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We calculate the intensity of spontaneous radiation of a system of non-linear quantum field, where the non-
linearity is due to deformations of the Poison brackets of the generalized coordinates and momenta.
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1. Introduction

Starting from the seminal works by [1] and [2], quantum systems with deformed Poison brackets
have attracted much attention in various fields of theoretical physics. Of special interest is the so-
called space with the “minimal length,” which means that the deformation of the Poison bracket
is quadratic in momentum for both coordinates and momenta. This has originally been introduced
in [3,4]. Such a deformation leads to a non-zero minimal root-mean-square value of the coordinate.
There is an increasing number of papers on the subject, and the literature review would require a
separate article.

The deformation with the minimal length can in principle be extended to an arbitrary space
of generalized coordinates and momenta which are natural for the description of various models.
In particular, one can study the electromagnetic field represented as a set of oscillators with the
deformed commutator relations for coordinates and momenta, which generates the minimal length.
Obviously, in this case we have the deformation of the field itself rather than the deformation of
the real space. This model of electromagnetic field has been considered in [5,6]. The Casimir effect
in such a deformed field has been studied in [7], where the Casimir energy was calculated for the
one-, two, and three-dimensional cases. It has been shown that the deformation suppresses the
interaction between the confining boundaries.

In the present work, we study the interaction of the deformed electromagnetic field with atomic
systems in the coordinate undeformed space. We shall not discuss the properties of the field equa-
tions (which are non-linear) or the problems related to their Lorentz and gauge invariance which
will be considered in a separate paper. We shall rather propose a model of interaction of such fields
with atomic systems. We shall also calculate the intensity of spontaneous radiation as a function
of the deformation parameter.

2. Basic equations

We study the interaction of an atomic system with the electromagnetic field, whose Hamiltonian
after the decomposition into a set of oscillators is given by:

Ĥ =
∑

k

∑

α

(

P̂ 2
k,α

2
+
ω2

kQ̂
2
k,α

2

)

, (1)
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where k is the wave-vector, α denotes the polarization, ωk = ck is the frequency (where c is the
speed of light in the vacuum). Q̂k,α, P̂k,α are the generalized coordinate and momenta operators
with the deformed Poison brackets:

Q̂k,αP̂k,α − P̂k,αQ̂k,α = i~
(

1 + βP̂ 2
k,α

)

, (2)

where β > 0 is the deformation parameter, and all the remaining commutators are equal to zero.
As it is well-known, such commutation relations lead to the “minimal length” in the coordinate

space,
√

〈Q̂2
k,α〉 = ~

√
β [3,4]. Since in this case we do not deform the ordinary “physical” space (in

which our field lives) but rather the commutation relations of the dynamical variables (fields), we
have the deformation of the field itself rather than the space-deformation.

Let us introduce new operators q̂k,α and p̂k,α as follows:

q̂k,α = Q̂k,α, P̂k,α =
1√
β

tan(p̂k,α

√

β). (3)

It is easy to show that they are canonically conjugated operators:

q̂k,αp̂k,α − p̂k,αq̂k,α = i~. (4)

The Hamiltonian (1) becomes

Ĥ =
∑

k

∑

α

(

ω2
kq̂

2
k,α

2
+

tan2(p̂k,α

√
β)

2β

)

. (5)

The equation of motion of such a field has been studied in [5,6], where the Hamiltonian was
presented as an expansion in ordinary annihilation and creation operators. The field equations are
non-linear but can be treated perturbatively.

As it is usual for oscillatory systems, we present the magnetic vector potential A as follows

A =

√

4πc2

V

∑

k

∑

α

ek,α

[

1

2

(

Q̂k,α − P̂k,α

iωk

)

eikr +
1

2

(

Q̂k,α +
P̂k,α

iωk

)

e−ikr

]

. (6)

In terms of the new, canonically conjugate operators (3) we have:

A =

√

4πc2

V

∑

k

∑

α

ek,α

[

q̂k,α cos(kr) − tan(p̂k,α

√
β)

ωk

√
β

sin(kr)

]

. (7)

As usual, the operator of the interaction of the field with an atom is:

V̂ = − e

mc
(Ap̂) +

e2

2mc2
A2, (8)

where p̂ is the momentum operator (of the electron in an atom), e = −|e| is the electron charge
and m is the mass.

