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We derive an alternative representation for the f-electron spectral function of the Falicov-Kimball model from
the original one proposed by Brandt and Urbanek. In the new representation, all calculations are restricted
to the real time axis, allowing us to go to arbitrarily low temperatures. The general formula for the retarded
Green’s function involves two determinants of continuous matrix operators that have the Toeplitz form. By em-
ploying the Wiener-Hopf sum equation approach and Szegd’s theorem, we can derive exact analytic formulas
for the large-time limits of the Green’s function; we illustrate this for cases when the logarithm of characteristic
function (which defines the continuous Toeplitz matrix) does and does not wind around the origin. We show
how accurate these asymptotic formulas are to the exact solutions found from extrapolating matrix calculations
to the zero discretization size limit.
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1. Introduction

The Falicov-Kimball model [1] has often been studied as one of the simplest models of strong
electron correlations. Indeed, the exact solution in the limit of large dimensions displays charge
density wave order, the Mott metal-insulator transition, and phase separation [2]. It is particularly
relevant to present a paper on this model in an issue dedicated to Prof. Stasyuk, as he has worked
on this model and closely related ones throughout his career; this began with his first article on the
Falicov-Kimball model [3] while his most relevant work to this contribution involves approximate
solutions for the f-electron spectral functions [4-6].

Our focus in this work is on the spectral function of the f-electrons in the exact solution
of Falicov-Kimball model with dynamical mean-field theory. This problem was first investigated
by Brandt and Urbanek [7] and by Janis [8]. The numerical approach of Brandt and Urbanek
was extended by Zlati¢ et al. [9] and Freericks, Turkowski and Zlati¢ [10-12] within the original
Brandt-Urbanek framework. An alternative approach was taken by employing the numerical renor-
malization group by Anders and Czycholl [13]. Some analytic work was completed by Liu [14] which
was related to early work on this problem [15] and proceeded from the perspective of the X-ray
edge problem [16,17]. Here, we develop a new approach which is numerically more tractable than
other approaches and allows us to develop asymptotically exact formulas for the Green’s function
in the time representation.

The single-site Hamiltonian of the Falicov-Kimball model [1] involves two types of electrons—
conduction electrons, denoted by the letter d and localized electrons, denoted by the letter f

Hioe = Efng +Ungny — p(ng+ny) = Ho(1 —ny) + Hing, (1.1)
Hy = —png,
H =FE; —p+ (U — p)ng,
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Figure 1. The Kadanoff-Baym-Keldysh contour. The contour starts at time 0, moves along the

real time axis to time ¢, moves back along the real axis to time 0, then extends down the
imaginary axis to time —if.

where ng = dfd and n r=f t f are the number operators for the d- and f electrons, respectively, U
is the on-site Coulomb interaction between the d and f electrons, and E is the site-energy of the
f state. The full Hamiltonian on the lattice includes a repeat of this local Hamiltonian for each
lattice site and a hopping of the conduction electrons between nearest-neighbor sites. The density
matrix of the single-impurity problem is equal to

1
p=e P T exp {i/dt’ /dt”d*(t’)Ac(t’,t”)d(t”)} 2 (1.4)

where the time-ordering and integration are performed over the Kadanoff-Baym-Keldysh con-
tour [18,19] and 8 = 1/T is the inverse temperature; the Kadanoff-Baym-Keldysh contour is shown
in figure 1 — it starts at ¢ = 0, runs out along the real axis to a maximal time ¢,,,x, then returns
along the real axis back to ¢ = 0, and finally runs along the negative imaginary axis down to —ig.
Here, the dynamical mean-field A\.(¢',¢”) and chemical potential p are taken from the equilibrium
solution of the conduction electron problem via dynamical mean-field theory [2]. In other words,
the dynamical mean field satisfies

oo

el t) = —% / dwmA()e—“E[f(w) — O (t, )], (1.5)

— 00

where A\(w) is the ordinary dynamical mean field on the real axis, extracted from the dynamical
mean-field theory solution of the model, f(w) = 1/[1 4 exp(fBw)] is the Fermi-Dirac distribution
function, and ©.(t,t') is the Heaviside function on the contour, equal to 1 when ¢ is ahead of ¢’
on the contour, equal to 0 when ¢ is behind ¢’ on the contour and equal to 1/2 when ¢ = ¢’ on
the contour (note that this definition of the \; field is i times the definition in [2]). The partition
function for the single-site problem contains two terms:

Z = Tre PheeT exp {—i/dt’ /dt”d*(t’))\c(t’, t”)d(t”)} = Zy+ Z1, (1.6)
C C

which correspond to the different occupations of the f-particles, as follows:

Zo=[1+™[] (1 —~ L) : ny = 0; (1.7)

. W, +

A
Zl _ eﬂ(;L—Ef) |:1 + eﬂ(;L—U):| H (1 _ %) , nf = 1. (18)
™ 1Wm m—

Here, iw,, = inT(2m + 1) is the fermionic Matsubara frequency and

Am

B
/dTeime)\(T) (1.9)
0
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is the dynamical mean field evaluated at the mth Matsubara frequency [the A field is a function
only of the difference of the two time arguments when both times lie on the imaginary part of the
Kadanoff-Baym-Keldysh contour and we use the notation A(7) = —i\.(—ir, 0), which corresponds
to the conventional definition of the dynamical mean field for imaginary time].

