ]−1I

(s)
λν , (21)

where Ω(s) is the 7× 7 matrix whose columns are the eigenvectors of the matrix ε(s). The explicit
expressions of the spectral density matrices are given in the appendix. I (s) is the normalization
matrix defined as

I(s) =
〈

{ψ(s)(i), ψ(s)†(i)}
〉

. (22)

By means of the recurrence relations (10), all the matrix elements of I (s) can be expressed in
terms of only the elements belonging to the first row. The calculations of the latter give, for a
homogeneous state,

I
(ξ)
1,k = κ(k−1) − λ(k−1), (k = 1, ...5), I

(ξ)
1,k = δ(k−5) − θ(k−5), (k = 6, 7),

I
(η)
1,k = λ(k−1), (k = 1, ...5), I

(η)
1,k = θ(k−5), (k = 6, 7), (23)

where

κ(p) = 〈[nα(i)]p〉, δ(p) = 〈[Dα(i)]p〉,

λ(p) =
1

2
〈n(i)[nα(i)]p〉, θ(p) =

1

2
〈n(i)[Dα(i)]p〉. (24)

In conclusion, in this section we have shown that the 1D BEG model is exactly solvable. Exact
expressions for the GF and CF have been obtained and are expressed in terms of a set of local
correlation functions (24), which should be calculated in order to obtain quantitative results. This
problem will be considered in the next section, where a self-consistent scheme, capable of computing
the internal parameters, will be formulated.

3. Self-consistent equations

Based on the computational framework provided in the previous section, it is evident that
the GF and the CF depend on the internal parameters: µ, κ(p) and λ(p) (p = 0, . . . , 4), δ(p)

and θ(p) (p = 1, 2). For a homogeneous state (i.e., translationally invariant: 〈nα(i)〉 = 〈n(i)〉 and
〈D(i)〉 = 〈Dα(i)〉), there are twelve parameters to be self-consistently computed in terms of the
external parameters n, V , U , W and T . A first set of self-consistent equations is given by the
algebra constraints

ξ↑(i)ξ
†
↑(i) + η↑(i)η

†
↑(i) = 1 − n↑(i), η↑(i)η

†
↑(i) = n↓(i) −D(i),

ξ↓(i)ξ
†
↓(i) + η↓(i)η

†
↓(i) = 1 − n↓(i), η↓(i)η

†
↓(i) = n↑(i) −D(i) (25)

from which one gets the following self-consistent equations

C
(η)
1,1 = λ(0) − δ(1),

C
(ξ)
1,k + C

(η)
1,k = κ(k−1) − λ(k−1), (k = 1, ..5),

C
(ξ)
1,k + C

(η)
1,k = δ(k−5) − θ(k−5), (k = 6, 7), (26)

where the CFs in the l.h.s. of equation (26) can be computed by means of the formula

C(s) = 〈ψ(s)(i)ψ(s)†(i)〉 =
1

2

7
∑

n=1

σ(s,n)T (s)
n . (27)
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Equations (26) provide one with eight self-consistent equations. To determine all the parameters
one needs other four equations. These can be derived by means of the algebra constraints

ξ†(i)n(i) = 0, ξ†(i)D(i) = 0. (28)

By exploiting these relations one can express the CFs C
(ξξ)
13 , C

(ξξ)
14 , C

(ξξ)
15 , and C

(ξξ)
17 in terms of the

CFs C
(ξξ)
11 , C

(ξξ)
12 and C

(ξξ)
16 as

C
(ξξ)
13 = C

(ξξ)
11

(

1

2
X1 +X2 +

1

2
X2

1

)

,

C
(ξξ)
14 = C

(ξξ)
11

(

1

4
X1 +

3

2
X2 +

3

2
X1X2 +

3

4
X2

1

)

,

C
(ξξ)
15 = C

(ξξ)
11

(

1

8
X1 +

7

4
X2 +

9

2
X1X2 +

7

8
X2

1 +
3

2
X2

2

)

,

C
(ξξ)
17 = C

(ξξ)
11

(

1

2
X2 +

1

2
X2

2

)