Therefore, we propose the following model of the interaction of the deformed field with an atomic
system: we assume that all the expressions of the ordinary theory of the electromagnetic field are
valid, except that there are deformed commutation relations for the operators Q̂k,α and P̂k,α. Such
a non-linear field is a simple model which allows us to study the effects of the deformation of the
Poison brackets on the properties of physical systems.

3. Wave function and energy levels of the deformed field

The eigenvalue problem for the Hamiltonian (5) has an analytic solution. In momentum repre-
sentation the wave function is as follows:

ψ...,Nk,α,...(. . . , pk,α, . . .) =
∏

k

∏

α

ψNk,α
(pk,α), (9)
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where ψNk,α
(pk,α) is the eigenfunction for the (k, α) mode of the Hamiltonian

Ĥ =
ω2q̂2

2
+

tan2(p̂
√
β)

2β
, (10)

which can be calculated using the standard methods, for instance, the factorization method [8].
For brevity, we drop indices k, α from operators q̂k,α, p̂k,α, frequency ωk, quantum number Nk,α =
0, 1, 2, . . . and other quantities:

pk,α → p, q̂k,α = i~
∂

∂pk,α
→ i~

∂

∂p
, ωk → ω, Nk,α → n = 0, 1, 2, · · · . (11)

We have, therefore, for the wave function in the momentum representation:

ψn(p) = β1/4

√

Γ(α + n+ 1)Γ(n+ 2α)

n!Γ(1/2)Γ (α+ n+ 1/2) Γ(2n+ 2α)

×
(

− d

dp̄
+ α tan p̄

)

. . .

(

− d

dp̄
+ (α+ n− 1) tan p̄

)

cosα+n p̄, (12)

where p̄ = p
√
β is the dimensionless momentum, with the domain of definition of the momentum

p being

−π/2
√

β 6 p 6 π/2
√

β. (13)

The quantum number is n = 0, 1, 2, . . . , and

α =
1

2



1 +
2

β~ω

√

1 +

(

β~ω

2

)2



 . (14)

The wave-function (12) is normalized as usually,

π/2
√

β
∫

−π/2
√

β

ψn′(p)ψn(p)dp = δn′n. (15)

A few first wave-functions read:

ψ0(p) = β1/4

√

Γ(α+ 1)

Γ(1/2)Γ(α+ 1/2)
cosα p̄,

ψ1(p) = β1/4

√

2Γ(α+ 2)

Γ(1/2)Γ(α+ 1/2)
cosα p̄ sin p̄,

ψ2(p) = β1/4

√

2Γ(α+ 3)

2(α+ 1)Γ(1/2)Γ(α+ 3/2)

[

(2α+ 1) − 2(α+ 1) cos2 p̄
]

cosα p̄. (16)

Let us calculate the wave-functions for β = 0. In this case, there is no deformation and the
Hamiltonian (5) reduces to the Hamiltonian of a harmonic oscillator with the mass equal to unity.
Because α → 1/β~ω → ∞ for β → 0, we obtain

cosα(p
√

β) =
β→0

(

1 − p2β

2
+ . . .

)1/β~ω

=
β→0

e−p2/2~ω. (17)

Noticing that Γ(z + a) ∼
√

2πe−zzz+a−1/2 for z → ∞, we obtain from equation (12), as expected,
the wave-fucntion of the harmonic oscillator in the momentum representation:

ψn(p) =
1

(π~ω)1/4

1√
n!2n

(

− d

dη
+ η

)n

e−η2/2, (18)
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where η = p/
√

~ω is the dimensionless variable, with −∞ < p <∞.
It is convenient to rewrite equation (12) using the Gegenbauer polynomials Cα

n (x) [9,10]. To do
this, we change the variable x = sin p̄ to obtain, after simple transformations,

ψ̄n(x) =

√

n!(α+ n)

2πΓ(2α+ n)
2αΓ(α)(1 − x2)α/2−1/4Cα

n (x), (19)

Cα
n (x) = (−)n

√
πΓ(2α+ n)

n!22α+n−1Γ(α)Γ(α + n+ 1/2)
(1 − x2)1/2−α

(

d

dx

)n
[

(1 − x2)n+α−1/2
]

. (20)

The wave-functions have the following normalization

1
∫

−1

ψ̄n′(x)ψ̄n(x) dx = δn′n . (21)