2. Real-time Green’s functions

We consider the contour ordered Green’s function for the f-electrons (with times ¢ and ¢’ both
lying on the contour)

5L ) = i (T 01 (1)). (2.1)

where the time ordering is taken along the contour, the angle brackets denote taking a trace
(weighted by the density matrix for the equilibrium system), and the time dependence of the
fermionic operators is taken with respect to the local Hamiltonian Hj,.. Depending on the location
of the time arguments on the contour, we obtain different real-time Green’s functions:

the greater Green’s function

GF () =~ (FOF(#)) = i 3 e {plfla) (a7 p)e =0 (22)

Pq

the lesser Green’s function

GFt—t)=i{fI(t)f(t)) = i% > e P (q|f1|p) (p| £ g)eEr e, (2.3)

pq

the time-ordered Green’s function

Gt —t) =—i(Tf)fT(t)) =0t —t)G7(t —t')+ O —t)GF(t —t'); (2.4)
and the antitime-ordered Green’s function

Ght —t') = (T () fT(t)) =0 —t)GF(t —t)+ Ot —t')GF (t —t'). (2.5)

Here |p) and |¢) denote many-body eigenstates of the local Hamiltonian with eigenvalues ¢, and
g4, respectively, and ©(t) is the ordinary Heaviside function. We are also interested in the retarded
and advanced Green’s functions,

Gt =) = =0t~ ) ([f0). 1)) ) =0~ 1) [GF(t—t) - G5 (L - )], (2.6)
it~ ) =0 — ) ([FO), 1)) ) =6~ [GF(t—1) - 67t~ 1), (2.7)

which are easily constructed from taking combinations of the lesser and greater Green’s functions
(note the symbol [...]; denotes the anticommutator of the two operators in the brackets). In
equilibrium, the Green’s functions depend only on the time difference of the real-time variables
and the greater and lesser Green’s functions also satisfy

(G t’)r =—G7( -1, [eF- t’)r — G5t —t). (2.8)

It is often useful to represent quantities in terms of frequencies, instead of time. The Fourier
transforms of the greater and lesser Green’s functions (to frequency space) are equal to:

G7(w) = —27i[l — f(W)]Af(w),  GF(w)=2mif(w)As(w), (2.9)
where
Af(w) = % Z[e_ﬁel’ + e_ﬁaq] p|flq) <q ‘f”p) 0w +ep—eq) (2.10)
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is the f-electron spectral density. The corresponding Fourier transforms of the retarded and time-
ordered Green’s functions are as follows:

+oo

. Ay (W) "
and
t _ r I r hﬂw
G} (w) = Re G (w) +1Im G (w) tan -5 (2.12)

We use the Kadanoff-Baym-Keldysh approach to calculate the real-time Green’s function be-
cause there is no simple way of performing the analytical continuation of the Matsubara frequency
Green’s function to the real axis [7]. We are interested in the retarded Green’s function, so we
consider the greater Green’s function for positive time ¢t > 0

G2 (1) = —i% Tr{e—ﬁchTCexp {—1 / ar / dt”dT(t’))\c(t’,t”)d(t”)] £(1) fT(O)} (2.13)

and the lesser Green’s function for negative time ¢ < 0 (or ¢t = —¢ > 0)
1 - .
G5 (t) = iz Tr{e BHioe T exp [1 / dt’ / dt"dt (t’))\c(t’,t”)d(t”)} £ f(())}; (2.14)

we use the fact that f7(0)f(¢) can be replaced by f(£)f(0) in the trace due to the time-translation
invariance that we have in equilibrium. The greater and lesser Green’s functions can be found for
other time values by using the relations in equation (2.8).

The first step in solving for the Green’s function is to write equations of motion for the f-
operators:

O — i wma(t) + B~ 0), (215)
i
VD s wmai) + 55 i 1100, (2.16)

and substitute their solutions into equations (2.13) and (2.14), which yields the following expres-
sions for the greater Green’s function (¢ > 0)

G7(t)=— i% Tr {eﬁHlocTC exp {i/dt’ /dt”dT ()N (t', ") d(t")

i / AUt )ma(t) — (B — u)t} £(0) fT(O)}

c

and for the lesser Green’s function (f = —t > 0)
< : 1 —BHioc . / 1" gt (4! ! "
G5 (1) =iz Trqe Teexp |—1 [ dt" [ dt"dT ()N, ¢")d(t")
C C

w1 [ AUt + i - wi] FO)0)].

C

where U.(t,t') is a new time-dependent field, which is nonzero only on the upper branch of the
Kadanoff-Baym-Keldysh contour and is equal to U for ¢’ € [0, ¢] and is zero otherwise. It is because
this U, field is not time-translation invariant that we need to use the Kadanoff-Baym-Keldysh
formalism for the analytic continuation. Now we take into account the fact that the f-particle
occupation number ny = fTf is a conserved quantity of the Hamiltonian; for the greater Green’s
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function we have a projection onto states without f-particles (n;y = 0) while for the lesser Green’s
function we have a projection onto states with one f-particle (ny = 1), which yields:

! —i —
G7(t) = —ize (Br—n)t

X Tr{eﬁ“”d’]'c exp {i /C dt’ /C dt"dT (YA (t' , t")d(t") — i / dt'Uc(t,t’)nd(t’)H (2.17)

C

and

G< (t) — i%eﬁ(H—Ef)ei(Ef_H)f

« Tr {eﬁw—UWTC exp {—1 / ar / At d ()t ) d(t"), +i / AU, t')nd(t')} } ,
C C C
(2.18)
where the trace is now over the d-electrons only.
We next expand the contour-ordered-exponent into a series that we can ultimately sum exactly.

