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Abstract. In the paper we theoretically consider the dynamics of the inner field generated by
recharging trap waves propagation and spatial-temporal features of the photoinduced light
scattering caused by these phenomena in the ferroelectric photorefractive crystals under steady
illumination by laser beam. The transverse instability of the interacting light beams plays an
important role and both the photovoltaic and the diffusion mechanisms of carrier transfer are
taken into account in the proposed theory. For the first time it has been shown that, due to the
influence of transverse photovoltaic current and typical boundary conditions for inner field,
among all possible scenarios of transverse instabilities the boundary circle will be realized in
the perfect crystal. Due to this phenomenon the periodical, quasi-periodical or aperiodical
photoinduced light scattering appear in the system, depending on the structure of growth
non-homogeneities and the character of photoinduced fluctuations caused by them. The cor-
relation between the structure of scattering light waves and the type of these fluctuations has
been considered in details for ilmenites. The great attention has been paid to the description of
the optical autowaves generation and dynamic halo scattering in these materials. All the main
theoretical results are in a good agreement with the available experimental data.
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1. Introduction

Ferroelectric photorefractive crystals (PRC) are ones of
the basic materials for dynamic holography and informa-
tion processing. But rather often it is impossible to predict
the response of the material to laser illumination. For
example, various dynamic effects appears in the scatter-
ing light even under steady irradiation by laser beam of
these materials: periodic pulsation (optical autowaves [1]),
non-stationary maxima [2,3], chaotic bursts and optical
vortices [4] and so on. In this paper, we consider the dy-
namic halo scattering appeared in LiTaO3 doped with
0.05 wgh. % of Cr [5] and the generation of optical auto-
waves recorded in LiNbO3 doped with 0.02+0.07 wgh.%
of Fe[6]. Such distinctive features of these effects as rather
regular spatial conic structure an impulse-like time beha-
vior lead to the appearance of the scattering ring (hallo)
on the screen perpendicular to the pump wave direction.
This ring spreads out and temporally disappears. The
process is periodic in the case of autowave generation.

For the adequate description of such effects in PRC it
is necessary to evolve the theory in which the transverse
instability of the interacting light beams plays an impor-
tant role and both the photovoltaic and the diffusion
mechanisms of carrier transfer are taken into account
[7-11].

We used the following well-known phenomenon as
the basic idea for the evolving of the theory. The non-
uniform time-dependent inner photoinduced field appears
in PRC even under steady laser illumination. It can be
detected due to the linear electro-optic (EO) effect. The
theoretical interpretation of this phenomenon based on
the analyses of space and temporal dependence of the
degree of completion of the crystal impurity levels (traps).
Under definite conditions, the non-uniform and non-sta-
tionary traps completion proved to be energetically pref-
erable. In this case either damping or periodic rechar-
ging trap waves can propagate in the crystal in the linear
approximation [12]. The spatial structure and evolution
of the scattered light is defined by this inner field in ac-
cordance with the EO effect.
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In the paper, we consider the dynamic of the inner
field generated by recharging trap waves propagation
and spatial-temporal features of the photoinduced light
scattering (PILS) caused by these phenomena.

2. The problem

Let us consider the dynamic photoinduced effects in PRC
without an inversion center. We’ll be interested in the
instability generation threshold and in the form of trans-
verse instability realization for the electric fields in PRC
under steady illumination by laser beam along the polar
(optical) axis.

In order to obtain relevant results, let’s calculate the
interaction of the laser beam with the dynamic hologram
(photoinduced by a spatially non-uniform inner field)
recorded by itself in the crystal within the framework of
the perturbation theory.

1) At first, we shell find the inner electric field in the
non-depleted pump wave approximation with definite
intensity. The dynamics of inner field is determined from
the system of equations for the degree of completion of
donor and acceptor levels by electrons, the concentra-
tion of electrons in the conduction band, and from the
Maxwell equations that can be reduced to the Poisson
equation for the quasi-static electric field. Hereinafter
acceptor levels are considered as rather deep and there-
fore completely filled by electrons, while donor levels
are considered as so shallow that thermal casting of elec-
trons into conduction band are possible.

2) Then we shell substitute the found inner field into
the wave equation for high-frequency laser pump field
and calculate the changes in its structure allowing for
linear EO-effect. Our calculations correspond to the fol-
lowing geometry: the pump wave vector is directed along
the crystal optical axis Z, the pump polarization vector
€p lies in the XY-plane, the coordinate origin coincides
with the pump beam center on the front plane of the crys-
tal. The crystal, which has symmetry group Cjy, is con-
sidered as infinite in the transverse directions X,Y, since
the pump beam diameter used in the wave equation is
much smaller than the transverse crystal sizes and has
definite thickness / in Z-direction.

2. The dynamics of inner field in the constant
pump wave

2.1. The general system of equations

In accordance with papers [13] the system of equations
for the inner field in the quasi-homogeneous region of the
PRC has the form:

0”+

—4 =y} +(slo +50)(ng ), (1a)
dn+ .-

@:_d+M, (1b)

ot & e
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div(eEf ): 4m(-ng —n+ny),

in =eunE¢ +eDgrad(n) + %.3 -n; _S|27W ng %I oG.
0
(1d)

Here the following designations are introduced: 7 is the
concentration of free electrons, 7, is the concentration of
acceptors, ng is the concentration of donors, na' is the
concentration of ionized donors (traps), g is the capture
coefficient of electron by trap, s is the photoionization
cross-section, I is the pump intensity, sq is the therma-
lization coefficient, e is the absolute value of the electron
charge, j, s the density of electron current, £ is static
dielectric permittivity, tis the electron mobility, D is the
diffusion coefficient, Gy = Buma e,'% is the Glass vector
(the double convolution of the photovoltaic tensor with
the pump wave polarization e,). As distinct from [12, 13],
in (1d) we have taken into account that the concentration
of photoelectrons in the conductive band, which deter-
mines the density of photovoltaic current, is less than
that of electrons knocked out from not-ionized donors
by light quantum. This happens owing to the capture
of photoelectron by trap earlier than it reaches the con-
ductive band. The probability of this process is W, =
=2n/(slo +0) -

The system (1) must be supplemented by initial and
boundary conditions. The latter conditions represent the
field state at the sample boundaries z=0and z=1/. Let us
discuss the cases of free and short-circuited samples. In
the literature [14-15] one can find the detailed descrip-
tion of the spontaneous polarization (P,) screening in the
uniaxial ferroelectrics without illumination. The main
results of these works can be formulated as the following
statements. The screening is internal for the stationary
state of single-domain ferroelectric with not rather broad
band gap and therefore does not noticeably influence on
the distribution of the inner field and spontaneous induc-
tion in the sample. Thus in the case the short-circuited
sample can be treated as the sample with free surface,
and one can apply to it the solutions for the fields ob-
tained in [15] for the free one. These solutions correspond
to the small purely longitudinal constant inner field in
the bulk of the crystal, i.e. at £ <z </ -/ (/is the crys-
tal thickness, /. is the correlation length), and sharply
dependent over z coordinate strong longitudinal field in
the surface layer (SL),i.e.at 0<z</{,, (—-(.<z</.
Here we would like to emphasize that the influence of the
bulk photovoltaic effect negligibly small in SL because
of strong symmetry disturbance near the surface and thus
in this region.

The system (1) has been solved when used the pertur-
bation theory at /. <</ and the aforementioned state-
ments about the constant inner field.

1) The only stationary (s) spatial uniform solution of (1)
can be chosen as zero approximation: Eg = const(lg)x
xG, nj, =const, Nhg=const, whichat /c<z</(-/¢
is valid either for short-circuited or for free sample. It
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smoothly sews together with solution [14-15] in the SL
dueto G=0.