. (29)

The two parameters X1 and X2 are expressed in terms of the CFs C
(ξξ)
11 , C

(ξξ)
12 and C

(ξξ)
16 as

X1 =
C

(ξξ)
12

C
(ξξ)
11

, X2 =
C

(ξξ)
16

C
(ξξ)
11

. (30)

Equations (26), (29) and (30) provide twelve self-consistent equations which will determine all
the unknown internal parameters and therefore the various properties of the model. Once the
parameters of the fermionic model are computed, by use of the mapping transformations (4) and
(5), it is straightforward to study the behavior of relevant properties of the BEG model. Details of
the computations leading to equation (29) will be given elsewhere [16].

4. Magnetic and thermal responses

As an application of the general formulation provided in the previous sections, here we shall
study the magnetic and thermal properties of the model Hamiltonian (1), by restricting the analysis
to the case K = 0 and J < 0. In the following we set J = −1 and we consider only positive values
of h, owing to the symmetry property of the model under the transformation h → −h. When
∆ = 0, the ground state is either antiferromagnetic or ferromagnetic, depending on the value of
the external field. As a consequence, the magnetization, defined as

m = 〈S(i)〉 = 〈n(i)〉 − 1 = 1 − 2
[

C
(ξ)
11 + C

(η)
11

]

, (31)

presents, at T = 0, two plateaus as a function of the external field h, with hs = 2 being the value
of the saturated field. Turning on a positive single-ion anisotropy, three plateaus appear at m = 0,
m = 1/2 and m = 1. This is in agreement with the criterion derived in [13] for the appearance of
plateaus in spin chains in a uniform magnetic field.

In figure 1a we plot the magnetization as a function of the magnetic field at T = 0.01 for
different values of ∆. Upon increasing the field, a nonzero magnetization begins at the critical
value of the field hc: this critical value decreases by increasing ∆. For h > hc, a m = 1/2 plateau is
observed until h reaches the saturated value hs, at which the third magnetization plateau at m = 1
is observed. The width of the m = 1/2 plateau augments by increasing ∆ in the range 0 < ∆ < 1
and becomes independent of ∆ when ∆ > 1. The critical field hc and the saturated field hs satisfy,
in the range 0 < ∆ < 1, the laws:

hc = 2 − ∆, hs = 2 + ∆.

548



Magnetic and thermal properties of a 1D spin-1 model

(a) (b)

Figure 1. (a) The magnetization m as a function of the external field h for K = 0, J = −1,
T = 0.01 and for ∆ = 0, 0.5 and 1. (b) The magnetization as a function of the temperature for
K = 0, J = −1, ∆ = 0.5 and h = 1, 2 and 3.

Our findings are in good agreement with Monte Carlo [14] and transfer matrix [15] results. In
figure 1b we plot the magnetization as a function of the temperature for values of the magnetic
field belonging to the three different plateaus. For h = 1 (h < hc) the magnetization is zero at
T = 0; all spins are aligned (upward and downward) with the magnetic field, resulting in a pure
AF state. When the temperature increases, the thermal fluctuations allow some of the downward
spins to rotate and the magnetization increases up to T ≈ 0.9 where it exhibits a maximum.
Further increasing T , the thermal fluctuations enter in competition with the magnetic field and
the magnetization decreases. For h = 2 (intermediate phase hc < h < hs) the magnetization is
equal to 1/2 at T = 0: half of the spins are parallel to h and half of them lie in the transverse
plane. When the temperature increases, there is a slight increase of m (up to T ≈ 0.2), but soon the
disorder induced by thermal fluctuation prevails and m decreases. For h = 3 (h > hs) at T = 0 one
finds m = 1: all spins are parallel to the magnetic field and the system is in a pure ferromagnetic
state. When the temperature increases, the long-range order is destroyed and the magnetization
decreases.