To begin, we need to recall Wick’s theorem, where the expectation value of any number of pairs
of fermionic operators can be expanded in terms of products of the two-operator contractions

() (1) = igaltr, 12), (2.19)

ga(tlv t2) =i <,Tcd(tl)dJr (t2)>a = jeTiealti=t2) [f(eoz) - @C(t1, t2)]
when the Hamiltonian is quadratic in the fermionic operators. Here we have ¢y = —pu for sites with

ng =0 (o =0) and ey = U — p for sites with ny =1 (o = 1). The traces in equations (2.17) and
(2.18) can then be written in the following diagrammatic expression

(1+eﬁ5a)exp{£ﬁ QD +§O +} (2.20)

where the arrows denote the zero-order Green functions g, (t',¢"”) in equation (2.19) and the wavy
lines denote a generalized time-dependent hopping (A-field)

(") = ANt ") + Ua(t, )0 (1, 1) (2.21)
for the greater Green’s function and we have to replace
Uc(t,t") — —Uc(t,t") (2.22)

for the lesser Green’s function.
Motivated by approaches that involve the integration over a coupling constant, we modify our
time-dependent field by introducing a dependence on some new parameter that we denote by x

Uc(t,t') — Uc(t, t'|x), (2.23)
with the following limiting behavior
U.(t,t']0) = 0, Uc(t, 1) = Uc(¢,t'). (2.24)
Next, we take the derivative of the diagrammatic series in equation (2.20) with respect to = and
find:
d _ ,dUC(t,t/|$) (@) 1y
R —/dt LT oot ), (2.25)

C
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where we introduced a parameter-dependent Green’s function G§Ja) (t’,¢"|x), which is the solution
of the following Dyson equation:

Gg (" |2) =ga(t't") + / dt / s ga(t', 1) Ae(t, b2l 0) G (2, ¢ |2)
:ga(t’,t”)+/dt1/dt2ga(t’,tl)Ac(tl,tg)GE}")(tQ,t”m
C

+ / Aty go (' 1) Ue(t, t1]2) G2 (81, |2). (2.26)
C

This expression holds for the greater Green’s function (o = 0). For the lesser Green’s function, one
has to use the substitution in equation (2.22) and set o = 1. Finally, we find explicit expressions
for the greater

1
. . dUc (t, tl |l‘) 0
G7 (t) = —iwg exp { —i(Ey — p)t — / dz / dty Tag>(t1,t1|z) (2.27)
0 C
and lesser
/ AU, 1)
. t tl X
GS(t) = twn exp § i(Ey — )i+ / do / 0 LD G0 ) (2.28)
0
Green functions, where
ZQ Zl
Wo < nf) ZO + Zl ? w1 <nf> ZO + Zl ( )
are the average densities of sites without (wg) and with (wq) f-electrons.
We can rewrite equation (2.26) in the following two forms:
G (" |x) = gt t"|x) + /dtl/dtQ Gt @) A (b1, 1) GL (o, " ]), (2.30)
or
Gt |2) = Gal(t' ") + /dt1 Ga(t' t1)Ue(t, t1]2)G S (11,1 ). (2.31)
C

The first form emphasizes the lambda field as an effective self-energy, while the second emphasizes
the U field as the effective self-energy. In the top equation, we introduced the auxiliary Green’s
function

) = gat ) + [ Aty gt Ul t]e)gi (1 o) (232

c

as first defined by Brandt and Urbanek [7], while we introduced the bare time-ordered Green’s
function for the effective medium

Ga(tlvt”) :ga(tlvt//)+/dt1/dt2 ga(tlvtl)Ac(tlat2)Ga(t27t//)a (233)

in the bottom equation. The bare time-ordered Green’s function for the effective medium can be
determined directly on the real axis via

. +OO
Go(t',t") = —% / dw Im Go (w)e =) [f(w) — 0. (', t")] (2.34)
with 1
Gal(w) = (2.35)

w410 — € — A(w +19)
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being the retarded effective medium on the real frequency axis.

The first representation (2.30) was originally used by Brandt and Urbanek [7] and improved
by Zlatié¢ et al. [9] and Freericks, Turkowski and Zlati¢ [10] (see for review Freericks and Zlatié¢ [2])
and requires the calculation of continuous matrix operator determinants over the entire contour.
In what follows, we shall instead use the second representation in equation (2.31) because in
equations (2.27) and (2.31) all times in G¢&(t1,t1|x) are only on the real axis (0 < t1 < ¢) [or
(0 < #1 € t)] and we can replace the contour integral in equation (2.31) by an integral over the
upper real time branch of the Kadanoff-Baym-Keldysh contour where the time-dependent field
U.(t, t1|z) is nonzero

+oo
Gyt t"|z) = Ga(t' —t") + / dt; Go(t' — t1)U(t, t1]2) G (t1, ). (2.36)

—00

Integrals over the entire Kadanoff-Baym-Keldysh contour survive only in the definition of G (¥)
in equation (2.33), which can instead be calculated directly on the real axis by picking ¢ and ¢’ on
the upper branch of the contour in equation (2.34)

. +OO
ot —t") = —= / dw Im G (w)e =) [f(w) — Ot —t")]. (2.37)
T
—o0
Also, for further discussions we will need its Fourier transform

+oo
Ga(w) = / dte“ Gy (t) = ReGq(w) + itanh %‘J Im G, (w). (2.38)

—00

We are now ready to summarize the final formulas for the Green’s function by evaluating all of
the terms in equation (2.31) and then performing the integration over the parameter . We begin
with the formal matrix solution for G§ (¢, t"|z)

Gyt t"|x) = /df [||5C(t1,t2) — Ga(tl,tQ)UC(t,t2|x)||*1L/£Ga(£, t"). (2.39)

Here 0.(t,t') is the Dirac delta function along the contour defined by [ dt'd.(t,t')f(t') = f(t).
After substituting this result into equation (2.27) and then integrating over the parameter z, we
obtain for the greater Green’s function the following results:

G7 (t) = — iwo eXp{ —i(Ey —p)t

1
; _ = dUC(t, ¥
*/dﬂf/dt’ /dt [Iléc(tl,tz)—Go(tl,tz)Uc(t,tzmn 1} ~G0(t,t’)7U( Ix)}
c c t't dx
0

1

_ ., dU(t
— —iwgexp { —i(Ey — p)t — /dx Tr. [|I ~ GoU.(ta)]| GO%}
x
= —iwg exp {—i(Ey — p)t + Indet ||[I — GoUc(2)] }
= — iwee 1 Fr =Mt et ||6(t1, t2) — Goltr, t2)Ue(t, t2)]| , (2.40)

where Tr. denotes the trace of a continuous matrix operator expressed as a line integral over the
contour and det. is the determinant of the continuous matrix operator defined on the contour.
However, in our case, the time-dependent field U.(¢,t2) (and hence all nondiagonal components)
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are nonzero only on the upper real time branch of the contour for 0 < ¢ < ¢, which allows us to
reduce the problem to the determinant of a continuous matrix operator over the finite real time
interval:

G7 (t) = —iwge B detpg o [|6(t1 — t2) — Golts — t2)U]|. (2.41)

It is the restriction to this finite real-time interval that makes the numerical calculations much
more efficient than other methods used previously. Note that all of the temperature dependence is
in the Green’s function G, which is the time-ordered Green’s function for the effective medium of
the dynamical mean-field theory.