2) Small dynamic corrections to this stationary solution
of (1) can be obtained as the first approximation: Ef =
=Es+Ef(xy,zt), nj=ng+nNy, n=ng+n. In or-
der to use the aforementioned stationary solution [15] as
good zero approximation, in accordance with the stabili-
ty theory the transverse dynamic components of the inner
field must satisfy the trivial boundary conditions in SL:
Ei  (Xy0<z</ t)=E; (XY l-{lc;<z</t)=Q
Onfg}ythese conditions provi&(éythe longitudinal form of
the field in SL and continuity of its tangential compo-
nents at the crystal boundaries.

2.2. The stationary solution of system

Neglecting the existence of circular currents in PRC, the
stationary case (1b) is reduced to the condition of the
neglecting of magnetic field in PRC[9, 12]: j,= 0. When
taking into account that all values are time independent,
one nonlinear equation in particular derivatives for the
concentration of free carriers n, can be obtained instead
of (1):

= 0
n
EA(mns)—s'OGDH S d e
g +(slg +
H 1 Hns+(slo +so Ve -
+4—TEEW|7$|0+SO ng—ns—naE:O
£ st+Slg+5Sy
and relations:
ngo= 0% nd
Ws +8lo + 5o 3)
D so6H g f

Es =-—0(Inng) +
*op Y eu HneH(slo+so)/yH

The boundary conditions for 7, can be obtained after
the substitution of the latter equality into the ones for the
field.

The only spatial uniform solution of (2, 3) has the
form:

E_sl(ﬁso+
2 2y

1 + +
+1oroH S0 4n0 onyen2, )
2\H 2 y
= sl ()é yn:j—s
ES = __—l
ey (slo +sp)
Solution (4) exists if only ng > n,, at arbitrary physi-
cally correct values of other parameters.
Taking into consideration the discussion from item

2.1, we will use (4) as zero approximation for inner field
dynamics in the bulk of the crystal.
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Ng=—

+ _
Ny =Ns +Ng.

2.3. Linearized system for dynamic components

Using (1a, Ic, 1d), after elementary transformations, (1b)
can be rewritten as:

' J = .
dIVBi—E +eunkE;s +eDgrad(n) —
el LINE ¢ grad(n)

%)
ne =l 0.

O_n+_ 2 5“_5
d ' Slgtsyg ot E_

After neglecting the existence of magnetic field in PRC
[9, 12], one can obtain that:

£ 0 = =
— —Es +eunkEs +eDgrad(n) -
ap gt Of T OHnEs grad(n)

6
— 0 _nt _ 2 an(-; é _ O ( )
d = Mg “x oY
slg+sy ot
We will find the solution of (1) in the form:
Ef =Es+Ef (X, y,2t), nj=ni +n], n=ng+n,
Ef (XY, zt) <<‘ES, Nyl <<ni.  [A]<<n, 0

with the boundary conditions for the inner field:
E¢ « y(x,y,0< z</lct)=E+ « y(x, Yl —Llc<z</(t)=0,

Ef Z(x, y,Z= ?,t) =v(x, Y, t), < 7 <l-lg,
®)

here v (x,y,£) ~ I is small photoinduced fluctuations with
rather broad spatial-temporal spectrum.
Representation (7) allows us to linearize the system
for small dynamic components. In the first approxima-
tion the properties of the solutions of (1) should be agreed
with the stability theory: at the stability threshold the
dynamic components have to be not increasing func-
tions of time 7z and transverse coordinates x,y and analyti-
cal functions of z, i.e. the Fourier image at variables #,x,y
and the Laplace image at variable z must exist. Then:

Ef (x,y,zt) = qudQ W (G, Q) expligr +iQt),

n(x,y,zt) = J'dquﬁ(q, Q) expligr +iQt),

©)
1 (4 y,2.0) = [dddQ (g @) exp(ar +iat),
where Gr =Q,Z+0xX+0dyy, 0z =0z +iqz,
(q'Ziq'éin!qy’Q)D(_ooaoo).
QNS = -yAnj, —(slo + S +ns)A],
= 4me _
'(qU):T(nJ—n),
g 3 - - =
—iQU +eulnU +nEg |+
At ”( S s) (10)

o 2iQ ~
+|qun+§+ ! Eigsl oG =0.
Slg +s9
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e = ieynd(GU)
4re(Q+sI0+so+y(ns+nds))
A+ = __1£(Q+8lo+ 59 +yns)(GU) (11a)
areQ-+3lg + 5 +y(ns + )
GHE i +euns Hig@l)x
A O
Sl o(iQ -yns)G
eD(iQ+slg+s9+yng)G— Wd ofl ns) H
slo+%o H
X
4neGQ+s|0+so+y(nS+ngS))
(11b)

Before solving the latter vector equation let us rewrite
it in appropriate variables. Then Eq. (11b) acquires the
form:

UQ@+iQry)+

. (qu”)(e%,(imS +£)§-o(Qrs +i(f —1))29):
iQrg+ f +15/14

12)

where new variables are introduced T, = £/4mmeungis the
maxwellian time, 74 =1/y ngs is the time of electron cap-
ture by trap, Tg =1/(slg + ) 1s the photoionization time,
{4 = /eD/4meuns is the diffusion length (if the Einstein
ratio is valid eD=pkpT, the diffusion length 001n01des
with Debye screening radius [14]), ¢ g= é:yndS / amre?ung
the photovoltaic (drift) length, f =nj / Ny 1s the ratio of
donors concentration to traps one (f >1), d =slg/(slg +
+ .

SOS)calar product of (12) by g gives us the dispersion
equation:

21 _.2_ . _ = =
Leir, + £409Ts + 8% -8(Qrs +i(f ~DXiq0) _
iQrg+ f +15/14
(13)

When solving (12) for different components, the com-
ponents U, , can be expressed through U.:

U, (2 Qs + 1)ayy ~80QTs +i(F ~D) goy)
123(Qts+ f)az -d lQrs +i(f -D) g
(14)

Taking into account that g, ,, U., [ cannot be equal
to zero in SL, (14) satisfies the boundary conditions (8)
only if Uy , =0. The vector g, can be found from (14).
Its components must be real as the components of Fourier

Xy =

transform wave vector (9). Thus, the expression for Qy

can be found from the condition Im(gy ,)=0. The expres-
sion for gz was found from (13) after substitution Qy,
qx,y- As the result we obtained:

S00, 4(4), 2001

AI(E-D

Q=¥ 7

S

2(iQ 15+ F)a%, - 8(Qr1s +i(f 1))égzqu+
+A+iQsT)([iQsTs+ f +T5/1¢) =0.

-yt

(15)

If the following inequalities are valid: [;>>; and #,/1,%
X(f+iQrt,)<<l, the expression for gy is simplifies into
the form:

1 ﬂL—ifrm/rsﬁc -igyz.  (16)

quzdfng_ f—1 quz

The signs in (15, 16) must be upper or lower.