(a) (b)

Figure 2. (a) The quadrupolar moment Q as a function of the external magnetic field h for
K = 0, J = −1, T = 0.01 and for ∆ = 0, 0.5 and 1. (b) The quadrupolar moment as a function
of the temperature for K = 0, J = −1, ∆ = 0.5 and h = 1, 2 and 3.
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To further analyze the magnetic behavior, we have studied the quadrupolar moment Q, defined
as

Q = 〈S2(i)〉 = 1 − 2C
(η)
11 . (32)

At zero temperature, this quantity also shows plateaus for ∆ > 0. In figure 2a the quadrupolar
moment Q is plotted as a function of the external magnetic field, for K = 0, J = −1, T = 0.01 and
for various values of ∆. Q takes the value 1/2 in the range hc < h < hs, whereas it is equal to 1
for all other values of h. The behavior of Q as a function of the temperature is shown in figure 2b.
For h < hc and h > hs, the quadrupolar moment Q is maximum (Q = 1) at T = 0 and decreases
by increasing T . For hc < h < hs, Q vanishes at zero temperature and increases augmenting T .

The existence of the magnetic plateaus is endorsed by the peaks found in the magnetic sus-
ceptibility χ = dm/dh. As evidenced in figure 3a, for ∆ = 0 the susceptibility presents only one
peak when plotted as a function of h, whereas for ∆ > 0 there are two peaks appearing at hc

and hs, signalling a step-like behavior of the magnetization. When plotted as a function of the
temperature, χ shows a peak at low temperatures and then vanishes for T → 0 for all values of
the magnetic field except at hc,s, where, of course, it diverges due to the step encountered by the
magnetization. As an example, in figure 3b we plot the susceptibility in the neighborhood of hs.

(a) (b)

Figure 3. (a) The susceptibility χ as a function of the external field for K = 0, J = −1, T = 0.01
and for ∆ = 0, 0.5 and 1. (b) The susceptibility as a function of the temperature for K = 0,
J = −1, ∆ = 0.5 in the neighborhood of hs.

The specific heat is given by C = dE/dT , where the internal energy E can be computed as the
thermal average of the Hamiltonian (1) for K = 0

E = −J 〈S(i)S(i)α〉 + ∆Q− hm. (33)

The specific heat exhibits a rich structure in correspondence of the critical values of the magnetic
field. The behavior of the specific heat as a function of the temperature is shown in figures 4a–b
in the neighborhood of hc,s. The possible excitations of the ground state are flipping of the spins
parallel to h and/or of the ones perpendicular to it. Away from hc,s, the specific heat presents
only one peak at low temperatures. When h < hc, the possible excitations are due only to the
flipping of the longitudinal spins. In the neighborhood of hc, a second peak appears since thermal
fluctuations also tend to flip the spins perpendicular to the external field. Further increasing h, the
specific heat presents only one peak until h ≈ hs, where again two peaks are present. Away from
hs, the specific heat shows only one peak.
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(a) (b)

Figure 4. The specific heat as a function of the temperature for K = 0, J = −1, ∆ = 0.5, (a)
around hc = 1.5; (b) around hs = 2.5.

5. Concluding remarks

We have evidenced how the use of the Green’s function and equations of motion formalism leads
to the exact solution of the one-dimensional BEG model. Our analysis allows for a comprehensive
study of the model in the whole space of parametersK, J , ∆, h and T . Here, we have focused on the
antiferromagnetic properties exhibited by the model and we have shown that, at zero temperature,
the model exhibits three magnetic plateaus when ∆ > 0. Furthermore, the specific heat shows a
double peak structure in the neighborhood of the endpoints of the intermediate plateau.
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A. Some analytical expressions

The coefficients A
(p)
m and B

(p)
m in equation (10) are given by:

A
(p)
1 = −6 + 23−p − 2p−1 + 23−p · 3p−1,

A
(p)
2 =

1

3 · 2p+1
(−104 + 57 · 2p+1 − 56 · 3p + 11 · 4p),

A
(p)
3 =

1

3 · 2p−1
(18 − 3 · 2p+3 + 14 · 3p − 3 · 4p),

A
(p)
4 =

1

3 · 2p−1
(−4 + 3 · 2p+1 − 4 · 3p + 4p), (34)