Our change of the variable is not a unitary transformation; the Jacobian of the transformation is
1/ cos p̄ = (1−x2)−1/2. Hence, for instance, the coordinate operator in the coordinate representation
is as follows:

q̂ = i~
√

β(1 − x2)1/4 d

dx
(1 − x2)1/4. (22)

The energy levels of the harmonic oscillator with the commutation relations (2) are eigenvalues
of the Hamiltonian (5). They are well-known [4,11]. Then the energy levels of the deformed field
read:

E...,Nk,α,... =
∑

k

∑

α

~ωk

[

(

Nk,α +
1

2

)

√

1 +

(

β~ωk

2

)2

+
β~ωk

2

(

N2
k,α +Nk,α +

1

2

)

]

, (23)

where the quantum numbers Nk,α = 0, 1, 2, . . . . We note that the deformation parameter may
depend on k and α. In our work, however, we restrict our considerations to the case β = const.

4. Spontaneous radiation

Let us assume that an atom is in the excited state |2〉 (with the energyE2) while the field is in the
ground state | . . . , 0, . . .〉. As a result of the interaction of the atom with the field, the atom jumps
to a level with the lower energy E1 and radiates a light quantum with the energy ~ω = E2−E1. The
field, therefore, jumps to the state with one phonon, i.e., | . . . , 0, Nk,α = 1, 0 . . .〉. The transition
probability rate of a “field-plus-atom” system to jump from the initial state |i〉 = |2〉| . . . , 0, . . .〉 to
the final state |f〉 = |1〉| . . . , 0, Nk,α, 0, . . .〉 is given by:

wk→f =
2π

~

( e

mc

)2

|〈f |Ap̂|i〉|2 δ(E2 −E1 − ~Ωk), (24)

where the energy of the field quantum, according to equation (23), is

~Ωk = E...,0,Nk,α=1,0,... − E...,0,... , Ωk = ωk





√

1 +

(

β
~ωk

2

)2

+ β~ωk



 . (25)

We take into account the first term of the interaction operator (8), which is linear in the vector
potential.

The matrix element 〈f |Ap̂|i〉 in equation (24) is

〈f |Ap̂|i〉 =

√

4πc2

V

(

〈Nk,α = 1|q̂k,α|0〉pc
12 −

1

ωk

√
β
〈Nk,α = 1

∣

∣

∣
tan(pk,α

√

β)
∣

∣

∣
0〉ps

12

)

,
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pc
12 = 〈1| cos(kr)ek,αp̂|2〉, ps

12 = 〈1| sin(kr)ek,αp̂|2〉. (26)

Using the wave functions (16), we get for the matrix elements of the field operators:

〈Nk,α = 1|q̂k,α|0〉 = −i~

√

2β(αk + 1)

2αk + 1

[

Γ(αk + 1)

Γ(αk + 1/2)

]2

,

〈Nk,α = 1
∣

∣

∣
tan(pk,α

√

β)
∣

∣

∣
0〉 =

√

2(αk + 1)

αk(2αk + 1)

[

Γ(αk + 1)

Γ(αk + 1/2)

]2

, (27)

here αk = α, which is defined by (14) at ω → ωk.
The intensity of spontaneous radiation Ik,α is defined in a usual way as the amount of energy

with the given polarization α radiated by an atom in unit time on the resonance frequency ω =
(E2 −E1)/~ per space angle, i.e.,

Ik,α =
V

(2π)3

∫ ∞

0

k2
~Ωkwi→f dk. (28)

By inserting equations (24)–(27) into equation (28) we obtain, after integration:

Ik,α =
e2~

m2c3π

(

2β(αk + 1)

(2αk + 1)2

[

Γ(αk + 1)

Γ(αk + 1/2)

]4

ω2
kΩk

dωk

dΩk

∣

∣

∣

∣

pc
12 −

i

βαk~ωk
ps
12

∣

∣

∣

∣

2
)

Ωk=ω

.