Let’s study the dependence of frequency Qand wave
vector gy. from (15a, 16) over pump intensity /y. For this
purpose we introduced the following dimensionless vari-
ables and functions:

Qs(8) =&V f2(6) - F(8),

JE2+E(4-2n)+h2 +& - h

f(¢)= 2%
§@A-hf(&)) | f() P
z , Og()=f -,
4 (6) = E_X oy wO=TO
f(é)-1
Qsn($) =—=
@)= 5 £3@)

Qs(E)=Q¢ /1Y, dg(&) =drey G, /(4mE?p),
9%s(€) =a%G, /e, asn(&) =eDasy /(N3Gx ),

E=(slo+50)/ 18, h=ny/nd, x=s0/ymC.
(17)

Formula (17), as well as the solution (2.4), is valid if 2<1
at arbitrary values of other parameters. The expansions
for Q, and ¢, at small (but from (17) one can get than
&= x) and big ¢, i.e. at small and high pump wave
intensities, can be easily obtained from (17):

Qu( - 0)=E—H, Qq(E - o) = JEA-N),
dos(€ - )= Eéxhx/ Th, qen(E - @)= (15“’
(18a)

Analogous expansions can be obtained for the imagi-
nary and the real parts of gain factor ¢;.:

€ .g=—=t
de(é - 0)=
h2@E-x)

I (§ » @) =&+2-2h+y,
52((2—h)2/h3—1)

(& - 0)= (18b)
I (§ — ©)=y1-h).
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In accordance with (18a), the dependence of frequency
Q, over intensity and high intensities obeys the energy
conservation law in the system «classical oscillator with
the frequency Qq (as the energy transformer) + pump field
with intensity I (as source of energy )». At rather small
intensities the frequency is proportional to the «renor-
malized» intensity . The numerical calculation shows
us that at intermediate & values the aforementioned de-
pendence can also be rather well approximated by linear
function but with another coefficients than at small &.

The dependences of dimensionless frequency Qg and
transverse wave vector g, over renormalized intensity &
are depicted in Fig. 1.

Thus, based on (7, 9, 15-16), we can rewrite the solu-
tion of the inner field in the form:

Ef (X y,zt) = ES +éZ(U exp(ith +igfofg +
+(igt, +q%)(z—- 1))+ cc
0
Eo :&é, U <<Eg,
ey

le<z</l-Ul..
(19)

In (19) the sign «+» must be chosen in expressions (15,16)
for the frequency, and the wave vector. U = Ri{(qy,, Q))
is the Fourier image of fluctuation spectrum (8) at g ,=
= qxy, Q= Q.

Since all material parameters of the crystal have been
determined constants. Substantially they vary because
of the polarization vector rotation due to the birefringence
(which leads to the rotation of the vector G, y, considered
in item 3.3) and such growth peculiarities as non-homo-
geneous in transverse directions (sometimes similar to

ES:EO%

spiral) impurity distribution (i.e. the fluctuations of #,,,
ng), which lead to the floating f'the crystallographic axes
X due to the local symmetry breaking near defects (i.e.
the fluctuations of G ,) [16]. That is why the whole set of
frequencies and wave vectors are present in the real sys-
tem. Note that our theory is not valid for 7 = 0, because,
as it follows from (17, 18), E((I, = 0) = 0, i.e. the non-
trivial zero approximation does not exist.

As the conclusion of this item, we can predict that at
not very high /oG (but Iy # 0) and lyy ,~Grr~by; # 0 (be-
cause ¢ , ~ lyy ), the boundary cycle exists in the nonli-
near system (1) in accordance with the Wiener-Hopf theo-
rem. Its spectrum has maximum at [Q| = Qf, ¢, , = Tqp,,
i.e. the completion degree of traps varies periodically both
in time and in space. This means that the stable recharg-
ing waves of traps can propagate in the transverse crystal
direction. The final results must be averaged over all fluc-
tuating values. For our theory this result is the laser field
changed by interaction with the PRC in the far zone from
the crystal. Therefore it is necessary to average only the
final diffraction pattern (see the next item).

3. Dynamic photoinduced light
scattering by PRC

3.1. Dynamics of laser fields in PRC in the
approximation of prescribed inner field

The system of equations, which describes the interaction
of laser pump wave with the inner field found in item 2
(i.e. with the field generated by this wave itself in the

A
Q
s 025 o=,
0.2
02
0.15 :
0.15}
0.1
01}
0.05 0.05}
a) b)

Fig. 1. The dependence of Qg(a), qsn(b) over & at x =0.01 at different /& values: & = 0.90 (dash-dotted curves); 0.96 (dotted curves);
0.93 (dashed curves); 0.99 (solid curves). In the insets 2 = 0.01 (dash-dotted curves); 0.1 (dotted curves); 0.5 (dashed curves); 0.99

(solid curves).
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nonlinear medium) in the PRC, will be considered within
the framework of the general theory of mathematical dif-
fraction [17] when taking into account the linear EO-
effect.

Keeping in mind the geometry of the problem (see
Ph.1), the time-independent complex amplitude of the
pseudopotential ¢ of the laser field E%= (—grad(¢)x
xexp(—iax)+c.c.) can be represented as the sum of the
following amplitudes:

1) Ay(x, y, z)exp(ik(z) is the amplitude of the pump
wave pseudopotential before the incidence on the front
plane of the crystal, i.e. at z < 0;

2) Ay(x, y, z, t)exp(ik¢z) is the amplitude of the de-
flected wave pseudopotential propagating in the crystal
at 0 <z </, i.e. the amplitude of the direct wave;

3) Bi(x, y, z, t)exp(ikyz) is the amplitude of the pump
wave pseudopotential after penetration through the crys-
tal, 1.e. z = [;

4) A»(x, y, z, t)exp(iks (2(1 — I.) — z)) is the amplitude
of the pseudopotential in the crystal of the wave reflected
from the SL on its back plane, i.e. the amplitude of the
inverse wave at [ >z = 0;

5) (By(x, y, z, t) + By(x, y, z,))exp(—ikyz) are the amp-
litudes of the pseudopotential of the inverse wave after
transmission through the crystal and the part of the pump
wave reflected from its front plane correspondingly at
z<0.

Hereinafter we use the definitions: kg =,/ef’w/c is
the high-frequency part of the laser waves with wave vec-
tor outside the sample, k.= kg Je is the same value in-
side the PRC. Allowing for EO-effect the crystal refrac-
tive index € =e“+A&(E)+0¢, where Agi(Ep) = XjEp, 0€
are small fluctuations.

The equations for the smoothly changing parts of the
direct and inverse wave amplitudes in the crystal (4 »)
one can obtain from the wave equation for pseudo-
potential in paraxial approximation [18]. They have the
form:

9% ipan A = iwA, (1a)
oz
—%—ipADAZ :iWAz, (1b)

where p = 1/2kand w=kdX13E: + X0(Ep — Ex))2 (X13
is the component of EO-tensor). The pump amplitude 4
satisfies (1a) at w = 0. Taking into consideration that in
our theory [ >> /., we suppose that the passing through
the extremely thin SL does not make any significant con-
tribution in the all aforementioned amplitudes. Thus, in
further consideration, we can neglect the thickness of this
layer, however keeping in mind that the generation of the
inverse wave is «internal», i.e. is caused by the photo-
refractive jump of A at the boundary of screening region
and double electric layer. This generation is not «exter-
nal» or taking place on the geometric boundary of the
sample, where the representation (2.19) for inner field is
not valid. All external reflections can be avoided after
putting the sample into immersion liquid. Therefore, the
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existence of the aforementioned dynamic effects is inde-
pendent on the refractive index of the outer medium.

The boundary conditions for 4, can be obtained
from the conjugation conditions [17] for ¢, i.e. the conti-
nuity of ¢ and its normal derivatives at crystal bounda-
ries z = 0, [. After rewriting By(0) in terms of 4 5(0) and
Bi(/)in terms of 4 (/) we obtain:

A(x Y, 2=01) =—2— Ag(x,y,2=0),
ng +1

Az(x,y,z=f,t)=n—_1Al(x,y,z=f,t)+ 2
ng +1
1 OA (X, Y,Z2=1,1)
2ikg(n+1) oz ’

where ng = \/E—(" / 88’ for laser frequency w, but n— 1
because it is the relative high-frequency refractive index
on the internal boundary of SL. Thus, in order to main-
tain a small seeding for the weak inverse wave, we can
neglect small terms like ko‘laAo,l,z/az everywhere except
the right-hand side of (2b). Note that condition |4,|<<|4],
following from (1, 2), is necessary for the applicability of
the non-depleted pump wave approximation used in item
2. Then, using Eq. (19) from item 2 and the perturbation
theory, the solution of (1) will be found in the form analo-
gous to that for w one:

w=v+{uexp(iQ tt +ids o + (g +qh)(z- 1) +
M>>u.