In a similar fashion, we can derive the expression for the lesser Green’s function (¢ = —t > 0):

G (t) = iw P =M detyg g |0(ts — t2) + G1(t1 — t2)U] - (2.42)

Here, the Green’s function G (t; —t2) is defined in equation (2.37) and is the time-ordered Green’s
function for the effective medium when there is an f-electron on the impurity site.

When we perform numerical calculations to evaluate the continuous matrix determinants, we
first discretize the time contour with a discretization step At, and then discretize the continuous
matrix operator into a discrete matrix, which can be manipulated by standard computational
libraries like LAPACK. The discretized representation for the Green’s functions is then

G; (t) = 7iw()eii(Ef7M)t det[oﬂ ||51J - WZGo(tz - tj)UH (243)

and
G5 (t) = tw P detyg g [|6:; + WiG1(t; — t;)U], (2.44)

where W; are the quadrature weights for the discrete set of times {¢;}; for a uniform grid W, =
W = At, we have to calculate the determinant of a Toeplitz matrix. This will allow us to use
Szegd’s theorem and the Wiener-Hopf approach to find analytic expressions of the continuous
matrix operator determinant which are accurate for long times. Note, that while it appears that
these expressions are equally valid for all temperatures, the numerical solution, in the At — 0
limit, becomes more difficult at lower temperatures.

The retarded Green’s function is found from the greater and lesser Green functions via

G (1) = O(t) {G; (t) - G5 (t)} . (2.45)
Using the relation in equation (2.8), then yields
G”} (t) = _i@(t>e*i(Ef*ﬂ)t {wo det[o’t] HI - GOU” + w1 (det[oyt] HI + GIU”)*} (246)

for real times, and
+oo
G;(w) = —1 / dtellwtr—E)t {wo det[o,t] ||I - GoUH + wy (det[o,t] HI + GlU”)*} (247)
0

for real frequencies.

3. The Wiener-Hopf sum equation approach and Szeg6’s theorem

We closely follow the development of the Wiener-Hopf sum equation approach in McCoy and
Wu [20], which is based on the original integral equation development by Wiener and Hopf [21],
as summarized in Krein [22]. The Wiener-Hopf integral equation approach has been widely used
in the X-ray edge problem and in the Falicov-Kimball model [8] primarily at T' = 0; we will show
that the Wiener-Hopf sum equation approach is very powerful for finite temperature calculations.

Before we can apply this technique to the problem of calculating the f-electron spectral function,
we should begin with some mathematical preliminaries (further details can be found in [20]).
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oo

Consider a sequence of numbers ¢,, which satisfy > "

equations

len] < oo and the set of N + 1 linear

N
Z cn-mr) =y, (3.1)
m=0

for 0 < n < N with ¢, and y,, known. We will eventually be taking the limit where N — oo, so we
will require Y07 |y,| < oo too. Note that the matrix ¢,,—,, that appears in equation (3.1) is a
Toeplitz matrix, because it depends only on the difference n — m and not on n and m separately.

Our job is to find the solution x%v ) to these equations. We define

eV =y, =0 (3.2)
for n < 0 and n > N. In addition, we need to define two more sets of coefficients:

N)

Uy = { 2711[7,:0 CN+n—ml’£n forn >0
" 0

forn <0

and
Uy, = Z’VJ:[L:O C—n—mfﬂ%v) forn >0
! 0 forn <0

Next, we relax the condition on equation (3.1) to apply it for all n and we allow the sum over m
to extend from —oo to oo (although all cases have just a finite number of terms because x%v ) is

potentially nonzero for only N + 1 terms). The result is

—+o0
Z enmt ™ =y, +0(n> N)u,_n +0O0(n <0)v_,. (3.3)
m=—o00

We consider a variable & = exp[if] which lies on the unit circle, so that |£| = 1. We multiply both
sides of equation (3.3) by £ and sum over n to find

CEOXE) =Y () +UEN +V(E™), (3.4)
with
“+o0 N N
CE)= Y et X(©=D aMe", V() =D vt
n=—oo n=0 n=0
UE) = unt™, and V(€)= vat™ (3.5)

It may appear that we have made the problem more complicated, because we have replaced a
problem with one unknown X (§) by a problem with three unknowns X (§), U(§) and V(£). But
it turns out that this more complicated problem can actually be solved by carefully analyzing its
analytic structure.

The crucial step of Wiener and Hopf is to find a unique factorization of C(&) into two factors,
one analytic inside the unit circle and continuous on the circle, and the other analytic outside
the unit circle and continuous on the circle. Before we show how to do this, we need some more
mathematical definitions. We call a function a + function if it can be expanded as a Laurent series
for [¢] =1 (30,2, an€™) and the coefficients satisfy >~ |an| < co. In this case, the function is
analytic within the unit circle and continuous on the unit circle. Similarly, we call a function a —

function if it can be expanded in a Laurent series for |£] = 1 ( ;ifoo an&™) and the coefficients also

satisfy Z;Li_ o |an| < co. This function is analytic outside the unit circle and continuous on the
unit circle; it vanishes as |£| — co. Note that any function defined on the unit circle via a Laurent
expansion f(§) = > 07 an&™ with Y07 la,| < oo can obviously be uniquely decomposed

into the sum of a + and a — functions via f(£) = f1(&) + f-().
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The function C(&) is factorized in a so-called canonical factorization, where