Taking into account equation (25), we finally get, after simple transformations,

Ik,α =
e2ω2

2πm2c3
g(ω̄)

∣

∣

∣

∣

∣

pc
12 − ips

12

1

ᾱ

√

2ᾱ+ 1

4ω̄

∣

∣

∣

∣

∣

2

, (29)

where

g(ω̄) =
8(ᾱ+ 1)(2ᾱ− 1)ω̄1/2

[2ᾱ+ 1 + 2ω̄(4ᾱ− 1)](2ᾱ+ 1)5/2

[

Γ(ᾱ+ 1)

Γ(ᾱ+ 1/2)

]4

, (30)

ᾱ =
3ω̄

1 + 4ω̄ −
√

1 + 8ω̄ + 4ω̄2
− 1

2
,

and the dimensionless deformation parameter is

ω̄ =
β~ω

2
. (31)

In the limiting case of no deformation (β = 0) we have g(0) = 1 (see equation (29)), and,
therefore, one gets for the intensity

Ik,α =
e2ω2

2πm2c3
|p12|2, p12 = 〈1|eikr(ek,αp̂)|2〉, (32)

which is a well-known expression for the intensity of radiation for the non-deformed field.
In the opposite limit of large deformation parameter (ω̄ � 1), the term ∼ sin(kr) vanishes (see

equation (29)), and hence the quadrupole radiation vanishes too. The reason is that the sin(kr)
term is the main contribution to the quadrupole radiation in the long wavelength limit. Finally,
we note that the function g(ω̄) in the case of considerable deformations (ᾱ = 1) has the following
asymptotic form:

g(ω̄) =
ω̄→∞

128

27π2

1√
3ω̄

. (33)
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5. Intensity of the dipole radiation

Within the dipole-transition approximation, the wave-vector k → 0 (cos(kr) → 1 and sin(kr) →
0), hence pc

12 = (ek,αp12) and ps
12 = 0 (see equation (26)). Therefore, we get:

Ik,α =
e2ω2

2πm2c3
|ek,αp12|2g(ω̄), (34)

Equation (34) leads to equation (32) for ω̄ = 0 with k = 0, while for large values of the deformation
parameter the intensity of the dipole radiation is (after making use of equation (33))

Ik,α =
e2ω3/2

2πm2c3
|ek,αp12|2

(

2

3

)7/2
1√
β~

(

4

π

)2

. (35)

Therefore, we conclude that with the increase of the deformation parameter the intensity decreases
as β−1/2.

0 1 2 3 4 5

0,2

0,4

0,6

0,8

1,0

ω

g(ω)

Figure 1. The intensity of spontaneous dipole radiation of the deformed field (see equation (34)),
divided by the intensity for the undeformed field, as a function of the dimensionless deformation
parameter (31).

The intensity of the dipole interaction as a function of the dimensionless deformation parameter
ω̄ is shown in figure 1.

6. Conclusion

We have considered a theory of spontaneous radiation taking into account the creation of one
photon. Since the field is non-linear, the transitions between any two states are allowed, not only
between the two neighboring states as in the case of an ordinary oscillator. In order to study
such processes in the case of more then one photon, but in the linear approximation (in the
vector potential A in the interaction operator (8)) and neglecting all the higher order terms in an
expression for the quantum transition rates, we take the following matrix elements instead of (27):

qn,n′ = i~
√

β

∫ 1

−1

ψ̄n(x)(1 − x2)1/4 d

dx

[

ψ̄n′(x)(1 − x2)1/4
]

dx, (36)

(tan p̄)n,n′ =

∫ 1

−1

ψ̄n(x)(1 − x2)1/4 x√
1 − x2

ψ̄n′(x)(1 − x2)1/4 dx. (37)

It is obvious that these integrals are not equal to zero only at even n+ n′.
In a general case, the integrals in equation (36) cannot be expressed in terms of elementary

functions. For some particular values of n and n′, however, the integrals can be easily evaluated,
as for instance for n = 1 and n′ = 0 (see equation (27)). Evidently, many-photon processes are
absent for β = 0 while their role increases with the deformation parameter β increasing.
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Теорiя випромiнювання i поглинання квантiв деформованого

поля

I.О.Вакарчук

Львiвський нацiональний унiверситет iм. I.Франка, Львiв 79005, вул. Кирила i Мефодiя 8

Отримано 5 травня 2008 р.

Розраховано iнтенсивнiсть спонтанного випромiнювання атомними системами квантiв поля з нелi-
нiйнiстю, що зумовлена деформацiєю дужок Пуассона для його узагальнених координат та iмпуль-
сiв.

Ключовi слова: нелiнiйне поле, деформованi дужки Пуассона, мiнiмальна довжина, спонтанне

випромiнювання, дипольне випромiнювання
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