A2(F 1) = a12(7) + b5 (M) expliQ pt +idy oy +
+(id's; +q';‘zf )(Z—Z) +igs +Q:2(F)exp(—iQ ft—

~iG of + (-ig + 0% )z ) =g

++i¢¢)+cc)

|a0as2(F)| <<[a? gaa ()], [Adb, (7)) <<|a? b, ()]
3)

i.e. ay 2, by p are supposed to be rather smooth functions of
transverse coordinates. ¢yis the phase related with the choi-
ce u>0. After neglecting of multiple harmonics two sys-
tems of equations for a; 5, b; 5 can be obtained from (1, 3):

+ ‘9322 —ipApag 2 :i(\/alz +uexp(2q’%z(2—}5)xbfz +b£2))

.
i%t (el + k)b +ipa? b7, =i{uby, +uay o)

12 o e .
i%i (-ig't, +qfz)biz +ipg? jbiz = |(va2 + Uaj,z)
)
The sign «+» in (4) corresponds to the system for the

direct wave with subscript 1, and the sign «-» corresponds
to the system for the inverse wave with subscript 2. The
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boundary conditions derived from (2, 3) have the follow-
ing appearance in our approximations:

al(x,y,z:0)=mA0(X,y,Z:0), bj" (x,y,2=0) =0,

ar(x,y,z=/) :n—_lal(x, v,z=/) - 0,
n+1

x -
b%(x, y,z2=1) :be(x,y,zzé),
+1
Ant = * Q1 ~iq%, .
Ko

©)

The components b 5 can be easily expressed in terms
of a; » by means of (4) and (5). Then we are to solve two
linear integral-differential equations for a; » with the ap-
propriate boundary conditions. Unfortunately, we failed
in finding their precise solution. Again we solved them in
the perturbation theory method with respect to the small
parameter u. In the zero approximation the «side» com-
ponents b , are identically equal to zero, and only the
non-depleted pump wave exists. In the first approxima-
tion «central» components a; , do not deplete, and «side»
components by », reinforce under passing through the crys-
tal in the photoinduced bleaching regime (see below the
comments to (6)). Thus, the constant pump approxima-
tion for the inner field is self-consistent. In the second and
all higher approximations, «central» components deplete,
and «side» components reinforce, i.e. the second and
higher approximations do not contradict with the conser-
vation laws. Indeed, the energy of the pump wave is ex-
pended on the creation and amplification of the inner field
and side components. It is impossible to convolute the
above-mentioned perturbation series exactly, one can
prove its convergence and use «Feynman trick» to obtain
the approximate expression with the accuracy up to u*
terms.

This final result for the amplitudes 4 , of laser fields
in the crystal can be represented in the form:

A%y, 21) :sl(z)gwx, v.2)+ S RE2)Ao(x y.Z*(z»exp(ri(th+qfxx+quy>)§

O

Ao(x,y,20=2)+

Po(xy.2t) = SZ(Z)E* 3 RE@Ao(x,y.¢ *(2¢ - ) explti(Q 1t + qpox+ Ay )

v — 12
Sl(Z):Zexp(lvz u“@(2)

; A 12
52(Z):2rexp(|v(2€ 2)-u“g(2)

where f] 5(z) are rather cumbersome elementary functions
arisen under the approximate convolution of the series
over u, z* () are the «mean points» arisen due to using
the Lagrange theorem in the calculation of integrals over
variable z at products of the functions of z and A4 (x, y,z).

As it follows from (6), that R§(0)| >> R§(€)| and

Rf (f)‘ >> Rlir (O)‘ ifonly gt/ << 0. Therefore, «side» com-
ponents reinforce significantly under passing through the
crystal in the photoinduced bleaching regime. The larg-
est amplification of the inverse wave corresponds to its

generation near the back plane, i.e. at T=0—1 c=/.In
that case the following approximation equalities are valid:

R;(0) = Ry (N exp(-2q%,¢), R () = RF(0)exp(-af?).
Based on Eq. (19) from item 2, the fluctuations near the
back plane will exactly have the maximum amplification
coefficient in the photoinduced bleaching regime. And
so the considered dynamic effects can be registered, if the
direction of the pump wave vector coincides with the crys-
tal polar axis, i.e. in the photoinduced bleaching regime.

The obtained results (6) are valid for any rather
smooth in the central region of the sample pump wave
profile Ay(x,y,z). This smooth function was approximated
by constant in item 2 and supposed that intensity is neg-
ligibly small and therefore didn’t effect on the inner field
formation in the «fringe» region, where it is impossible
to neglect its coordinate dependence. For example, the
gaussian profile of the pump wave is quite suitable for all
aforementioned demands. Namely, in this case we can
affirm, that the recording of dynamic holographic grat-
ing by pump wave (i.e. the creation of profiling inner
field) and the amplification of the «side» components
under their diffraction on the grating do not change the
spatial structure of the pump wave in the first approxima-
tion, but only slightly decrease its intensity.

U

I | -

no +1 (n+1)(no +1)

Ro=n-1 R*(2)=ivexpl(dl, +iqe)z-T) i (- Fid —ipa? o, 2)

(©)

RE (2) Dliu(ant +n - expl(c, £idi) (¢~ 7) +ipa2 o (- ) 26 ¢ Jo{- ot 7iki ~ipa? 2~ 2)

w(d,z):%Z)_l,
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As it follows from (6) at n=1 the direct wave consists
of the bright central beam and the weak side components,
and the inverse wave consists only of the side compo-
nents, because for the validity of our theory we have to
require |4 /4y —1|<<1 and |4,/Ao|<<I.

3.2. Diffraction patterns on the screen

Let us consider the aforementioned laser fields trans-
formed by the PRC far from it, i.e. at z = —L (inverse
scattering) and at z = L (direct scattering), where /<<L.
Hereinafter we suppose that n = 1.

In accordance with the theory of diffraction, in order
to obtain the far field on the screen .S with the coordinates
X;, Y, from (6), it is necessary to perform the Kirchhof
transform [19] for the amplitudes of direct E(x,y,z = [, t)
and inverse E,(x,y,z =0,7) fields correspondingly over
variables x,y. In the case of small-angle diffraction (i.e.

at 6=\ st +Ys2 /L <<1) and rather big L >> kopg the
Kirchhof transform reduces to the Fourier transform of
the fields over variables x,y, in which ¢, - kyq, and
4y —koqy, where ¢, =X /L, q,=Y /L are the angle vari-
ables. Also the image must be multiplied by /L. After
this transformations one can derive from (6) the ampli-
tudes of the fields on the screen at z=%*L:

EF(6.1) = &(f)%%(koé )+

-3 REOFo(laf 1 0.0 () xpleia )

3 U

L/a + N .= + (7)
E;(0.)=S2(05) R5(0)Fo(kod +Gt0.¢ *(20) -
—exp(iith)E
n=1 6=(6x6y), Fo(ked 2+ Ao(f,2).

In what follows the arguments in functions S, Rj»
will be omitted for the sake of simplicity.

Let us choose the pump profile A in the form of fo-
cused principal laser mode TEMyy. Its Fourier image F
is the following:

1
Fo(d.2) = npo‘/mexp%lq (;mf<z))E

Z_
ne (=22,
Po

®)

here the beam diameter gy and the focus position zj are
determined by the parameters of the focusing lens, nz) is
the Frenel number [18].