C)=PrE)QE ™, (3.6)

and both P(£) and Q(£) are nonzero for || < 1; the factorization is made unique by requiring
Q(0) = 1. The functions P and @ can then be found in terms of + and — functions as

P =e“+® and Q1) =e%9), (3.7)

which automatically satisfies G_(occ) = 0 [and Q(0) = 1] and makes both P(§) and Q(£) nonvan-
ishing inside the unit circle. An explicit calculation of G4 (&) is nontrivial, but it is easy to write
down a formal solution via

Gi(§) = —MCQ], and G (§)=—-[mCE)]_, (3-8)

where the + subscripts denote a restriction of the Laurent series for the logarithm to its nonnegative
or negative power terms, respectively. Note that the condition for properly defining the + and —
functions requires the logarithm to be single-valued after £ winds around the unit circle, or, in
other words, we require Ind C(§) = 0, where

1 : .
d C(§) = & [InC(e*™) —InC(e")]. (3.9)
™
We will also need to consider situations where Ind C(£) = —1. In this case, a new function C(£) =

—£C(¢) will have zero index, and the canonical factorization can be applied to C(€) instead.
We are now ready to solve equation (3.4) by substituting in the factorization from equation (3.6).
Next, multiply both sides of the equation by Q(¢71) to get

[PO]T'X(€) = QEY () + QEHUE©EY +QEHVI(E™). (3.10)

The term on the left hand side is a + function, because P(0) # 0, and [P(£)] ™! can be expanded in a
power series with just positive powers for |¢| < 1 and X () is a + function. Similarly, Q(é 1)V (¢71)
is a — function. The other two terms are neither + nor — functions, but they can be uniquely
decomposed into + and — function pieces. We do this, and move all + functions to the left hand
side and all — function pieces to the right hand side. We are left with

[P X () - [QEE Y ()], - [QEHUEEN], =
[QEMYE)] +[QEMHUEEN +QE Ve (3.11)

The left hand side of equation (3.11) is an analytic function for || < 1 and is continuous on the
unit circle, the right hand side is an analytic function for |{| > 1 and is continuous on the unit
circle, and both functions agree on the unit circle, due to the equality, so we can define a function
that is analytic in the entire complex plane, and hence is an entire function. But this function
vanishes as |£| — oo, and the only entire function that vanishes for large argument is the function
that is identically equal to 0. Hence we learn that

X(©) =PEQEMY©], + PO [QE U], (3.12)

and

Ve == [ ) {ee Y]+ [ Hu©eE]_} (3.13)

Using the fact that X (£~1)¢V is a + function [recall X (£) is an order N polynomial in &, we
can substitute & — £~ in equation (3.11), multiply both sides of the equation by ¢V, and then
separate into the + and — function pieces to create another vanishing entire function, and learn
that both

X(eHeY =@ {[PEe Y e e, + [PE VY], } (3.14)
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and
(e == [P ] H{IPE Y e e+ [PE V] (3.15)

hold. These are all of the necessary relations we will need for determining the Toeplitz determinants.

Now we should take another mathematical interlude to state Szegd’s theorem. This theorem
determines how a Toeplitz determinant exponentially decays for large matrix size [23] and even
finds a constant prefactor for the exponential decay [24,25]. The proof can be carried out using
the Wiener-Hopf sum equation approach [20], but it would take too much space for us to repeat
it here, and it is rife with many technical mathematical manipulations that would take us away
from the physical phenomena we wish to discuss here. So we will instead simply state the result,
and then show how to evaluate asymptotic expressions for the f-electron Green’s function in real
time.

If we consider the determinant Dy of the N x N Toeplitz matrix defined by

Co C_1q C_9 ... C_N+41
1 Co Cc_1 N C_N+2
Co C1 Co e C_N+3
Dy = : : : : : ’
CN—2 CN-3 CN—4 ... C_1
CN-1 CN-2 CN-3 ... Co
then Szegd’s theorem says that
o0
Jim Dy = exp | Ngo + > ngngn] , (3.16)
n=1
with
s
1 ) .
= 5= / dfe= "% In O (e'?). (3.17)
—T

The conditions that Ind C(£) = 0, C(€) is continuous on the unit circle, and Y > |e,| < oo are
all required for the theorem to hold.

Now, with all of the mathematical preliminaries complete, we are ready to apply these tech-
niques to finding the Toeplitz determinants needed for the f-electron Green’s function. We need
to evaluate the two determinants in equations (2.43) and (2.44). We will explicitly show how to
calculate the determinant for the greater Green’s function. Modifications for the lesser Green’s
function are straightforward.

Case 1: no winding. We start by discretizing the time axis [0,¢] with N 4+ 1 points given by
t, = nAt, with At =t/N. Then we define coefficients ¢,, to satisfy

en = 0no — AtUGH(nA). (3.18)
Since Go(t) is bounded, and decays exponentially fast in time, it is easy to see that Y~ |¢,| <
0o0. We will assume for the moment that Ind C(£) = 0 (which turns out to be true at half filling
when U < 0.866 on the hypercubic lattice, see below). Using the definition for ¢,,, we find

Cle)= > ce™ =1-A Y Go(nAt)e™. (3.19)

n=—oo n=—oo

If we let nAt = t' and wAt = 0, we recognize that in the limit where At — 0, the sum in the right
hand side of the above equation approaches the Fourier transform of Gy (t'), so we write

Clw)y=1-U / A Go(t)e ™ =1 — UGo(w), (3.20)
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where Go(w) is defined by equation (2.38). The coefficients g, in equation (3.17) can then be
written as

/At 0o
n_ 9n 1 —inAtw iAtwy _ L —iwt’
g(t") = AL o / dwe InC(e'™") = o / dwe In C(w), (3.21)
—7 /At —0o0
where we again used t' = nAt. Now, defining Dy to satisfy
D(t) = D(NAt) = DN = det[o,t] H(SIJ - AtGo(ti - tJ)UH 5 (3.22)
we find from equation (3.16) that
(o) (o)
t
tlim D(t) = exp P /dwlnC(w)+/dt’t’g(t’)g(7t’) ) (3.23)
—00 T
—oo 0

which is the asymptotically exact result in the limit of large ¢t when the index of C(&) is equal
to zero. Since the coefficient of ¢ in the exponent can be a complex number, the determinant can
oscillate while exponentially decaying at long times. This occurs when the system has undergone
the Mott transition and the f-electron spectral function displays a gap at low frequency.