B
(p)
1 = 22−p − 1, B

(p)
2 = 2 − 22−p. (35)

σ(s,m) = Σ
(s)
m Γ(m) are the spectral density matrices defined in equation (21); Γ(m) are matrices
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of rank 7 × 7:

Γ
(1)
1,k = (1 0 0 0 0 0 0)

Γ
(2)
l,k = (1 1/2 1/4 1/8 1/16 0 0)

Γ
(3)
l,k = (1 1 1 1 1 0 0)

Γ
(4)
l,k = (1 1 1 1 1 1 1)

Γ
(5)
l,k = (1 1 1 1 1 1/2 1/4)

Γ
(6)
l,k = (1 2 4 8 16 1 1)

Γ
(7)
l,k = (1 3/2 8/4 27/8 81/16 1/2 1/4) .

and the Σ
(s)
m are given by:

Σ
(s)
1 =

1

6

(

6I
(s)
1,1 − 25I

(s)
1,2 + 35I

(s)
1,3 − 20I

(s)
1,4 + 4I

(s)
1,5

)

,

Σ
(s)
2 =

4

3

(

6I
(s)
1,2 − 13I

(s)
1,3 + 9I

(s)
1,4 − 2I

(s)
1,5

)

,

Σ
(s)
3 = −

23

6
I
(s)
1,2 +

23

2
I
(s)
1,3 −

26

3
I
(s)
1,4 + 2I

(s)
1,5 − 3I

(s)
1,6 + 2I

(s)
1,7 ,

Σ
(s)
4 =

1

6

(

3I
(s)
1,2 − 11I

(s)
1,3 + 12I

(s)
1,4 − 4I

(s)
1,5 − 6I

(s)
1,6 + 12I

(s)
1,7

)

,

Σ
(s)
5 =

4

3

(

−2I
(s)
1,2 + 7I

(s)
1,3 − 7I

(s)
1,4 + 2I

(s)
1,5 + 3I

(s)
1,6 − 3I

(s)
1,7

)

,

Σ
(s)
6 =

1

6

(

−3I
(s)
1,2 + 11I

(s)
1,3 − 12I

(s)
1,4 + 4I

(s)
1,5

)

,

Σ
(s)
7 =

4

3

(

2I
(s)
1,2 − 7I

(s)
1,3 + 7I

(s)
1,4 − 2I

(s)
1,5

)

. (36)

Here we have reported only the first row of the spectral density matrices. All the other matrix
elements can be expressed in terms of the first row by means of the recursion relation (10).
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Magnetic and thermal properties of a 1D spin-1 model

Магнiтнi та тепловi властивостi одновимiрної спiн-1 моделi

Ф.Манчiнi1, Ф.П.Манчiнi2
1 Факультет фiзики iм. Е.Р. Каянiелло, Унiверситет Салерно, Баронiссi 84081, Iталiя
2 Факультет фiзики та вiддiлення Нацiонального iнституту ядерних дослiджень, Унiверситет Перуджi,

Перуджа 06123, Iталiя

Отримано 27 травня 2008 р.

Дослiджується одновимiрна S = 1 модель Блюма-Емерi-Грiфiтса. Пiсля перетворення спiнової мо-
делi у еквiвалентну фермiонну модель, отримано точний розв’язок в рамках формалiзму функцiй
Ґрiна та рiвнянь руху. Показано, що для всiх значень параметрiв вiдповiднi функцiї вiдгуку i термоди-
намiчнi величини можуть бути визначенi через скiнчений набiр локальних кореляторiв. Крiм того, при
розглядi одновимiрного антиферомагнiтного ланцюжка з одноiонною анiзотропiєю, який помiщений
у зовнiшнє магнiтне поле, отримано три плато на кривiй намагнiчення, а поблизу країв середнього
плато питома теплоємнiсть проявляє двопiкову структуру.

Ключовi слова: модель Блюма-Емерi-Грiфiтса, magnetic plateau, exact solution

PACS: 75.10.Pq, 75.10.-b, 75.30.Kz
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