After substituting (8) into (7) and introducing dimen-
sionless variables one can obtain the following expres-
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sions for the scattering indicatrix (normalized intensity)
of the direct (subscript 1) and the inverse (subscript 2)
waves:

j16.7) = |exp(—l72(1+ ing)02/2)+,

+

2
>R exp(iir -n2@+int,)(@ 70 )2/21

2
j2(6,1) = z RS exp(iir -n2(1+in7,)(0 + 65 )2/21 ,

n=kopo, 6t =dtn/ko, Ny =n¢((*(jm),

ny =n¢(0), T=Q+t.

(©)

Note that absolute values of seeding R , must be cho-
sen in order to provide the small intensities of the side
components with respect to the pump intensity. The analy-
sis of (9) shows that the central maximum at the angle
6 =0 dominates in the direct scattering, and it is absent
in the inverse scattering where only the «shifted» or side
maxima remain at the angles 6, , = £6;,

The formulae (7, 9) represent fleld amplltudes and
scattering intensity on the screen for the ideal crystal
without polarization rotation, i.e. for strictly determined
value and direction of grating vector g On the screen,
the side maxima (7) look like two diametrically opposite
spots, that appear periodically and slightly move, in other
words, they are «flickering» (the effect is visible particu-
larly well for the inverse scattering, see Fig. 2a).

The pump polarization rotation and various bulk
growth defects are present in different regions of the real
sample. Actually every such region has its own Glass
vector, i.e. the components g;7and coefficient Ry », and it
contributes into resulting scattering amplitude in accord-
ance with (7). That is why for real samples (7) can be
considered as the contribution from one region. In order
to obtain the real field on a screen, we are to take into
consideration the polarization rotation and the proper-
ties of non-homogeneities, i.e. we should sum (7) over
different values gmand Ry 5,

3.3. The averaging of the far fields over the
pump wave polarization. The models of non-
homogeneities in PRC

Let us consider the single-domain ferroelectric PRC with
birefringence and fluctuations of photoactive impurity
(see item 2.3, [16]). If the light propagates along the op-
tical axis there is no natural birefringence, only its pho-
toinduced delay can be registered [16].

For «good» samples, one can neglect fluctuations of
the impurity (they do not exceed a few percents), but the
rotation of the pump polarization vector e, always ex-
ists. Below we stud&/ the change of Glass vector compo-
nents Gy = BumAem caused by this effect.
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b)

©)

Fig. 2. The different types of the diffraction pattern for the inverse scattering at fixed moment of time: a) before averaging; b) bright

spots; c) arcs; d) rings.

Let a rather broad pump beam propagates along Z
axis in the crystal with Csy-symmetry. Its wave vector k.
in spherical coordinates can be written as:

IZ‘E =k, (si N6, cosg.,, SnNB,sing,, cos@w), 6, <<l
(10a)

. In the pgraxial approximation, we obtain the follow-

ing expression:

€p = (SiNYy, COSWy, =0, (P ~Ww)), We O(0, 2m)
(10b)

where the (J,, determines the angle of polarization rota-
tion. When taking into account the symmetry properties
the Glass vector at small angles 6, has the form:

G = (- B2 SN2, — B15Buy COSY ey COS(P ) -
~ W)~ B2z COS2Y¢y — BrsBey SN OBy —Weo), Bat) =
= (— B sin2Yyy, —B22c0S2Y,), 331)
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After introducing the unit vector of rotation e, = (sin2 (g,
cos2l,), the latter expression can be rewritten as:
G=0Cpg+GzE;, Gp=pPxei, G;=pPxne, (11)
Then the Glass vector also rotates in XY -plane due to the
polarization rotation, and its direction is defined by ey.

Allowing for 8¢ ~qfg~Gp, one obtains that
Gig=9f€f, O¢ =06 . Hereinafter we restrict our-
selves by the consideration of ergodic processes. Thus,
instead of summing the result over the polarization, i.e.
over the ey directions, we should average the result over
the statistical assemble with the distribution function de-
fined from definite models.

For the «bad» samples we should take into account
the fluctuations of impurity concentrations. These varia-
tions causes the qualitative changes of crystal symmetry,
due to the fact that defects «try to concentrate near the
transverse growth non-homogeneous», which originates
near the doped atoms and «grow through» the sample in
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z direction. In such a way the crystal symmetry under-
goes local variations. In order to describe similar effects
by our theory, we assumed that the «bad» sample can be
divided into rather great amount of small regions or so
called «blocks». Each block has its own e direction and
impurity concentration n9, i.e. the value of 6rand Q.
Therefore in general case, the expression (7) has to be
averaged both over Qand over the value and the direc-
tion of the vector 6. The way of averaging or summing
depends on the accepted model of block distribution and
sizes. Let us discuss the following model.

1) The model of «rather good» sample, or «thick»
crystal without significant growth defects. The concen-
tration ng can be regarded constant in all parts of the
sample, and pump polarization vector e, makes sufficient
amount of turns in the crystal due to photoinduced delay
of the extraordinary beam. Thus we can average only
over eydirections of vector 6, all its directions being equi-
probable, i.e. (7) can be averaged over e, directions with
uniform distribution function for all possible angles (from
0to 2m) of esrotation. As the result the scattering indicat-
rix acquires axial symmetry, because two «spots» of side
maxima transform into the ring at 6>=6,? on a screen (see
Fig. 2d). The dynamics of such rings is considered in
detail in the next item. For «rather good» samples the
PILS is periodical.

2) The model of «not rather good» sample, or «thick»
crystal with pronounced block structure. If this structure
is arbitrary, the size of blocks and the values of afore-
mentioned parameters for each block can vary signifi-
cantly. We can imagine so small or «microscopic» blocks
with random parameters that the pump polarization vec-
tor fails to rotate at any detectable angle when pump
wave passing through it. The existence of such blocks in
the real sample will lead to the appearance of flickering
bright spots randomly situated on the screen (see Fig. 2b).
Besides, rather big or «macroscopic» blocks will rotate
the pump polarization vector at different significant ang-
les. For each «macroscopic» block one can apply the
results of the previous model, taking into account that
the distribution function for e,directions will be uniform
for different angle intervals. The result of such averaging
will be flickering (each with its own intensity, frequency
and radius) arcs or irregular (each with its own intensity,
thickness and eccentricity in different points) rings on
the screen (see Fig. 2¢). For such samples the PILS is
quasi-periodical. If the amount of blocks tends to infinity
and their parameters vary continuously, the summing
over them must be substituted by integration with defined
distribution function of material parameters. In particu-
lar under integration over frequency Qy, (see our previ-
ous paper [11] for comparison), we obtain that one ring
or several arcs of scattering light once appear and disap-
pear on the screen (see item 3.5). For such samples the
PILS is aperiodical.

Let us discuss the polarization of the direct and in-
verse waves after transmission of the crystal. In crystals
belonged to Csy symmetry group the value of the pho-
toinduced delay of the extraordinary beam A, propagat-
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ing at small angle to the optical axes, significantly do-
minates (starting even from a small pump intensity) over
the same value Wlthout illumination and is equal to:
A= kOZX22(Efy Efx)no [16]. Thus, with changing the
sign of the projection k., the direction of polarization
rotation also changes. In other words, the crystal is left-
handed or right-handed active medium in dependrncy on
the direction of light propagation. If light is passing
through the sample «there and back», all polarization
changes will be compensated. Thus, we can conclude that
if a linearly polarized wave incidents on the sample along
optical axes, the polarization of the direct wave in gen-
eral will be close to the elliptic one, and the polarization
of the inverse wave reflected from the back plane will
coincide with the incident pump wave one.