However, we can improve upon the result in equation (3.23) to provide finite-time corrections.
Now we illustrate how to do this using the Wiener-Hopf sum equation approach. We start with our
original N 4 1 simultaneous equations that we need to solve in equation (3.1), with the coefficients
¢y, defined in equation (3.18). Next, we choose y,, = d,9. Cramers rule, applied to the first column
of the ¢ matrix immediately tells us that

v _ D
Dyt

(3.24)
which further implies that

(oo}
Dy = < I1 ng>> X Do - (3.25)

If we assume that x(()M) = (1 — Atdp) exp(—go) (which we will verify below), then we find

D(t) = exp | —At Z 5M] exp ia /dwlnC(w)+/dt’t’g(t’)g(ft’) . (3.26)

2w
M=N —o00 0

This will provide the next order of corrections to the asymptotic limit of the determinant.

We need to find xéM) for large M. Our strategy is to set U(§) = 0 in equation (3.13) to
find V(£71), then solve for U(£71) with equation (3.15) and the approximate V(¢), and finally
substitute U(§) into equation (3.12) to find X (§). The term xéM) follows from taking the £ — 0
limit. Using the facts that Y (£) = 1 for our equation and Q(£~1)—1is a — function, we immediately

find that equation (3.13) can be solved by

_ 11
VE) =-1+[QE ] . (3.27)
Substituting into equation (3.15) (after replacing £ — £71), yields

_ 11 _ _

ue ) =~ [Pe ) [PEH Qe (3.28)
Now we should replace £ — ¢! in the above equation. This requires care because we will convert
the — function into a + function, but with no constant term in the power series expansion. So we
write

() = - [PE " [PO){@e )} e (3.29)

!/
)
+
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with the prime indicating there is no constant term in the 4+ function. This result can now be
substituted into equation (3.12) to yield

X(€) = P(&) - P(§) [Q(é‘l) (P} ¥ [P {Qe ) g—Nu . (330)
+

where we used the fact that [Q(£71)]; = 1. We will need to evaluate this in the limit & — 0.
Note that we have the following two identities for P and @

P = exp[ Zgng 1 and P(w) =exp —/dtg(t)ei“’t ) (3.31)
0
and
= —At
Q1Y) =exp [ Z gn§”] and Q(—w)=exp |— / dtg(t)e“t| . (3.32)

Using the definition for g(¢) in equation (3.21), one can immediately verify that P(w)Q(—w) =
1/C(w) in the limit as At — 0, as it should. Using the first relation in equation (3.31), immediately
shows us that P(§ = 0) = exp[—go]. Evaluating the other term in equation (3.30) requires more
work. In order to create the relevant + functions, we should first take the functions of w, Fourier
transform them to functions of ¢ and then reverse Fourier transform back, but include only the
positive time contributions. For example, we can write

o0 oo

{P(f) {Q(S’l)}_l&*ﬂ/+ = %/dt’ei“’t' /dw'%eiw%m’), (3.33)

At —o00

The limit of At is to remind us that there should be no constant term in the expansion. Using
this strategy, we can immediately write down the final answer for 930 M) We obtain x( ) = (1-

Atdy) exp[—go| with
wmip [ o [ o

where t = NAt. Putting this all together finally yields the asymptotic expression for D(t)

D(t) = exp % / dwlnC(w)+/dt't'g(t')g(—t')—/df/dt'h(tth')h'(—t—t') . (3.35)
—o0 0 t At

_ W) —iw / _ Q 7144}
)= I de(_w)e b and A/( L, (3.36)

Case 2: winding of —1. Szegé’s theorem fails when the index of C(&) is nonzero, and InC(&)
winds around the origin. This occurs on the hypercubic lattice at half filling when U 2 0.866, see
below. We can still derive asymptotic formulas for the Green’s function by solving an auxiliary
problem, which has the winding removed. We now show how this is done.

In all numerical cases we have examined, the index of C(&) satisfies Ind C(¢) = —1 when U is
large enough. Such a winding can be removed by considering C(¢) = —¢C(€) which has index zero
(the minus sign is introduced for convenience, as will be clear below). The coefficients obviously
satisfy

Cp = —Cp—1- (337)
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We examine the auxiliary Toeplitz determinant

Co c_q C_9 C_N+1 —C_1 —C_o —C_3 . —C_N

C1 Co (] ... C_N+2 —Cp —C_1 —C_o ... —C_N41

DN _ Co C1 Co C_N+3 | — —C1 —Co —C_1 ... —C_N42
CN-1 CN-2 CN-3 ... Co —CN-2 —CN-3 —CN-4 ... —C_1

and consider the N + 1 simultaneous equations in equation (3.1) with the barred variables

N
enem@D) = g (3.38)

m=0
with ¢, = d,n0- Then Cramers rule, evaluated for the IV + 1st column, tells us

(V)

jN :DN—I/DN; (339)
where the two factors of (—1)" cancel. Szegd’s theorem can be applied to C(€), so we immediately
learn that

]\}Enoo Dy =exp |Ngo + E:I ngngn] , (3.40)
n=
with
1 . _ .
Gn = 5- / dfe= "% In C(e'?). (3.41)

We need to calculate :‘c%v) in order to find the determinant Dy.