The averaging in accordance with the model (1) per-
mits set forth below simple analytical calculation. As the
result we obtained rather a simple and obvious descrip-
tion of the optical autowaves generation. The summing
in accordance with the model (2) for quasi-periodical
PILS was performed numerically (see Fig. 2). For the
proposed initial system and non-homogeneities model it
is much simpler to obtain the analytical calculation for
the aperiodical PILS or the dynamic halo scattering then
for the system considered in our previous work [11].

3.3. Autowave scattering in PRC

Let us perform the averaging of scattering amplitude (7)
over the directions of unit vector e, which defines the di-
rection of 6~ qr~ l,n~ Gp. We supposed that all ef
directions are equiprobable, i.e. the distribution func-
tion is uniform.

Let us introduce the following definitions:

6=08, O; =0+8&;, 9:‘/e§+9§,
Or = |[0F +67 ., ( ) 66+ cosy,

Taking into account that angle ¢ O[-7T 71, one can inte-
grate over ¢ and derive the approximate expression for
all argument values by means of the integral representa-
tion and asymptotic expansion for the Bessel function of
zero order J [20], i.e.:

(12)

%T}CM exp(—r]2(1+ in? )06+ cos¢): Jo@z(n}‘r —1)00+ )

(13a)

. epr72(1+in}—r)99f)
J(,Q72(nf —|)99f)~ ‘/1+n2(1+in$)99f . (13b)

Thus the averaging of scattering amplitude (7) over
angle ¢ reduced to the using of formulas (12, 13a). Ha-
ving done this we obtain from (9):
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(12(6,1)) = expl-n202)x

x exp(—inf0292/2)+ z RfJo@Z(nﬂ—i)eaf )exp(ii(r+¢f )-n?(@+int,)6s 2/2—in$1:7292/2

(j2(6,7)) = R? exp(—nz(e2 +6¢%)
+Jolp?(ni 2 - iyo6; )

In (14b) we assume that for the inverse scattering
|[R*5| = |R 5| = R. The profiles of the averaged indicatrix
(14) look like periodical running rings on a screen, which
are well visible in the inverse geometry of the experiment
(see Fig. 3a), where the central maximum is absent, and
hardly detectable on the background of the bright center
in direct geometry (see Fig. 3b).

The simple for analysis approximate expression for
the inverse scattering indicatrix can be derived from (13b)

and (14b):

expl-n?©0-01)2)
1+n266;

xcosz(¢f +1-n%(n},—N¥2)(O -0 )2/4)-

Itis clear from the analysis of (15a) and numerical simu-
lation of the precise formula (14) that for the «rather
good» samples the inverse scattering is periodical in time
and posses conic spatial structure with the cone opening
oscillating around the angle 6. The amount, the velocity

(j2(6,1)) =R?
(15a)

Jolp(nt, ~1)66 Jexpli(r + 6 ) ~in2(n%, ~n7o)(62 +6:2) [2)s]

2
(14a)

(14b)

a
)0.4
\]2 'l, \
0.2t ,-" A
P
b Vol
’.' / \ \_
2 .’ |
0 0.025 6  0.05

and the direction of motion of rings on the screen both for
direct and inverse scattering are determined by the value
and the sign of the difference An¢ =nf;,-nf1z. At
(I79f)2>>1 we can distinguish the two types of rings: the
more intensive or «bright» and the less intensive or «pale»,
that have different directions of motion (see below the
comments to (16)). For positive Any, «bright» rings move
from the angle 6, to the center 6= 0, and «pale» ones
strongly damping travel from the angle 6y to the greater
angles; for negative Any «bright» rings move from the
center to the angle 6, and «pale» ones travel from the
circumference to the angle 6y, increasing their intensity
and finally merge with the «bright» rings. The velocity
of motion and the amount of rings increase with the in-
creasing Any absolute value: at small |Anj only the one
slowly moving «bright» ring appears, and at big |An/
several fast moving rings can be observable in both direc-
tions simultaneously.
As it follows from the sluggishness of photorefractive
medium, the intensity of scattering must be negligibly
small in the initial moment of laser switching ¢ = 0. In

-5 \
10 — _001 — ‘I
T \

0 0.025 0

0.05

Fig. 3. The profiles of the averaged indicatrix of the inverse (a) and direct (b) autowave scattering (14) at different 7: T=772 (solid curves),
518 (dashed curves), 1 (dotted curves), 6775 (dash-dotted curves). The parameters 1 =100, 6,= 0.025rad, R*\=R"|=R*,=R— =0.1,

ny=1 and An;=-1. The dynamics of autowaves in variables time-angle is shown in the insets.
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this paper we have considered the stationary dynamic
regime and have not taken into account the damping
relaxational processes which provide the fulfillment of
the real initial conditions. Therefore, the parameter ¢
determining the phase of the inner field oscillations at
¢ = 0 remains undetermined. Having noted that at ¢,= p/2
the scattering intensity (14, 15a) is minimum at ¢ =0,
and at (r]@_/)2 >> 1 it, besides this, is exponentially small
at the initial moment, we can possibly apply our results
(14,15a) for small times at
¢r=m2. (15b)

If the inequality 0 < 4(7 — (m + 1/2))/Any< 1 (m = 0;
1; 2...) is satisfied, one derives the approximate depend-
ence of the angular ring size 6, over ¢ from (15), having
equated cosines to *1. Thus, the following dependence is
obtained:

0F =0, 72 —T_f(mJ’_l/Z), (16a)
n Ney —Ng2
nf,-Nni2>0 - T-m(M+1/2)>0,
(16b)

n{,-Nf2<0 - T-m(M+1/2)<0.

Where sign «—» corresponds to «bright» rings, and
«+» to «pale» ones, the number m is chosen in accor-
dance with (16b). Really, as it follows from (15a), al-
ways j2(67,)>j>(8",), and if Any<< 1 and (76> >> 1 than
jZ(Qr) >>j1(9+r)~

As the final remark to this item, we would like to em-
phasize the following. Our theory predicts that high qual-
ity ferroelectric photorefractive ilmenites, in the case
when photoactive impurity does not destroy their initial
structure, can generate optical autowaves even under sta-
tionary laser irradiation.

3.4. The discussion and analyses of the tempo-
ral and spatial characteristics of the scattered
irradiation. Comparison with the experiment on
autowave PILS in LiNbOj:Fe.

Notice that theoretically calculated diffraction pattern
for inverse scattering, at least for the «thick» crystal with-
out essential growth defects (i.e. / >> [  and |¢"1. [|>>1),
possesses significantly higher visualization, than the same
for the direct scattering (see Fig. 3). That is why in this
item, we restrict ourselves by calculation and analysis of
those basic characteristics of inverse scattering, which
have been compared with the available experimental data
on autowave scattering in LiNbOj crystals, doped with
0.0270.07 wgh. % Fe revealed before [6] and intensively
studied now in our lab.

Let us calculate such an important characteristic as
the spatial correlation coefficient of the inverse scatte-
ring, hereinafter designated as K,;,. Namely let us derive
the correlation function of the two points «a» and «b» on
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the screen (characterized by angles 6, and ¢;) with diffe-
rent (in general) time-averaged intensities j»(03) =

=({i26a))) and 12(65) = ({2(6b.7)) ) . By defiition
2i2(0a) i)
i262)) +(i26)f

In fact, we calculate K, for two different «flickering spots»
or parts of «flickering arcs» or points of «irregular rings».
Within the framework of the proposed models of non-
homogeneities, the conic cross-sections with various vec-
tors 6y, By and amplitudes R,, R, can be realized in the
points «a» and «b». After time-averaging in (9) and (14)
with different 6, and 6, one can obtain after using (6)
that in the case when side maxima are good resolved (i.e.
(hqf)2>> 1), the result in the form:

(17)

Km:(

i2(6b)
i2(6a)
R LW,

20 204
Re 1+wB5,

=Ko exp(—nz((éb -01)2 - (6a _éfa)z))

(18)

Here R, » and w do not depend on the angles 6y, and
4. For the case, when

0a =6p =0ta =O1p, (19
(18) can be essentially simplified and rewritten as the
function of dimensionless intensity & introduced in item
2. In accordance with the numerical calculations (see
Fig. 1b) for the good compensated ferroelectric-semicon-
ductor (2 = 0.9) even at rather small pump intensities (as
soon as Slg >>gp) the Eq. (18a) from item 2 for g/ is
valid, i.e. gp~& 2. Using Eq. (18a) from item 2 and (19),
we obtain Oy =6 =0y =0 = 90/‘/? . Then K, rea-
ches the form:

_ 2Kgexp(=&o/&)
Kab(€) = :
P L K2 exp(-280/)
& =(slo+s0)/m3,
éo= UZ(COS(D 6.6 1) —cos(U] éavéfa))

(20)

Hereinafter in this item, we assume that it is possible
to neglect the dark conductivity due to sufficient laser
intensity Slg >> g, i.e. to substitute

€2y

Then, in order to obtain the dependence of K, on the
pump intensity I, it is sufficient to make the substitution
&l&y — Iy/lpk in (20). In the case, the values Ijxand K are
fitting parameters. The dependence of the spatial corre-
lation coefficient K, over &/&, and comparison with re-
cently obtained experimental data are represented in
Fig. 4. While comparing experimental data with the de-
pendence K, on I we used (20), and therefore conside-
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Fig. 4. The dependence of the measured and calculated spatial
correlation coefficient K, over intensity I at the different angles
between the detectors: 10° (empty squares and solid curve at
Ky=0.46, Ijx=2.86mW), 30° (filled squares and dashed curve at
Ky=0.41, Ijx=2.86mW), 90° (empty triangles and dotted curve at
Ky=0.32, I)x=0.83mW), 180° (filled triangles and dash-dotted
curve at Ky=0.35, Iyx=1.6mW). The dependence of K, over &/&,
at different K, is depicted in the inset: K;=0.1 (dash-dotted curve);
0.5 (dotted curve); 0.8 (dashed curve); 1 (solid curve).

red the register detectors placed on the ring in accord-
ance with (19) and assumed that they were the point ones
(i.e. we approximate the real apparatus function by the
Dirac delta-function). The latter approximation is perti-
nent only if Oy << |§b —§a| (8, is the angular detector
size).

We'd like to remind that inverse scattering has the
conic spatial structure with the cone opening oscillating
around 6 (see (15)). It is appeared convenient to charac-
terize these temporal oscillations by the minimum angle
6,.in (i.e. the angle of cone generation), the angle of the
best visualization 6, (i.e. the angle of cone maximum
intensity), and the maximum angle 6,,,, (i.e. the angle of
cone disappearance). The experimentally measured val-
ues of 6,,,, and 8,,;, can be additionally limited by the
resolution of the register hardware. We determined these
angles numerically from (14). It is turned out that for a
wide region of parameters 1 u Any, with high accuracy
one can apply clear and simple relations:

60 = (0t max +Ofmin)/2=65¢,

Ot min = 116+, (22)

Ot max = f20+.

Here f1<1, f>>1 are positive constants. Thus, the cone
parameters are determined by the angle g5, which increa-
ses with the increasing photoactive impurity concentra-
tion ng , because g~ ng . Using Eq. (15a) from item 2,
(9) or (14-15) and (21) we obtain:
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_g. 1 [f(-1 f(h)zl—p+,/(1—p)2+4p/h
f gh —f3(h) ) > y

h=na/n§, h<i p=yna/sl,
(23)

where 6, does not depend on /. Calculated in accordance
with (14-15, 22-23) dependences of the angles 8,,,, 6
and 6,,,, over impurity concentration ng have been com-
pared with the experimentally obtained ones in Fig. 5.
Let us discuss the temporal spectrum of scattering
waves. The theoretical (see Eq. (17) from item 2) and ex-
perimental dependences of autowave frequency W over
pump intensity /; are presented in Fig. 5. To all appear-
ances, we possess the experimental data for the linear
part of the dependence Eq. (17) from item 2, i.e. for well
compensated samples (4 = 1) or/and small 1, (see Fig. 1a
and Eq. (18a) from item 2). Within the framework of our
theory for «thick crystals» the autowave frequency does
not depend on the crystal thickness. Possibly that this
dependence is present below the thickness threshold at
lg"r. /| < 1. The temporal dependence of the autowaves
intensity averaged over ring can be easily calculated from
(15). In comparing the result with the experimentally ob-
tained autowaves evolution (see inset in Fig. 6), to our

0.°
10F

4/

0.08

Fig. 5. The dependence of O, (filled squares), 6y (empty squares),
Bmax (empty triangles) over Fe concentration in LiNbOj3. The
best agreement with the experiment was obtained at p =1.5,
n,=0.02, 6, =4.85° f1=0.62, f=1.37. The dependence of the
ratio 646, over n%/n, at different p are shown in the inset: p = 0.01
(dash-dotted curve), 0.1 (dotted curve), 1 (dashed curve), 10
(solid curve).
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Qf,Hz

Fig. 6. Theoretical (solid curve, calculated by Eq.(17) from item
2 at 1 =0.95, yn%;=8.2Hz) and experimental (filled squares)
dependencies of autowaves frequency Qy over Ij. Inset: the ex-
perimental (bold curve) and theoretical (fine curve) depen-
dences of the averaged over the ring autowave intensity (in
arbitrary units) over time.

mind the qualitatively compliance in general dynamics
of the process is evident, the differences of the experimen-
tal and theoretical profiles on the period is related with
the linearity of the theory. In fact we omitted all nonlinear
terms in the initial system, i.e. neglected the possibility
of the crystal to generate sub- and super-harmonics.

The most simple for the analysis and the best corre-
sponded with the experiment is the dynamics of the rings
of autowave scattering at small Any (see Fig. 7). In this
case rather bright ring appears on a screen, then extends
with decreasing of its thickness and gradually disappears.
After this the crystal generates the following ring.

Note, that autowave PILS was found only in the pho-
toinduced bleaching regime. All the dynamic effect dis-
appears in the reflecting regime, i.e. under turning the
sample over 180° in XY-plane. This fact confirms the va-
lidity of the corresponding speculations from the item 3.1.

Also the refractive index of the outer medium does not
influence on the existence of autowaves: the crystal gen-
erates them both in the air and in the immersion or even
in the water. This confirms the assumption made in the
item 3.1 about the fact that the seeding for the inverse
wave is exactly internal reflection at the boundary of the
screening region and the double electric layer.

The conclusion of the item 3.2 about the reconstruc-
tion of pump wave polarization for the inverse scattered
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waves and its destruction for the direct ones has found the
experimental confirmation with a high accuracy up to
angular seconds.

In our lab all the above-mentioned dynamic effects
(see Fig. 2) have been registered only in the high quality
LiNbOj single crystals. Similar effects have not been
found in any other samples. In accordance with the con-
clusion of the item 3.3, we explain these results by the
presence of the non-zero component Gp only in the
ilmenite LiNbO3 and its absence in all other investigated
samples.

Thus, though the real temporal spectrum of PILS has
been approximated by delta-function in our linearized
theory, the main spatial and temporal characteristics of
the process obtained in this way are in a full agreement
with the available experimental data.

Fig. 7. The typical dynamics of the autowave scattering rings in
the successive moments of time: appearance, spreading out and
disappearance. Left side is the theoretical calculation by (14b,
15b) at n =100, 6= 0.025rad, R*= R, =0.1, &n;=-1 and T =713,
213, 1t 7116 (from top to bottom). Right side is the photographic
image of the ring evolution on a screen.
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3.5. Dynamic halo scattering in PRC. Compari-
son with the experiment on non-stationary
isotropic PILS in LiTaOj;:Cr.