First note that equations (3.12-3.15) hold for the barred functions when we have a winding
around the origin. We will once again solve for V(¢71) setting U(¢) = 0, then substitute into
equation (3.14) to find X (¢71)¢N. Taking the limit £ — 0 will then give us a’t%v). Just like before,
we find )

V(E) =-1+[Q©)] , (3.42)
which then gives

X(EeY = Q) [{Q©) " PEeN] - (3.43)

We take the limit £ — 0 by integrating the function on the right hand side over the unit circle and
dividing by 2x. Using 8 = Atw, then yields

/At
At . _
:z%“:g / dwe! P(—w)/Q(w), (3.44)
—7 /At

where we used t = NAt again. Note that the limits on the integration cannot be simply extended
to £oo as we did before. Since the function In C'(exp[if]) winds once around the origin, it displays a
discontinuity of —2ir to its imaginary part as € runs from —x to 7. We remove this discontinuity by
adding a linear function that is equal to 0 at § = —7 and is equal to 2ir at § = 7 (the minus sign in
C is needed to move the branch cut of the logarithm from the positive real axis to the negative real
axis). Since this linear function cannot be extended to infinity, we need to work with a finite value
of At in the calculations (for a further discussion, look at figure 2 and the corresponding discussion
below). We simply take At small enough, that we see the numerical results do not change, and the
system has approached its At — 0 limit. The final result for the determinant is then

) ) ™/ At
t _ At sy, _
D) = exp | - / duwn C(w) + / arg(t)a(—1) | oo / /et P(—w') JO(W).  (3.45)
—o0 0 —m /At
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The limits on the first integral have been extended to +oo, because it turns out that the linear
piece gives no contribution to the integral. The definitions of g(¢), P(w) and Q(w) are obvious from
the above discussion.

It should be noted that, in contrast to the case without winding where the third term in the
exponent of equation (3.35) gives finite time corrections to the large ¢ exponential asymptotics of
equation (3.23), in the case with winding, equation (3.45) has a time dependent prefactor with a
nontrivial At — 0 and t — oo limit which cannot be considered as a vanishing correction to the
exponential decay of equation (3.23).

4. Numerical results

We begin our numerical discussion by describing the different behavior of C(£) when it has no
winding or when it winds with an index of —1 around the origin. In figure 2, we show a plot of
In C(&) for two cases: (a) the case with no winding, and (b) the case with an index of —1. These
two cases are distinguished by the sign of the real part of C(§) at £ = 0, where its imaginary part
changes sign. On the hypercubic lattice at half filling we have Re C(0) > 0 for U < 0.866 and there
is no winding and Re C'(0) < 0 for U > 0.866 and now the index is equal to —1. Notice how the
imaginary part has a steep change in its value near £ = 0 [panel (a)], which evolves into a discrete
jump by 27i when U 2 0.866 [panel (b)], the jump at the origin is compensated by the linear
shift which runs from the minimal to maximal values of the frequency used in the calculations
(lw] = 107 here). While it is obvious that integration over w can easily be extended to w = oo
when there is no winding, one needs to carefully include contributions present at the given value
of At when there is winding, and one cannot extend the integration limits in this case.

: . N . —— — T
{ 3 -
i 1 —
" Re In C(0) 3 70 Re In C(w)=Re In C() | 1
05k \ -—- ImlnC(w)| _| o o ‘\l -—-- ImIn C(®) |
“ | Il Wy == ImlhCw) |
\ - il
L \ J 1+ ’,’ ‘ -
_ \ 1 - '. ]
8 \ 8 i !
o 0 ~ T 0 ~
= ! = | [
1 ‘ e
- " 1~ . »7 —
| Pid
\ L : -
1 i Re
L i L i - i
0.5 “| 2 \ L
| F | <
\ (a) %ol (b)
L 1 L ! L 1 L 31 L 1 L 1 L L 1 . | . [
-20 -10 0 10 20 -30 -20 -10 0 10 20 30
(0] (0]

Figure 2. (Color online) Plot of (a) In C'(w) for the case with no winding [U = 0.5, Ind C(§) = 0]
and (b) In C(w) and In C(w) for the case with winding [U = 1.5, At = 0.1, Ind C(¢) = —1].

Next we compare our different asymptotic expansions to the results derived from a direct
numerical calculation with the matrix formalism from equation (2.43) when T = 0.1. This involves
a straightforward approach where we use three different discretization sizes (At = 0.1, 0.0666,
and 0.0333) which we extrapolate to At — 0, and we compare those results to the calculations
with different approximations. In the case with no winding, we use both the asymptotic form for
large ¢ in equation (3.23) and the more correct form for smaller ¢ in equation (3.35). In figure 3,
we show the results for the greater Green’s function at half filling on the hypercubic lattice for
U = 0.5 [panel (a)] and U = 0.7 [panel (b)]. Note how the exponential form, that comes from
Szegd’s theorem, is quite accurate for large times, but becomes poor for small times, and how
the corrections arising from the Wiener-Hopf approach produce remarkable agreement with the
numerically exact results for essentially all ¢t. The errors are the largest near ¢ = 0, but even there,
they lie below the few percent level. This shows that the analytic formulas are quite accurate for
all ¢ when there is no winding.

Next we examine what happens in the case with winding. We examine two values of U in
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0 T T T 0 T T T
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Figure 3. (Color online) Real and imaginary parts of the greater Green’s function for cases with
no winding (a) U = 0.5 and (b) U = 0.7 (T = 0.1). The solid (black) lines represent exact
results of the functional determinant in equation (2.43), the dot-dashed (red) line represents
the asymptotic result in equation (3.23), and the dashed (blue) line represents the expression
with finite-time corrections in equation (3.35). Note that we cannot really discern any difference
between the exact matrix results and the asymptotic Wiener-Hopf results all the way down to
t=0.

figure 4: U = 1.5 which is near the critical interaction for the metal-insulator transition U, = v/2,
and U = 2 which is a small gap insulator. We show the results from the scaled matrix calculations
with a solid line (black) and the asymptotic Wiener-Hopf results with a (blue) dashed line. In this
case, the Green’s function shows a behavior that does not approach the asymptotic exponential
behavior for short times, and the analytic formula is less accurate for small times (with maximal
error of the order of 10%).