Let us consider the dynamic PILS in the «thick» crystal
with developed system of growth defects. In order to cal-
culate the scattering indicatrix for such samples besides
averaging of (9) over polarization, it is necessary to av-
erage it over the other material parameters such as abso-
lute value of G, impurity ng and acceptors n, concen-
trations, etc. Within the framework of our model, the lat-
ter can be reduced to averaging over the absolute value
of angle 6,~ Gand the frequency Q, which can be sub-
stituted by integration in the case when fluctuating val-
ues changes quasi-continuously. Actually, we have sup-
posed that the regions with different material parameters
are so numerous, that summing over them can be substi-

tuted by statistical averaging of (14) over variables 6,

and Qywith definite continuous joint distribution func-

tion P(65,Qy). Also we assume that deviations of 6rand Wy

from their mean values 6y and Qp are small and inde-
pendent. Therefore, one can postulate that the distribu-
tion P(q;Wy) has Gaussian form:

P@:,Q¢)=

(_ 0.2 /oA (). 2 2)
_expl- (05 —00)% /205 —(Q1 -Q10)? /2%,
- Malg T4
Oto>>0g, Qig>>Ag.

Using (9), (136) and (24), the integration limits over
qrand Wycan be extended and the averaging of indicatrix
(14) can be rewritten as:

2

(2]

(i12(6.1) = [drd6rP@Er.Q1)ir26.1)
j12(6,t) = sz eXp(—nz(1+inf )92/2)+
£iQ t-n?(L+ing, )0 -01)?
+ZszeXp(+|th '72(1+.|nil2)( £) /2)
: ‘/1+r) (L+in¥, ,)00

25

S

In (25) the integration over frequency can be per-
formed precisely, and that over the angle can be appreci-
ated by the Laplace method [21]. Finally we derived:

Rf exp(—n2(1+inf)92/2)+
(i26.1)) =

exp(—A t2/2+|Qfot -n (1+'nfl2)(9 6f0)2/2(1+A n (1+mfl2)

As it follows from (26), at ¢t >> 1/Aq «side» compo-
nents of the fields are damped as exp(-(tAp)%/2). Eventu-
ally after the averaging over the continuous frequency
spectrum the periodical function transforms in to the
aperiodical one. The averaging over the angle 8 does
not cause new effects, it only re-determines the disper-
sion h. Therefore, for the simplification of the further

analysis, we assume that
(Ben?<<l. 27)

The inequality (27) make it possible to average field
amplitudes over frequency spectrum exactly, i.e. without
approximation (13b). Thus, instead of (26) we have:

R, exp(—nz(1+inf )92/2)+
+ z RfZJo(ﬂ(n?l—i)eefo)exp(—A%tZ/zi

*iQ ot —n?(1+ing; ,)(62 +ef20)/2)

(j120,1))=

(28)

Taking into account (13b), (15b) and (27), the scat-
tering indicatrix (28) can be reduced to:

exp(—n2(1+inf)92/2)+
+R[exp(—A2tz/z—nz(e—efo)z/z)x
| 0000t =70}, 6-610)%/2)
(Jﬂ@,t)): 0 ‘/1+,7 (1+in?,)66¢0

[l
exp(-iQ s ot ~n2in71(6 -5 0) /2)5
JL+n2(L+in1)861 H
(i2(0.,t))=R? exp(—AQtz ~1°(6-610) )x
1+n266;

xsinZ(Qfot—nz(n}'z -nt2)(@ —9f0)2/2)

(29a,b)

It follows from (28-29) that the obtained PILS
indicatrix differs from (14, 15) only by the presence of
damping factors for the «side» components. Then the
analysis of the spatial structure of the periodical PILS,

(26)

PR
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performed in the item 3.3, remains valid for the aperio-
dical one with the correction that in latter case one can
see only the finite number or rings with the consequently
decreasing intensity on the screen (see Fig. §).

Let us compare the obtained results with the experi-
ment on the non-stationary isotropic PILS in LiTaO5:Cr
[5]. Above all, we would like to notice that despite an-
other geometry of the experiment (pump beam was di-
rected not along Z ¢, but along crystallographic axis X ¢),
our results can be applied after the appropriate re-desig-
nation of tensors components. Surely, this operation
changes the numerical values of some parameters, but
maintains the analytical structure of formulae (26-29).

The authors of [S] observed on a screen a ring of PILS
(we called it «halo») once appeared and gradually dis-

Fig. 8. The profiles of the averaged indicatrix of the direct aperio-
dical scattering (29) at different : 7=0 (solid curves), 775 (long-
dashed curves), 72 (short-dotted curves), 5778 (dotted curves),
37174 (dash-dotted curves). The parameters n=100, R=1, n/~=1
and Any=-1 6,=0.035rad. The dynamics of halo in variables
time-angle is shown in the inset. The halo structure on a screen
are depicted below. Left side is the photographic image of the
halo on a screen [5]. Right side is the theoretical calculation by
(29) at n =100, 6;=0.035rad, R=1, Any=-1 and T=773.

S00, 4(4), 2001

appeared around the laser pump beam passing through
the sample. They have not reported about any similar
effects for the inverse scattering. Within the framework
of the proposed theory, this phenomenon can be ex-
plained, if we assume that only the «side» components of
the direct wave possess sufficient intensity, and the struc-
ture of the inverse scattering do not visualize itself due to
the insignificantly small intensity. In accordance with
(28), this is possible if:

ol 03 )ect, to=n?fni, -niorc? /.00

where 7, is the moment of the ring appearance.

The exact expression for 7, depends on the properties
of the registering detectors. In that case, the scattering is
absent at 1<tjand at >, (28) can be rewritten as follows:

(12(6.0) ~ expl-n262 )+ Rrexpl- 82,12 [2-n202 2 -
~n%(0-610)2/2)x
Heos(Q ot -n°nf; (0 -610)® /2+0°n167/2)

0 O
O farn®6:0)? 0’} 0010)° 0,
O
gcos(—Qfot—nznh(e—efo)2/2+n2nf92/2)g
] Ja+n60:0)2 +n*(n116610)°> [

+ O(exp(—A%th))

(j2(6,0)) ~ Olexp(-0%yt2) )<< expl-02,1212) .
G1)

It follows from the numerical analysis of (28-31) that
at the appropriate values of the fitting parameters of the
ring of direct PILS or dynamic halo-scattering (see Fig.
8) once appeared, slightly broadened and then disap-
peared on a screen. Thus, the results obtained in this item
are in a qualitative agreement with the experiment [5].

Conclusions

In this paper we have studied consecutively the influence
of the recharging trap waves on the dynamics of the inner
photoinduced fields in the uniaxial ferroelectric PRC
under stationary laser irradiation. The general form and
the characteristic features of the direct and inverse PILS
have been derived and discussed. The obtained results
can be briefly formulated as following statements.

For the first time, it has been shown that, due to influ-
ence of transverse photovoltaic current and the typical
boundary conditions for all components of inner field,
among all possible scenarios of transverse instabilities,
the boundary circle will be realized in the perfect crys-
tal. Due to this phenomenon, the periodical, quasi-peri-
odical or aperiodical PILS appear in the system, depen-
ding on the structure of growth in homogeneities and the
character of photoinduced fluctuations caused by them.
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The correlation between the structure of scattering light
and the type of fluctuations has been considered in de-
tails for ilmenites. The great attention has been paid to
the description of the optical autowaves generation and
dynamic halo scattering in these materials.

All the main theoretical results are in a good agree-
ment with the available experimental data and describe
the phenomena found in [5, 6].
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