" ———r T y y T y y
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Figure 4. (Color online) Real and imaginary parts of the greater Green’s function for the case
with winding [Ind C'(§) = —1] (a) U = 1.5 and (b) U = 2 (T = 0.1). The solid lines represent the
extrapolated matrix results for the functional determinant in equation (2.43) and the dashed
line represents the asymptotic expression with the finite-time corrections in equation (3.45).

Now we can specify the differences between the cases without winding and with winding.
For U < 0.866 there is no winding and our exact results of the functional determinants rapidly
approach the asymptotic result (with finite-time corrections) in equation (3.35) and we do not
observe a crossing of the zero axis at any temperature and at T — 0 the long-time behavior is
replaced by a power law. On the other hand, for 0.866 < U < U, we always observe a crossing of the
axis at high temperatures, which originates from the time dependent prefactor in equation (3.45).
With decreasing temperature, the crossing point shifts to larger times producing some kind of
exponential decay for intermediate values of ¢t and at T = 0 we observe a crossover to power law
behavior when the zero crossing is pushed out to infinity. For U > U, the crossing of the axis is
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observed at finite time values for any temperature and does not transform into power law at zero
temperature.

The Fourier transforms to the spectral formula produces the results essentially equivalent to
those already shown in [10-12], so we do not repeat them here.

5. Conclusions

In this work, we have shown a new representation for the f-electron Green’s function, which
allows for efficient numerical computation. By using the property that U.(t,t’) is nonzero only on
the interval [0, ], we restrict the determinant of the continuous matrix operators to a finite time
interval instead of over the three branches of the Kadanoff-Baym-Keldysh contour. This produces
huge savings in the computational effort, because the size of the matrices does not grow with
temperature and they are less than one half the size of the matrices used in previous numerical
calculations. As a result, we can examine much wider regions of parameter space.

In addition, we used the Wiener-Hopf sum equation approach, along with Szegd’s theorem,
to derive exact analytical expressions for the Toeplitz determinants required to find the Green’s
functions. While these expressions are asymptotically exact in the limit where ¢ — oo, we find that
they have errors less than 10% all the way down to ¢ = 0. This allows us to use the matrix results
for small times, and then append them by the asymptotic expressions for large times in order to
find accurate results for the Green’s function at all times. Then they are Fourier transformed to
real frequencies to determine the f-electron spectral function.

The f-electron spectral function displays the expected behavior as well. For U values smaller
than the critical U for the Mott transition (U = \/5), the spectral function develops a sharp
peak at low T, which ultimately diverges as an inverse power law in w as T — 0 [rigorously
speaking, our asymptotic formulas are not valid at T = 0, because the function In C(§) becomes
discontinuous due to the jump in the Fermi factor, but the power law behavior can be extracted
via other techniques—our focus here was on the finite-T' behavior]. When U is larger than the
critical U, a gap forms in the f-electron spectral function (rigorously speaking, it is a pseudogap
on the hypercubic lattice) but subgap states rapidly enter as a function of T for low T.
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CnekTtpanbHa PyHKUiA f-eneKTpoHiB ana moaeni
danikosa-Kimbana i guckpetHuni ninxip BiHepa-Tondga

A.M.LWeaiika', Ox.K.dpipikc?

1 IHCTUTYT di3ukun koHaeHcoBaHux cnctem HAH Ykpainu, Byn. CeeHuiupkoro 1, 79011 JlbBiB
2 disnynuni dakynbTeT, YHiBepcuTeT JxxopaxTayHy, BawmHrToH, okpyr Konym6is 20057, CLLA

OTtpumano 21 TpaBHa 2008 p., B octato4HoMy Burnaai — 20 yepsHs 2008 p.

OTprMaHo HoBe NpeAcTaBieHHs Ans cnekTpanbHoi yHKLii f-enekTpoHiB moaeni Panikosa-Kimbana, ske
anbTepHaTMBHE OpuriHanbHOMY NpeacTaBneHHio bpaHara i YpbaHeka. Y HoBOMY npencTaBfieHHi yCi pos-
PaxyHKM BUKOHYIOTbCS TiflbKM Ha AiACHI 4acoBili OCi, O AO3BONSE PO3MSAAATU K 3aBrOAHO HU3bKI TEM-
nepatypu. 3aranbHuil BUpas Ana 3anisHio4oi dyHKL ['piHa BKIOYaE ABa AeTEePMIHAHTV HENepepBHUX
MaTpUYHMX ONepaTopiB 3i CTPYKTypoto Tuny Tenniua. 3acTOCOBYOUYN ANCKPETHWUIA nigxin BiHepa-Tonda i
Teopemy Cero, 0TPUMaHO TO4HI aHaniTU4HI GOPMYNM AN AOBrO4aCOBOT NoBeaiHku dyHKLi 'piHa; poarns-
HYTO BUNAAKW, KON norapmdm xapakTepucTuyHoi GyHKLIi (9ka BU3Ha4ae HenepepeHy matpuuio Tenniua)
pobuThb i He POBUTbL BUTOK HABKOO MOYaTKy KoopAmHart. [Toka3aHo HacKiNbkM TOYHUMU € AaHi acCMMMTO-
TUYHI BMPa3W y NOPIBHSAHHI 3 TOYHNUMU PO3B’A3KaMU, siki OTPMMYIOTLCSI MPU eKCTPanonsuii NpsMmnx MaTpu-
YHMX PO3PaxyHKIB 4O FPaHULL HySIbOBOI AMCKpeTmn3aLji.

KniouoBi cnoBa: crnektpasibHa GyHKUis f-enekTpoHis, moaens Panikosa-Kimbana, nigxig Binepa-longa,
TEopIs ANHAMIYHOro CepPeaHbOro noJss

PACS: 71.10.-w, 71.27.+a, 71.30.+h, 02.30.Rz
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